deepagents 0.0.12rc1__py3-none-any.whl → 0.0.12rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
deepagents/__init__.py CHANGED
@@ -1,5 +1,7 @@
1
- from deepagents.graph import create_deep_agent, async_create_deep_agent
2
- from deepagents.middleware import PlanningMiddleware, FilesystemMiddleware, SubAgentMiddleware
3
- from deepagents.state import DeepAgentState
4
- from deepagents.types import SubAgent, CustomSubAgent
5
- from deepagents.model import get_default_model
1
+ """DeepAgents package."""
2
+
3
+ from deepagents.graph import create_deep_agent
4
+ from deepagents.middleware.filesystem import FilesystemMiddleware
5
+ from deepagents.middleware.subagents import CompiledSubAgent, SubAgent, SubAgentMiddleware
6
+
7
+ __all__ = ["CompiledSubAgent", "FilesystemMiddleware", "SubAgent", "SubAgentMiddleware", "create_deep_agent"]
deepagents/graph.py CHANGED
@@ -1,160 +1,140 @@
1
- from typing import Sequence, Union, Callable, Any, Type, Optional
1
+ """Deepagents come with planning, filesystem, and subagents."""
2
+
3
+ from collections.abc import Callable, Sequence
4
+ from typing import Any
5
+
6
+ from langchain.agents import create_agent
7
+ from langchain.agents.middleware import HumanInTheLoopMiddleware, InterruptOnConfig, TodoListMiddleware
8
+ from langchain.agents.middleware.summarization import SummarizationMiddleware
9
+ from langchain.agents.middleware.types import AgentMiddleware
10
+ from langchain.agents.structured_output import ResponseFormat
11
+ from langchain_anthropic import ChatAnthropic
12
+ from langchain_core.language_models import BaseChatModel
2
13
  from langchain_core.tools import BaseTool
3
- from langchain_core.language_models import LanguageModelLike
4
- from langgraph.types import Checkpointer
14
+ from langgraph.cache.base import BaseCache
15
+ from langgraph.graph.state import CompiledStateGraph
5
16
  from langgraph.store.base import BaseStore
6
- from langchain.agents import create_agent
7
- from langchain.agents.middleware import AgentMiddleware, SummarizationMiddleware, HumanInTheLoopMiddleware
8
- from langchain.agents.middleware.human_in_the_loop import ToolConfig
9
- from langchain.agents.middleware.prompt_caching import AnthropicPromptCachingMiddleware
10
- from deepagents.middleware import PlanningMiddleware, FilesystemMiddleware, SubAgentMiddleware
11
- from deepagents.prompts import BASE_AGENT_PROMPT
12
- from deepagents.model import get_default_model
13
- from deepagents.types import SubAgent, CustomSubAgent
17
+ from langgraph.types import Checkpointer
14
18
 
15
- def agent_builder(
16
- tools: Sequence[Union[BaseTool, Callable, dict[str, Any]]],
17
- instructions: str,
18
- middleware: Optional[list[AgentMiddleware]] = None,
19
- tool_configs: Optional[dict[str, bool | ToolConfig]] = None,
20
- model: Optional[Union[str, LanguageModelLike]] = None,
21
- subagents: Optional[list[SubAgent | CustomSubAgent]] = None,
22
- context_schema: Optional[Type[Any]] = None,
23
- checkpointer: Optional[Checkpointer] = None,
24
- store: Optional[BaseStore] = None,
25
- use_longterm_memory: bool = False,
26
- is_async: bool = False,
27
- ):
28
- if model is None:
29
- model = get_default_model()
19
+ from deepagents.middleware.filesystem import FilesystemMiddleware
20
+ from deepagents.middleware.subagents import CompiledSubAgent, SubAgent, SubAgentMiddleware
30
21
 
31
- deepagent_middleware = [
32
- PlanningMiddleware(),
33
- FilesystemMiddleware(
34
- use_longterm_memory=use_longterm_memory,
35
- ),
36
- SubAgentMiddleware(
37
- default_subagent_tools=tools, # NOTE: These tools are piped to the general-purpose subagent.
38
- subagents=subagents if subagents is not None else [],
39
- model=model,
40
- is_async=is_async,
41
- ),
42
- SummarizationMiddleware(
43
- model=model,
44
- max_tokens_before_summary=120000,
45
- messages_to_keep=20,
46
- ),
47
- AnthropicPromptCachingMiddleware(ttl="5m", unsupported_model_behavior="ignore")
48
- ]
49
- # Add tool interrupt config if provided
50
- if tool_configs is not None:
51
- deepagent_middleware.append(HumanInTheLoopMiddleware(interrupt_on=tool_configs))
22
+ BASE_AGENT_PROMPT = "In order to complete the objective that the user asks of you, you have access to a number of standard tools."
52
23
 
53
- if middleware is not None:
54
- deepagent_middleware.extend(middleware)
55
24
 
56
- return create_agent(
57
- model,
58
- system_prompt=instructions + "\n\n" + BASE_AGENT_PROMPT,
59
- tools=tools,
60
- middleware=deepagent_middleware,
61
- context_schema=context_schema,
62
- checkpointer=checkpointer,
63
- store=store,
64
- )
25
+ def get_default_model() -> ChatAnthropic:
26
+ """Get the default model for deep agents.
65
27
 
66
- def create_deep_agent(
67
- tools: Sequence[Union[BaseTool, Callable, dict[str, Any]]] = [],
68
- instructions: str = "",
69
- middleware: Optional[list[AgentMiddleware]] = None,
70
- model: Optional[Union[str, LanguageModelLike]] = None,
71
- subagents: Optional[list[SubAgent | CustomSubAgent]] = None,
72
- context_schema: Optional[Type[Any]] = None,
73
- checkpointer: Optional[Checkpointer] = None,
74
- store: Optional[BaseStore] = None,
75
- use_longterm_memory: bool = False,
76
- tool_configs: Optional[dict[str, bool | ToolConfig]] = None,
77
- ):
78
- """Create a deep agent.
79
- This agent will by default have access to a tool to write todos (write_todos),
80
- four file editing tools: write_file, ls, read_file, edit_file, and a tool to call subagents.
81
- Args:
82
- tools: The tools the agent should have access to.
83
- instructions: The additional instructions the agent should have. Will go in
84
- the system prompt.
85
- model: The model to use.
86
- subagents: The subagents to use. Each subagent should be a dictionary with the
87
- following keys:
88
- - `name`
89
- - `description` (used by the main agent to decide whether to call the sub agent)
90
- - `prompt` (used as the system prompt in the subagent)
91
- - (optional) `tools`
92
- - (optional) `model` (either a LanguageModelLike instance or dict settings)
93
- - (optional) `middleware` (list of AgentMiddleware)
94
- context_schema: The schema of the deep agent.
95
- checkpointer: Optional checkpointer for persisting agent state between runs.
96
- store: Optional store for persisting longterm memories.
97
- use_longterm_memory: Whether to use longterm memory - you must provide a store in order to use longterm memory.
98
- tool_configs: Optional Dict[str, HumanInTheLoopConfig] mapping tool names to interrupt configs.
28
+ Returns:
29
+ ChatAnthropic instance configured with Claude Sonnet 4.
99
30
  """
100
- return agent_builder(
101
- tools=tools,
102
- instructions=instructions,
103
- middleware=middleware,
104
- model=model,
105
- subagents=subagents,
106
- context_schema=context_schema,
107
- checkpointer=checkpointer,
108
- store=store,
109
- use_longterm_memory=use_longterm_memory,
110
- tool_configs=tool_configs,
111
- is_async=False,
31
+ return ChatAnthropic(
32
+ model_name="claude-sonnet-4-20250514",
33
+ max_tokens=64000,
112
34
  )
113
35
 
114
- def async_create_deep_agent(
115
- tools: Sequence[Union[BaseTool, Callable, dict[str, Any]]] = [],
116
- instructions: str = "",
117
- middleware: Optional[list[AgentMiddleware]] = None,
118
- model: Optional[Union[str, LanguageModelLike]] = None,
119
- subagents: Optional[list[SubAgent | CustomSubAgent]] = None,
120
- context_schema: Optional[Type[Any]] = None,
121
- checkpointer: Optional[Checkpointer] = None,
122
- store: Optional[BaseStore] = None,
36
+
37
+ def create_deep_agent(
38
+ model: str | BaseChatModel | None = None,
39
+ tools: Sequence[BaseTool | Callable | dict[str, Any]] | None = None,
40
+ *,
41
+ system_prompt: str | None = None,
42
+ middleware: Sequence[AgentMiddleware] = (),
43
+ subagents: list[SubAgent | CompiledSubAgent] | None = None,
44
+ response_format: ResponseFormat | None = None,
45
+ context_schema: type[Any] | None = None,
46
+ checkpointer: Checkpointer | None = None,
47
+ store: BaseStore | None = None,
123
48
  use_longterm_memory: bool = False,
124
- tool_configs: Optional[dict[str, bool | ToolConfig]] = None,
125
- ):
49
+ interrupt_on: dict[str, bool | InterruptOnConfig] | None = None,
50
+ debug: bool = False,
51
+ name: str | None = None,
52
+ cache: BaseCache | None = None,
53
+ ) -> CompiledStateGraph:
126
54
  """Create a deep agent.
55
+
127
56
  This agent will by default have access to a tool to write todos (write_todos),
128
- four file editing tools: write_file, ls, read_file, edit_file, and a tool to call subagents.
57
+ four file editing tools: write_file, ls, read_file, edit_file, and a tool to call
58
+ subagents.
59
+
129
60
  Args:
130
61
  tools: The tools the agent should have access to.
131
- instructions: The additional instructions the agent should have. Will go in
62
+ system_prompt: The additional instructions the agent should have. Will go in
132
63
  the system prompt.
64
+ middleware: Additional middleware to apply after standard middleware.
133
65
  model: The model to use.
134
66
  subagents: The subagents to use. Each subagent should be a dictionary with the
135
67
  following keys:
136
68
  - `name`
137
- - `description` (used by the main agent to decide whether to call the sub agent)
69
+ - `description` (used by the main agent to decide whether to call the
70
+ sub agent)
138
71
  - `prompt` (used as the system prompt in the subagent)
139
72
  - (optional) `tools`
140
- - (optional) `model` (either a LanguageModelLike instance or dict settings)
73
+ - (optional) `model` (either a LanguageModelLike instance or dict
74
+ settings)
141
75
  - (optional) `middleware` (list of AgentMiddleware)
76
+ response_format: A structured output response format to use for the agent.
142
77
  context_schema: The schema of the deep agent.
143
78
  checkpointer: Optional checkpointer for persisting agent state between runs.
144
- use_longterm_memory: Whether to use longterm memory - you must provide a store in order to use longterm memory.
145
79
  store: Optional store for persisting longterm memories.
146
- tool_configs: Optional Dict[str, HumanInTheLoopConfig] mapping tool names to interrupt configs.
80
+ use_longterm_memory: Whether to use longterm memory - you must provide a store
81
+ in order to use longterm memory.
82
+ interrupt_on: Optional Dict[str, bool | InterruptOnConfig] mapping tool names to
83
+ interrupt configs.
84
+ debug: Whether to enable debug mode. Passed through to create_agent.
85
+ name: The name of the agent. Passed through to create_agent.
86
+ cache: The cache to use for the agent. Passed through to create_agent.
87
+
88
+ Returns:
89
+ A configured deep agent.
147
90
  """
148
- return agent_builder(
91
+ if model is None:
92
+ model = get_default_model()
93
+
94
+ deepagent_middleware = [
95
+ TodoListMiddleware(),
96
+ FilesystemMiddleware(
97
+ long_term_memory=use_longterm_memory,
98
+ ),
99
+ SubAgentMiddleware(
100
+ default_model=model,
101
+ default_tools=tools,
102
+ subagents=subagents if subagents is not None else [],
103
+ default_middleware=[
104
+ TodoListMiddleware(),
105
+ FilesystemMiddleware(
106
+ long_term_memory=use_longterm_memory,
107
+ ),
108
+ SummarizationMiddleware(
109
+ model=model,
110
+ max_tokens_before_summary=120000,
111
+ messages_to_keep=20,
112
+ ),
113
+ ],
114
+ default_interrupt_on=interrupt_on,
115
+ general_purpose_agent=True,
116
+ ),
117
+ SummarizationMiddleware(
118
+ model=model,
119
+ max_tokens_before_summary=120000,
120
+ messages_to_keep=20,
121
+ ),
122
+ ]
123
+ if interrupt_on is not None:
124
+ deepagent_middleware.append(HumanInTheLoopMiddleware(interrupt_on=interrupt_on))
125
+ if middleware is not None:
126
+ deepagent_middleware.extend(middleware)
127
+
128
+ return create_agent(
129
+ model,
130
+ system_prompt=system_prompt + "\n\n" + BASE_AGENT_PROMPT if system_prompt else BASE_AGENT_PROMPT,
149
131
  tools=tools,
150
- instructions=instructions,
151
- middleware=middleware,
152
- model=model,
153
- subagents=subagents,
132
+ middleware=deepagent_middleware,
133
+ response_format=response_format,
154
134
  context_schema=context_schema,
155
135
  checkpointer=checkpointer,
156
136
  store=store,
157
- use_longterm_memory=use_longterm_memory,
158
- tool_configs=tool_configs,
159
- is_async=True,
160
- )
137
+ debug=debug,
138
+ name=name,
139
+ cache=cache,
140
+ )
@@ -0,0 +1,6 @@
1
+ """Middleware for the DeepAgent."""
2
+
3
+ from deepagents.middleware.filesystem import FilesystemMiddleware
4
+ from deepagents.middleware.subagents import CompiledSubAgent, SubAgent, SubAgentMiddleware
5
+
6
+ __all__ = ["CompiledSubAgent", "FilesystemMiddleware", "SubAgent", "SubAgentMiddleware"]