ddi-fw 0.0.55__py3-none-any.whl → 0.0.56__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ddi_fw/experiments/pipeline_ner.py +6 -4
- {ddi_fw-0.0.55.dist-info → ddi_fw-0.0.56.dist-info}/METADATA +1 -1
- {ddi_fw-0.0.55.dist-info → ddi_fw-0.0.56.dist-info}/RECORD +5 -5
- {ddi_fw-0.0.55.dist-info → ddi_fw-0.0.56.dist-info}/WHEEL +0 -0
- {ddi_fw-0.0.55.dist-info → ddi_fw-0.0.56.dist-info}/top_level.txt +0 -0
@@ -23,6 +23,7 @@ class NerParameterSearch:
|
|
23
23
|
experiment_tags,
|
24
24
|
tracking_uri,
|
25
25
|
dataset_type: BaseDataset,
|
26
|
+
columns:list,
|
26
27
|
umls_code_types: List[UMLSCodeTypes],
|
27
28
|
text_types=List[DrugBankTextDataTypes],
|
28
29
|
min_threshold_dict: Dict[str, float] = defaultdict(float),
|
@@ -34,6 +35,7 @@ class NerParameterSearch:
|
|
34
35
|
self.tracking_uri = tracking_uri
|
35
36
|
|
36
37
|
self.dataset_type = dataset_type
|
38
|
+
self.columns = columns
|
37
39
|
self.umls_code_types = umls_code_types
|
38
40
|
self.text_types = text_types
|
39
41
|
self.min_threshold_dict = min_threshold_dict
|
@@ -43,17 +45,17 @@ class NerParameterSearch:
|
|
43
45
|
def build(self):
|
44
46
|
self.datasets = {}
|
45
47
|
self.items = []
|
46
|
-
columns = ['tui', 'cui', 'entities']
|
48
|
+
# columns = ['tui', 'cui', 'entities']
|
47
49
|
if self.umls_code_types is not None and self.text_types is not None:
|
48
50
|
# add checking statements
|
49
51
|
_umls_codes = [t.value[0] for t in self.umls_code_types]
|
50
52
|
_text_types = [t.value[0] for t in self.text_types]
|
51
53
|
_columns = [f'{item[0]}_{item[1]}' for item in product(
|
52
54
|
_umls_codes, _text_types)]
|
53
|
-
columns.extend(_columns)
|
54
|
-
print(f'Columns: {columns}')
|
55
|
+
self.columns.extend(_columns)
|
56
|
+
print(f'Columns: {self.columns}')
|
55
57
|
self.ner_df = CTakesNER().load(filename=self.ner_data_file) if self.ner_data_file else None
|
56
|
-
for column in columns:
|
58
|
+
for column in self.columns:
|
57
59
|
min_threshold = self.min_threshold_dict[column]
|
58
60
|
max_threshold = self.max_threshold_dict[column]
|
59
61
|
kwargs = {}
|
@@ -61,7 +61,7 @@ ddi_fw/experiments/custom_torch_model.py,sha256=iQ_R_EApzD2JCcASN8cie6D21oh7VCxa
|
|
61
61
|
ddi_fw/experiments/evaluation_helper.py,sha256=pY69cezV3WzrXw1bduIwRJfah1w3wXJ2YyTNim1J7ko,9349
|
62
62
|
ddi_fw/experiments/pipeline.py,sha256=wttkvdzGP9d3jC9nx2iZul4hbogXkRho6eDns0yfLiE,5380
|
63
63
|
ddi_fw/experiments/pipeline_builder_pattern.py,sha256=q1PNEQFoO5U3UidEoGB8rgLA7KXr4FsJTXEug5c5UJg,5466
|
64
|
-
ddi_fw/experiments/pipeline_ner.py,sha256=
|
64
|
+
ddi_fw/experiments/pipeline_ner.py,sha256=g-Tp7P7hmFxOvuqBV_Cfxt-4xe6xft9WC43S3NFns2Y,4838
|
65
65
|
ddi_fw/experiments/tensorflow_helper.py,sha256=Y-gD9qyqFFPl6HAvM_tIa5Y6em2YmafPCL1KMrK6eb8,11768
|
66
66
|
ddi_fw/experiments/test.py,sha256=z1TfBpK75zGKpp2ZU8f6APjZlgBFthaCBN61YB9ma4o,2049
|
67
67
|
ddi_fw/ner/__init__.py,sha256=JwhGXrepomxPSsGsg2b_xPRC72AjvxOIn2CW5Mvscn0,26
|
@@ -83,7 +83,7 @@ ddi_fw/utils/enums.py,sha256=19eJ3fX5eRK_xPvkYcukmug144jXPH4X9zQqtsFBj5A,671
|
|
83
83
|
ddi_fw/utils/py7zr_helper.py,sha256=dgfHqXDBWys1hmd1JlHhYyZGxrzYWi6siYiUq3bnLuI,4698
|
84
84
|
ddi_fw/utils/utils.py,sha256=szwnxMTDRrZoeNRyDuf3aCbtzriwtaRk4mHSH3asLdA,4301
|
85
85
|
ddi_fw/utils/zip_helper.py,sha256=YRZA4tKZVBJwGQM0_WK6L-y5MoqkKoC-nXuuHK6CU9I,5567
|
86
|
-
ddi_fw-0.0.
|
87
|
-
ddi_fw-0.0.
|
88
|
-
ddi_fw-0.0.
|
89
|
-
ddi_fw-0.0.
|
86
|
+
ddi_fw-0.0.56.dist-info/METADATA,sha256=iOaA6X5rIXTUxkNeS0JGXTjvegkL26R6-taf8bRiyIQ,1565
|
87
|
+
ddi_fw-0.0.56.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
88
|
+
ddi_fw-0.0.56.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
|
89
|
+
ddi_fw-0.0.56.dist-info/RECORD,,
|
File without changes
|
File without changes
|