deepagents-cli 0.0.2__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of deepagents-cli might be problematic. Click here for more details.

@@ -1,555 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: deepagents-cli
3
- Version: 0.0.2
4
- Summary: General purpose 'deep agent' with sub-agent spawning, todo list capabilities, and mock file system. Built on LangGraph.
5
- License: MIT
6
- Requires-Python: <4.0,>=3.11
7
- Description-Content-Type: text/markdown
8
- License-File: LICENSE
9
- Requires-Dist: langchain-anthropic==1.0.0
10
- Requires-Dist: langchain==1.0.0
11
- Requires-Dist: langchain-core==1.0.0
12
- Requires-Dist: tavily-python
13
- Requires-Dist: python-dotenv
14
- Requires-Dist: requests
15
- Requires-Dist: rich>=13.0.0
16
- Provides-Extra: dev
17
- Requires-Dist: pytest; extra == "dev"
18
- Requires-Dist: pytest-cov; extra == "dev"
19
- Requires-Dist: build; extra == "dev"
20
- Requires-Dist: twine; extra == "dev"
21
- Requires-Dist: langchain-openai; extra == "dev"
22
- Dynamic: license-file
23
-
24
- # 🧠🤖Deep Agents
25
-
26
- Using an LLM to call tools in a loop is the simplest form of an agent.
27
- This architecture, however, can yield agents that are “shallow” and fail to plan and act over longer, more complex tasks.
28
-
29
- Applications like “Deep Research”, "Manus", and “Claude Code” have gotten around this limitation by implementing a combination of four things:
30
- a **planning tool**, **sub agents**, access to a **file system**, and a **detailed prompt**.
31
-
32
- <img src="deep_agents.png" alt="deep agent" width="600"/>
33
-
34
- `deepagents` is a Python package that implements these in a general purpose way so that you can easily create a Deep Agent for your application.
35
-
36
- **Acknowledgements: This project was primarily inspired by Claude Code, and initially was largely an attempt to see what made Claude Code general purpose, and make it even more so.**
37
-
38
- ## Installation
39
-
40
- ```bash
41
- # pip
42
- pip install deepagents
43
-
44
- # uv
45
- uv add deepagents
46
-
47
- # poetry
48
- poetry add deepagents
49
- ```
50
-
51
- ## Usage
52
-
53
- (To run the example below, you will need to `pip install tavily-python`).
54
-
55
- Make sure to set `TAVILY_API_KEY` in your environment. You can generate one [here](https://www.tavily.com/).
56
-
57
- ```python
58
- import os
59
- from typing import Literal
60
- from tavily import TavilyClient
61
- from deepagents import create_deep_agent
62
-
63
- tavily_client = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
64
-
65
- # Web search tool
66
- def internet_search(
67
- query: str,
68
- max_results: int = 5,
69
- topic: Literal["general", "news", "finance"] = "general",
70
- include_raw_content: bool = False,
71
- ):
72
- """Run a web search"""
73
- return tavily_client.search(
74
- query,
75
- max_results=max_results,
76
- include_raw_content=include_raw_content,
77
- topic=topic,
78
- )
79
-
80
-
81
- # System prompt to steer the agent to be an expert researcher
82
- research_instructions = """You are an expert researcher. Your job is to conduct thorough research, and then write a polished report.
83
-
84
- You have access to an internet search tool as your primary means of gathering information.
85
-
86
- ## `internet_search`
87
-
88
- Use this to run an internet search for a given query. You can specify the max number of results to return, the topic, and whether raw content should be included.
89
- """
90
-
91
- # Create the deep agent
92
- agent = create_deep_agent(
93
- tools=[internet_search],
94
- system_prompt=research_instructions,
95
- )
96
-
97
- # Invoke the agent
98
- result = agent.invoke({"messages": [{"role": "user", "content": "What is langgraph?"}]})
99
- ```
100
-
101
- See [examples/research/research_agent.py](examples/research/research_agent.py) for a more complex example.
102
-
103
- The agent created with `create_deep_agent` is just a LangGraph graph - so you can interact with it (streaming, human-in-the-loop, memory, studio)
104
- in the same way you would any LangGraph agent.
105
-
106
- ## Core Capabilities
107
- **Planning & Task Decomposition**
108
-
109
- Deep Agents include a built-in `write_todos` tool that enables agents to break down complex tasks into discrete steps, track progress, and adapt plans as new information emerges.
110
-
111
- **Context Management**
112
-
113
- File system tools (`ls`, `read_file`, `write_file`, `edit_file`) allow agents to offload large context to memory, preventing context window overflow and enabling work with variable-length tool results.
114
-
115
- **Subagent Spawning**
116
-
117
- A built-in `task` tool enables agents to spawn specialized subagents for context isolation. This keeps the main agent’s context clean while still going deep on specific subtasks.
118
-
119
- **Long-term Memory**
120
-
121
- Extend agents with persistent memory across threads using LangGraph’s Store. Agents can save and retrieve information from previous conversations.
122
-
123
- ## Customizing Deep Agents
124
-
125
- There are several parameters you can pass to `create_deep_agent` to create your own custom deep agent.
126
-
127
- ### `model`
128
-
129
- By default, `deepagents` uses `"claude-sonnet-4-5-20250929"`. You can customize this by passing any [LangChain model object](https://python.langchain.com/docs/integrations/chat/).
130
-
131
- ```python
132
- from langchain.chat_models import init_chat_model
133
- from deepagents import create_deep_agent
134
-
135
- model = init_chat_model(
136
- model="openai:gpt-5",
137
- )
138
- agent = create_deep_agent(
139
- model=model,
140
- )
141
- ```
142
-
143
- ### `system_prompt`
144
- Deep Agents come with a built-in system prompt. This is relatively detailed prompt that is heavily based on and inspired by [attempts](https://github.com/kn1026/cc/blob/main/claudecode.md) to [replicate](https://github.com/asgeirtj/system_prompts_leaks/blob/main/Anthropic/claude-code.md)
145
- Claude Code's system prompt. It was made more general purpose than Claude Code's system prompt. The default prompt contains detailed instructions for how to use the built-in planning tool, file system tools, and sub agents.
146
-
147
- Each deep agent tailored to a use case should include a custom system prompt specific to that use case as well. The importance of prompting for creating a successful deep agent cannot be overstated.
148
-
149
- ```python
150
- from deepagents import create_deep_agent
151
-
152
- research_instructions = """You are an expert researcher. Your job is to conduct thorough research, and then write a polished report.
153
- """
154
-
155
- agent = create_deep_agent(
156
- system_prompt=research_instructions,
157
- )
158
- ```
159
-
160
- ### `tools`
161
-
162
- Just like with tool-calling agents, you can provide a deep agent with a set of tools that it has access to.
163
-
164
- ```python
165
- import os
166
- from typing import Literal
167
- from tavily import TavilyClient
168
- from deepagents import create_deep_agent
169
-
170
- tavily_client = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
171
-
172
- def internet_search(
173
- query: str,
174
- max_results: int = 5,
175
- topic: Literal["general", "news", "finance"] = "general",
176
- include_raw_content: bool = False,
177
- ):
178
- """Run a web search"""
179
- return tavily_client.search(
180
- query,
181
- max_results=max_results,
182
- include_raw_content=include_raw_content,
183
- topic=topic,
184
- )
185
-
186
- agent = create_deep_agent(
187
- tools=[internet_search]
188
- )
189
- ```
190
-
191
- ### `middleware`
192
- `create_deep_agent` is implemented with middleware that can be customized. You can provide additional middleware to extend functionality, add tools, or implement custom hooks.
193
-
194
- ```python
195
- from langchain_core.tools import tool
196
- from deepagents import create_deep_agent
197
- from langchain.agents.middleware import AgentMiddleware
198
-
199
- @tool
200
- def get_weather(city: str) -> str:
201
- """Get the weather in a city."""
202
- return f"The weather in {city} is sunny."
203
-
204
- @tool
205
- def get_temperature(city: str) -> str:
206
- """Get the temperature in a city."""
207
- return f"The temperature in {city} is 70 degrees Fahrenheit."
208
-
209
- class WeatherMiddleware(AgentMiddleware):
210
- tools = [get_weather, get_temperature]
211
-
212
- agent = create_deep_agent(
213
- model="anthropic:claude-sonnet-4-20250514",
214
- middleware=[WeatherMiddleware()]
215
- )
216
- ```
217
-
218
- ### `subagents`
219
-
220
- A main feature of Deep Agents is their ability to spawn subagents. You can specify custom subagents that your agent can hand off work to in the subagents parameter. Sub agents are useful for context quarantine (to help not pollute the overall context of the main agent) as well as custom instructions.
221
-
222
- `subagents` should be a list of dictionaries, where each dictionary follow this schema:
223
-
224
- ```python
225
- class SubAgent(TypedDict):
226
- name: str
227
- description: str
228
- prompt: str
229
- tools: Sequence[BaseTool | Callable | dict[str, Any]]
230
- model: NotRequired[str | BaseChatModel]
231
- middleware: NotRequired[list[AgentMiddleware]]
232
- interrupt_on: NotRequired[dict[str, bool | InterruptOnConfig]]
233
-
234
- class CompiledSubAgent(TypedDict):
235
- name: str
236
- description: str
237
- runnable: Runnable
238
- ```
239
-
240
- **SubAgent fields:**
241
- - **name**: This is the name of the subagent, and how the main agent will call the subagent
242
- - **description**: This is the description of the subagent that is shown to the main agent
243
- - **prompt**: This is the prompt used for the subagent
244
- - **tools**: This is the list of tools that the subagent has access to.
245
- - **model**: Optional model name or model instance.
246
- - **middleware** Additional middleware to attach to the subagent. See [here](https://docs.langchain.com/oss/python/langchain/middleware) for an introduction into middleware and how it works with create_agent.
247
- - **interrupt_on** A custom interrupt config that specifies human-in-the-loop interactions for your tools.
248
-
249
- **CompiledSubAgent fields:**
250
- - **name**: This is the name of the subagent, and how the main agent will call the subagent
251
- - **description**: This is the description of the subagent that is shown to the main agent
252
- - **runnable**: A pre-built LangGraph graph/agent that will be used as the subagent
253
-
254
- #### Using SubAgent
255
-
256
- ```python
257
- import os
258
- from typing import Literal
259
- from tavily import TavilyClient
260
- from deepagents import create_deep_agent
261
-
262
- tavily_client = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
263
-
264
- def internet_search(
265
- query: str,
266
- max_results: int = 5,
267
- topic: Literal["general", "news", "finance"] = "general",
268
- include_raw_content: bool = False,
269
- ):
270
- """Run a web search"""
271
- return tavily_client.search(
272
- query,
273
- max_results=max_results,
274
- include_raw_content=include_raw_content,
275
- topic=topic,
276
- )
277
-
278
- research_subagent = {
279
- "name": "research-agent",
280
- "description": "Used to research more in depth questions",
281
- "system_prompt": "You are a great researcher",
282
- "tools": [internet_search],
283
- "model": "openai:gpt-4o", # Optional override, defaults to main agent model
284
- }
285
- subagents = [research_subagent]
286
-
287
- agent = create_deep_agent(
288
- model="anthropic:claude-sonnet-4-20250514",
289
- subagents=subagents
290
- )
291
- ```
292
-
293
- #### Using CustomSubAgent
294
-
295
- For more complex use cases, you can provide your own pre-built LangGraph graph as a subagent:
296
-
297
- ```python
298
- # Create a custom agent graph
299
- custom_graph = create_agent(
300
- model=your_model,
301
- tools=specialized_tools,
302
- prompt="You are a specialized agent for data analysis..."
303
- )
304
-
305
- # Use it as a custom subagent
306
- custom_subagent = CompiledSubAgent(
307
- name="data-analyzer",
308
- description="Specialized agent for complex data analysis tasks",
309
- runnable=custom_graph
310
- )
311
-
312
- subagents = [custom_subagent]
313
-
314
- agent = create_deep_agent(
315
- model="anthropic:claude-sonnet-4-20250514",
316
- tools=[internet_search],
317
- system_prompt=research_instructions,
318
- subagents=subagents
319
- )
320
- ```
321
-
322
- ### `use_longterm_memory`
323
- Deep agents come with a local filesystem to offload memory to. This filesystem is stored in state, and is therefore transient to a single thread.
324
-
325
- You can extend deep agents with long-term memory by providing a Store and setting use_longterm_memory=True.
326
-
327
- ```python
328
- from deepagents import create_deep_agent
329
- from langgraph.store.memory import InMemoryStore
330
-
331
- store = InMemoryStore() # Or any other Store object
332
- agent = create_deep_agent(
333
- store=store,
334
- use_longterm_memory=True
335
- )
336
- ```
337
-
338
- ### `use_local_filesystem`
339
- If you prefer the agent to operate on your machine's filesystem (read/write actual files), enable local mode:
340
-
341
- ```python
342
- from deepagents import create_deep_agent
343
-
344
- agent = create_deep_agent(
345
- use_local_filesystem=True, # Tools operate on disk
346
- # use_longterm_memory=False # Must be False when using local filesystem
347
- )
348
- ```
349
-
350
- Notes:
351
- - Local filesystem mode injects `ls`, `read_file`, `write_file`, `edit_file`, plus `glob` and `grep` (ripgrep-powered) for discovery/search.
352
- - Long-term memory is not supported in local mode; attempting to set both `use_local_filesystem=True` and `use_longterm_memory=True` raises a ValueError.
353
- - Large tool outputs are automatically evicted to the in-memory filesystem state as files under `/large_tool_results/{tool_call_id}`; use `read_file` with `offset`/`limit` to page through results.
354
- - Be careful when enabling local mode in sensitive environments — tools can read and write files on disk.
355
-
356
- ### `interrupt_on`
357
- A common reality for agents is that some tool operations may be sensitive and require human approval before execution. Deep Agents supports human-in-the-loop workflows through LangGraph’s interrupt capabilities. You can configure which tools require approval using a checkpointer.
358
-
359
- These tool configs are passed to our prebuilt [HITL middleware](https://docs.langchain.com/oss/python/langchain/middleware#human-in-the-loop) so that the agent pauses execution and waits for feedback from the user before executing configured tools.
360
-
361
- ```python
362
- from langchain_core.tools import tool
363
- from deepagents import create_deep_agent
364
-
365
- @tool
366
- def get_weather(city: str) -> str:
367
- """Get the weather in a city."""
368
- return f"The weather in {city} is sunny."
369
-
370
- agent = create_deep_agent(
371
- model="anthropic:claude-sonnet-4-20250514",
372
- tools=[get_weather],
373
- interrupt_on={
374
- "get_weather": {
375
- "allowed_decisions": ["approve", "edit", "reject"]
376
- },
377
- }
378
- )
379
-
380
- ```
381
-
382
- ## Deep Agents Middleware
383
-
384
- Deep Agents are built with a modular middleware architecture. As a reminder, Deep Agents have access to:
385
- - A planning tool
386
- - A filesystem for storing context and long-term memories
387
- - The ability to spawn subagents
388
-
389
- Each of these features is implemented as separate middleware. When you create a deep agent with `create_deep_agent`, we automatically attach **PlanningMiddleware**, **FilesystemMiddleware** and **SubAgentMiddleware** to your agent.
390
-
391
- Middleware is a composable concept, and you can choose to add as many or as few middleware to an agent depending on your use case. That means that you can also use any of the aforementioned middleware independently!
392
-
393
- ### TodoListMiddleware
394
-
395
- Planning is integral to solving complex problems. If you’ve used claude code recently, you’ll notice how it writes out a To-Do list before tackling complex, multi-part tasks. You’ll also notice how it can adapt and update this To-Do list on the fly as more information comes in.
396
-
397
- **TodoListMiddleware** provides your agent with a tool specifically for updating this To-Do list. Before, and while it executes a multi-part task, the agent is prompted to use the write_todos tool to keep track of what its doing, and what still needs to be done.
398
-
399
- ```python
400
- from langchain.agents import create_agent
401
- from langchain.agents.middleware import TodoListMiddleware
402
-
403
- # TodoListMiddleware is included by default in create_deep_agent
404
- # You can customize it if building a custom agent
405
- agent = create_agent(
406
- model="anthropic:claude-sonnet-4-20250514",
407
- # Custom planning instructions can be added via middleware
408
- middleware=[
409
- TodoListMiddleware(
410
- system_prompt="Use the write_todos tool to..." # Optional: Custom addition to the system prompt
411
- ),
412
- ],
413
- )
414
- ```
415
-
416
- ### FilesystemMiddleware
417
-
418
- Context engineering is one of the main challenges in building effective agents. This can be particularly hard when using tools that can return variable length results (ex. web_search, rag), as long ToolResults can quickly fill up your context window.
419
- **FilesystemMiddleware** provides four tools to your agent to interact with short-term memory (in agent state) and, optionally, long-term memory (via a Store).
420
- - **ls**: List the files in your filesystem
421
- - **read_file**: Read an entire file, or a certain number of lines from a file
422
- - **write_file**: Write a new file to your filesystem
423
- - **edit_file**: Edit an existing file in your filesystem
424
-
425
- If you want these tools to operate on your host filesystem instead of the agent state, use `create_deep_agent(..., use_local_filesystem=True)` or attach `LocalFilesystemMiddleware` directly. Local mode also provides `glob` and `grep` helpers for file discovery and content search.
426
-
427
- ```python
428
- from langchain.agents import create_agent
429
- from deepagents.middleware.filesystem import FilesystemMiddleware
430
-
431
- # FilesystemMiddleware is included by default in create_deep_agent
432
- # You can customize it if building a custom agent
433
- agent = create_agent(
434
- model="anthropic:claude-sonnet-4-20250514",
435
- middleware=[
436
- FilesystemMiddleware(
437
- long_term_memory=False, # Enables access to long-term memory, defaults to False. You must attach a store to use long-term memory.
438
- system_prompt="Write to the filesystem when...", # Optional custom addition to the system prompt
439
- custom_tool_descriptions={
440
- "ls": "Use the ls tool when...",
441
- "read_file": "Use the read_file tool to..."
442
- } # Optional: Custom descriptions for filesystem tools
443
- ),
444
- ],
445
- )
446
- ```
447
-
448
- ### SubAgentMiddleware
449
-
450
- Handing off tasks to subagents is a great way to isolate context, keeping the context window of the main (supervisor) agent clean while still going deep on a task. The subagents middleware allows you supply subagents through a task tool.
451
-
452
- A subagent is defined with a name, description, system prompt, and tools. You can also provide a subagent with a custom model, or with additional middleware. This can be particularly useful when you want to give the subagent an additional state key to share with the main agent.
453
-
454
- ```python
455
- from langchain_core.tools import tool
456
- from langchain.agents import create_agent
457
- from deepagents.middleware.subagents import SubAgentMiddleware
458
-
459
-
460
- @tool
461
- def get_weather(city: str) -> str:
462
- """Get the weather in a city."""
463
- return f"The weather in {city} is sunny."
464
-
465
- agent = create_agent(
466
- model="claude-sonnet-4-20250514",
467
- middleware=[
468
- SubAgentMiddleware(
469
- default_model="claude-sonnet-4-20250514",
470
- default_tools=[],
471
- subagents=[
472
- {
473
- "name": "weather",
474
- "description": "This subagent can get weather in cities.",
475
- "system_prompt": "Use the get_weather tool to get the weather in a city.",
476
- "tools": [get_weather],
477
- "model": "gpt-4.1",
478
- "middleware": [],
479
- }
480
- ],
481
- )
482
- ],
483
- )
484
- ```
485
-
486
- For more complex use cases, you can also provide your own pre-built LangGraph graph as a subagent.
487
-
488
- ```python
489
- # Create a custom LangGraph graph
490
- def create_weather_graph():
491
- workflow = StateGraph(...)
492
- # Build your custom graph
493
- return workflow.compile()
494
-
495
- weather_graph = create_weather_graph()
496
-
497
- # Wrap it in a CompiledSubAgent
498
- weather_subagent = CompiledSubAgent(
499
- name="weather",
500
- description="This subagent can get weather in cities.",
501
- runnable=weather_graph
502
- )
503
-
504
- agent = create_agent(
505
- model="anthropic:claude-sonnet-4-20250514",
506
- middleware=[
507
- SubAgentMiddleware(
508
- default_model="claude-sonnet-4-20250514",
509
- default_tools=[],
510
- subagents=[weather_subagent],
511
- )
512
- ],
513
- )
514
- ```
515
-
516
- ## Sync vs Async
517
-
518
- Prior versions of deepagents separated sync and async agent factories.
519
-
520
- `async_create_deep_agent` has been folded in to `create_deep_agent`.
521
-
522
- **You should use `create_deep_agent` as the factory for both sync and async agents**
523
-
524
-
525
- ## MCP
526
-
527
- The `deepagents` library can be ran with MCP tools. This can be achieved by using the [Langchain MCP Adapter library](https://github.com/langchain-ai/langchain-mcp-adapters).
528
-
529
- **NOTE:** You will want to use `from deepagents import async_create_deep_agent` to use the async version of `deepagents`, since MCP tools are async
530
-
531
- (To run the example below, will need to `pip install langchain-mcp-adapters`)
532
-
533
- ```python
534
- import asyncio
535
- from langchain_mcp_adapters.client import MultiServerMCPClient
536
- from deepagents import create_deep_agent
537
-
538
- async def main():
539
- # Collect MCP tools
540
- mcp_client = MultiServerMCPClient(...)
541
- mcp_tools = await mcp_client.get_tools()
542
-
543
- # Create agent
544
- agent = create_deep_agent(tools=mcp_tools, ....)
545
-
546
- # Stream the agent
547
- async for chunk in agent.astream(
548
- {"messages": [{"role": "user", "content": "what is langgraph?"}]},
549
- stream_mode="values"
550
- ):
551
- if "messages" in chunk:
552
- chunk["messages"][-1].pretty_print()
553
-
554
- asyncio.run(main())
555
- ```
@@ -1,17 +0,0 @@
1
- deepagents/__init__.py,sha256=Id0SomviLAHNx3hXnLEk-fGwECqkIPpsPE4q1B_yj3U,576
2
- deepagents/cli.py,sha256=iRPhWbqlNqZKPplM-QnnO_8MI0vrEBmUcxplYJYoSlQ,20429
3
- deepagents/default_agent_prompt.md,sha256=oKbqWlvrYkPCLmrQNDw2QrlhNg8PkYL1jICkA7p-xuQ,5040
4
- deepagents/graph.py,sha256=U4jMriU3hAoPprt9aCoCBM8yBm7QGWp2T6atDdcJelg,7584
5
- deepagents/prompts.py,sha256=tGhbWGEqRlMfJfM7Q-DcUz1TOn6PgGm4RWVADe2DV6M,19507
6
- deepagents/skills.py,sha256=x0gX2CYG4R4TwvNFYaoXwiK7teccXav0Xuh6Uyh6pWg,2365
7
- deepagents/middleware/__init__.py,sha256=DDQHYER3fCYkt930C9StUmqZW8CwQnePWmVfUtvk2Ho,413
8
- deepagents/middleware/common.py,sha256=MLbBBBxDhhyrFcFc5lGmwAZcn_9Ax7SQZvL-TsHlT8E,953
9
- deepagents/middleware/filesystem.py,sha256=tZIDR77qi06qxCam_SUkL6YTdjjqgxNfxCeE_L9FoMM,43958
10
- deepagents/middleware/local_filesystem.py,sha256=df3VWCZwUjVarUt6lpxB57TE9w_Rf6usM2G1FCf4H7A,28504
11
- deepagents/middleware/subagents.py,sha256=hDb2eq8yOC0R93AWIsatSZ6ykz3-8THiudeIbjJq4FQ,23372
12
- deepagents_cli-0.0.2.dist-info/licenses/LICENSE,sha256=c__BaxUCK69leo2yEKynf8lWndu8iwYwge1CbyqAe-E,1071
13
- deepagents_cli-0.0.2.dist-info/METADATA,sha256=l83vs8loIxOgNAQAhEtziDOt1Qg7N3RatClLmE0iY3M,20480
14
- deepagents_cli-0.0.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
15
- deepagents_cli-0.0.2.dist-info/entry_points.txt,sha256=5qO2sNhal5xQqcexm2VtT981A29FBKt-75aE4gatH8Q,55
16
- deepagents_cli-0.0.2.dist-info/top_level.txt,sha256=drAzchOzPNePwpb3_pbPuvLuayXkN7SNqeIKMBWJoAo,11
17
- deepagents_cli-0.0.2.dist-info/RECORD,,
@@ -1,2 +0,0 @@
1
- [console_scripts]
2
- deepagents = deepagents.cli:cli_main
@@ -1,21 +0,0 @@
1
- MIT License
2
-
3
- Copyright (c) 2025 Harrison Chase
4
-
5
- Permission is hereby granted, free of charge, to any person obtaining a copy
6
- of this software and associated documentation files (the "Software"), to deal
7
- in the Software without restriction, including without limitation the rights
8
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
- copies of the Software, and to permit persons to whom the Software is
10
- furnished to do so, subject to the following conditions:
11
-
12
- The above copyright notice and this permission notice shall be included in all
13
- copies or substantial portions of the Software.
14
-
15
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
- SOFTWARE.
@@ -1 +0,0 @@
1
- deepagents