ddi-fw 0.0.237__py3-none-any.whl → 0.0.239__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,272 +0,0 @@
1
- import pandas as pd
2
- import os
3
- import json
4
- import glob
5
- from tqdm import tqdm
6
-
7
- import csv
8
-
9
- from rdkit import Chem
10
- from rdkit.Chem import AllChem
11
- import numpy as np
12
- from ddi_fw.drugbank.event_extractor import EventExtractor
13
-
14
- from zip_helper import ZipHelper
15
- # from event_extractor import EventExtractor
16
-
17
-
18
- def multiline_to_singleline(multiline):
19
- if multiline is None:
20
- return ""
21
- return " ".join(line.strip() for line in multiline.splitlines())
22
-
23
- # targets -> target -> polypeptide
24
- # enzymes -> enzyme -> polypeptide
25
- # pathways from KEGG, KEGG ID is obtained from ddi_fw.drugbank
26
- # https://www.genome.jp/dbget-bin/www_bget?drug:D03136
27
- # https://www.kegg.jp/entry/D03136
28
-
29
-
30
- class DrugBankProcessor():
31
-
32
- def mask_interaction(self, drug_1, drug_2, interaction):
33
- return interaction.replace(
34
- drug_1, "DRUG").replace(drug_2, "DRUG")
35
-
36
- def extract_zip_files(self, input_path='zips', output_path='drugs', override=False):
37
- if override:
38
- zip_helper = ZipHelper()
39
- zip_helper.extract(input_path=input_path, output_path=output_path)
40
-
41
- def process(self, input_path='drugs', output_path='output', zip_outputs=True):
42
- if not os.path.exists(output_path):
43
- os.makedirs(output_path)
44
-
45
- drugs_pickle_path = output_path+'/drugs.pkl'
46
- drugs_csv_path = output_path+'/drugs.gzip'
47
- ddi_pickle_path = output_path + '/ddi.pkl'
48
- ddi_csv_path = output_path + '/ddi.gzip'
49
-
50
- if not os.path.exists(drugs_pickle_path) or not os.path.exists(ddi_pickle_path):
51
- drug_rows = []
52
- all_ddis = []
53
- all_json_files = input_path+'/*.json*'
54
-
55
- for filepath in tqdm(glob.glob(all_json_files)):
56
- with open(filepath, 'r', encoding="utf8") as f:
57
-
58
- data = json.load(f)
59
-
60
- # if data['drug-interactions'] is None:
61
- if False:
62
- continue
63
- else:
64
- drug_1 = data['name']
65
- drug_1_id = [d['value']
66
- for d in data['drugbank-id'] if d['primary'] == True][0]
67
- description = multiline_to_singleline(
68
- data['description'])
69
- if data['drug-interactions'] is not None:
70
- drug_interactions = [
71
- interaction for interaction in data['drug-interactions']['drug-interaction']]
72
- ddis = [(drug_1, interaction['name'], interaction['description'])
73
- for interaction in data['drug-interactions']['drug-interaction']]
74
-
75
- ddi_dict = [{
76
- 'drug_1_id': drug_1_id,
77
- 'drug_1': drug_1,
78
- 'drug_2_id': interaction['drugbank-id']['value'],
79
- 'drug_2': interaction['name'],
80
- 'interaction': interaction['description'],
81
- 'masked_interaction': self.mask_interaction(drug_1, interaction['name'], interaction['description'])}
82
- for interaction in data['drug-interactions']['drug-interaction']]
83
- all_ddis.extend(ddi_dict)
84
-
85
- synthesis_reference = data['synthesis-reference']
86
- indication = multiline_to_singleline(
87
- data['indication'])
88
- pharmacodynamics = multiline_to_singleline(
89
- data['pharmacodynamics'])
90
- mechanism_of_action = multiline_to_singleline(
91
- data['mechanism-of-action'])
92
- toxicity = multiline_to_singleline(data['toxicity'])
93
- metabolism = multiline_to_singleline(
94
- data['metabolism'])
95
- absorption = multiline_to_singleline(
96
- data['absorption'])
97
- half_life = multiline_to_singleline(data['half-life'])
98
- protein_binding = multiline_to_singleline(
99
- data['protein-binding'])
100
- route_of_elimination = multiline_to_singleline(
101
- data['route-of-elimination'])
102
- volume_of_distribution = multiline_to_singleline(
103
- data['volume-of-distribution'])
104
- clearance = multiline_to_singleline(data['clearance'])
105
-
106
- food_interactions = data['food-interactions']
107
- sequences = data['sequences'] if "sequences" in data else None
108
-
109
- external_identifiers = data['external-identifiers'] if "external-identifiers" in data else None
110
- experimental_properties = data['experimental-properties'] if "experimental-properties" in data else None
111
- calculated_properties = data['calculated-properties'] if "calculated-properties" in data else None
112
-
113
- enzymes_polypeptides = None
114
- targets_polypeptides = None
115
-
116
- # targets = data['targets'] if "targets" in data else None
117
- if data['targets'] is not None:
118
- # targets_polypeptides = [p['id'] for d in data['targets']['target'] for p in d['polypeptide'] if 'polypeptide' in d ]
119
- targets_polypeptides = [
120
- p['id'] for d in data['targets']['target'] if 'polypeptide' in d for p in d['polypeptide']]
121
-
122
- if data['enzymes'] is not None:
123
- # enzymes_polypeptides = [p['id'] for d in data['enzymes']['enzyme'] for p in d['polypeptide'] if 'polypeptide' in d]
124
- enzymes_polypeptides = [
125
- p['id'] for d in data['enzymes']['enzyme'] if 'polypeptide' in d for p in d['polypeptide']]
126
-
127
- if external_identifiers is not None:
128
- external_identifiers_dict = dict(
129
- [(p['resource'], p['identifier']) for p in external_identifiers['external-identifier']])
130
-
131
- # add note column
132
- smiles = None
133
- morgan_hashed = None
134
- if calculated_properties is not None:
135
- calculated_properties_dict = dict(
136
- [(p['kind'], p['value']) for p in calculated_properties['property']])
137
- smiles = calculated_properties_dict['SMILES'] if 'SMILES' in calculated_properties_dict else None
138
- if smiles is not None:
139
- try:
140
- mol = Chem.MolFromSmiles(smiles)
141
- morgan_hashed = AllChem.GetMorganFingerprintAsBitVect(
142
- mol, 2, nBits=881).ToList()
143
- except:
144
- print("An exception occurred")
145
- if morgan_hashed is None:
146
- morgan_hashed = np.zeros(881)
147
-
148
- # k = [p[k] for p in calculated_properties['property'] for k in p.keys() if k =='SMILES']
149
- # external_identifiers['external-identifier']
150
- # experimental_properties['property']
151
-
152
- row = {'drugbank_id': drug_1_id,
153
- 'name': drug_1,
154
- 'description': description,
155
- 'synthesis_reference': synthesis_reference,
156
- 'indication': indication,
157
- 'pharmacodynamics': pharmacodynamics,
158
- 'mechanism_of_action': mechanism_of_action,
159
- 'toxicity': toxicity,
160
- 'metabolism': metabolism,
161
- 'absorption': absorption,
162
- 'half_life': half_life,
163
- 'protein_binding': protein_binding,
164
- 'route_of_elimination': route_of_elimination,
165
- 'volume_of_distribution': volume_of_distribution,
166
- 'clearance': clearance,
167
- 'smiles': smiles,
168
- 'smiles_morgan_fingerprint': morgan_hashed,
169
- 'enzymes_polypeptides': enzymes_polypeptides,
170
- 'targets_polypeptides': targets_polypeptides,
171
- 'external_identifiers': external_identifiers_dict
172
- }
173
- drug_rows.append(row)
174
-
175
- # if len(drug_rows) == 10:
176
- # break
177
- # print(smiles_count)
178
- print(f"Size of drugs {len(drug_rows)}")
179
- print(f"Size of DDIs {len(all_ddis)}")
180
- np.set_printoptions(threshold=np.inf)
181
-
182
- # drug_names = [row['name'] for row in drug_rows]
183
- drug_names = ['DRUG']
184
- event_extractor = EventExtractor(drug_names)
185
-
186
- replace_dict = {'MYO-029': 'Stamulumab'}
187
- for ddi in tqdm(all_ddis):
188
- for key, value in replace_dict.items():
189
- ddi['masked_interaction'] = ddi['masked_interaction'].replace(
190
- key, value)
191
- # interaction = ddi['interaction']
192
- # mechanism, action, drugA, drugB = event_extractor.extract(interaction)
193
- # ddi['mechanism'] = mechanism
194
- # ddi['action'] = action
195
-
196
- self.drugs_df = pd.DataFrame(drug_rows)
197
- self.drugs_df.to_pickle(drugs_pickle_path)
198
- self.drugs_df.to_csv(
199
- drugs_csv_path, index=False, compression='gzip')
200
-
201
- # print('mechanism_action calculation')
202
- self.ddis_df = pd.DataFrame(all_ddis)
203
-
204
- count = [0]
205
-
206
- def fnc2(interaction, count):
207
- count[0] = count[0] + 1
208
- if count[0] % 1000 == 0:
209
- print(f'{count[0]}/{len(all_ddis)}')
210
- mechanism, action, drugA, drugB = event_extractor.extract(
211
- interaction)
212
- return mechanism+'__' + action
213
-
214
- # self.ddis_df['mechanism_action'] = self.ddis_df['interaction'].apply(lambda x: fnc2(x))
215
- # tqdm.pandas()
216
- self.ddis_df['mechanism_action'] = self.ddis_df['masked_interaction'].apply(
217
- fnc2, args=(count,))
218
-
219
- self.ddis_df.to_csv(ddi_csv_path, index=False, compression='gzip')
220
- self.ddis_df.to_pickle(ddi_pickle_path)
221
-
222
- if zip_outputs:
223
- zip_helper = ZipHelper()
224
- zip_helper.zip_single_file(
225
- file_path=drugs_pickle_path, output_path=output_path+'/zips', name='drugs-pickle')
226
- zip_helper.zip_single_file(
227
- file_path=ddi_pickle_path, output_path=output_path+'/zips', name='ddi-pickle')
228
-
229
- else:
230
- print('Output path has processed data, load function is called')
231
- self.load(output_path)
232
-
233
- def load(self, path):
234
- drugs_pickle_path = path+'/drugs.pkl'
235
- ddi_pickle_path = path+'/ddi.pkl'
236
- if os.path.exists(drugs_pickle_path) and os.path.exists(ddi_pickle_path):
237
- self.drugs_df = pd.read_pickle(drugs_pickle_path)
238
- self.ddis_df = pd.read_pickle(ddi_pickle_path)
239
- else:
240
- print('One of given paths could not found')
241
-
242
- def load_from_csv(self, path):
243
- drugs_csv_path = path+'/drugs.gzip'
244
- ddi_csv_path = path+'/ddi.gzip'
245
- if os.path.exists(drugs_csv_path) and os.path.exists(ddi_csv_path):
246
- self.drugs_df = pd.read_csv(drugs_csv_path, compression='gzip')
247
- self.ddis_df = pd.read_csv(ddi_csv_path, compression='gzip')
248
- else:
249
- print('One of given paths could not found')
250
-
251
- def load2(self, path):
252
- drugs_pickle_path = path+'/drugs.pkl'
253
- ddi_csv_path = path+'/ddi.gzip'
254
- if os.path.exists(drugs_pickle_path) and os.path.exists(ddi_csv_path):
255
- self.drugs_df = pd.read_pickle(drugs_pickle_path)
256
- self.ddis_df = pd.read_csv(ddi_csv_path, compression='gzip')
257
- else:
258
- print('One of given paths could not found')
259
-
260
- def drugs_as_dataframe(self):
261
- return self.drugs_df
262
-
263
- def filtered_drugs_as_dataframe(self, drug_ids):
264
- return self.drugs_df[self.drugs_df['drugbank_id'].isin(drug_ids)]
265
-
266
- def ddis_as_dataframe(self):
267
- return self.ddis_df
268
-
269
- def filtered_ddis(self, drugs):
270
- ddis_df = self.ddis_df.copy()
271
- return ddis_df[(ddis_df['drug_1'] in drugs) & (
272
- ddis_df['drug_2'] in drugs)]
@@ -1,127 +0,0 @@
1
- '''
2
- copied from https://github.com/YifanDengWHU/DDIMDL/blob/master/NLPProcess.py and reorganized
3
- '''
4
-
5
- # import stanfordnlp
6
- # stanfordnlp.download("en")
7
- import pandas as pd
8
- import stanza
9
- # stanza.download("en")
10
-
11
- import numpy as np
12
-
13
-
14
- class EventExtractor:
15
- def __init__(self, druglist, use_cache=True):
16
- self.druglist = druglist
17
- self.druglist2 = ['_'.join(d.replace('.', ' ').replace(
18
- ',', ' ').replace('-', ' ').split(' ')) for d in druglist]
19
- # self.events = events
20
- self.pipeline = stanza.Pipeline(use_gpu=True)
21
- self.cache = dict()
22
-
23
- def prepare_event_text(self, event):
24
- for ex, new in zip(self.druglist, self.druglist2):
25
- event = event.replace(ex, new)
26
- return event
27
-
28
- def extract_all(self, events):
29
- mechanisms = []
30
- actions = []
31
- drugA_list = []
32
- drugB_list = []
33
- for i in range(len(events)):
34
- mechanism, action, drugA, drugB = self.extract(events[i])
35
- mechanisms.append(mechanism)
36
- actions.append(action)
37
- drugA_list.append(drugA)
38
- drugB_list.append(drugB)
39
- return mechanisms, actions, drugA_list, drugB_list
40
-
41
- def extract(self, event):
42
- if event in self.cache:
43
- return self.cache[event]
44
- event = self.prepare_event_text(event)
45
- drugA = None
46
- drugB = None
47
-
48
- def addMechanism(node):
49
- if int(sonsNum[int(node-1)]) == 0:
50
- return
51
- else:
52
- for k in sons[node-1]:
53
- if int(k) == 0:
54
- break
55
- if dependency[int(k - 1)].text == drugA or dependency[int(k - 1)].text == drugB:
56
- continue
57
- quene.append(int(k))
58
- addMechanism(int(k))
59
- return quene
60
-
61
- doc = self.pipeline(event)
62
- dependency = []
63
- for j in range(len(doc.sentences[0].words)):
64
- dependency.append(doc.sentences[0].words[j])
65
- sons = np.zeros((len(dependency), len(dependency)))
66
- sonsNum = np.zeros(len(dependency))
67
- flag = False
68
- count = 0
69
- for j in dependency:
70
- # if j.dependency_relation=='root':
71
- if j.deprel == 'root':
72
- # root=int(j.index)
73
- root = int(j.id)
74
- action = j.lemma
75
- if j.text in self.druglist2:
76
- if count < 2:
77
- if flag == True:
78
- drugB = j.text
79
- count += 1
80
- else:
81
- drugA = j.text
82
- flag = True
83
- count += 1
84
- sonsNum[j.head-1] += 1
85
- sons[j.head-1, int(sonsNum[j.head-1]-1)] = int(j.id)
86
- quene = []
87
- for j in range(int(sonsNum[root-1])):
88
- if dependency[int(sons[root-1, j]-1)].deprel == 'obj' or dependency[int(sons[root-1, j]-1)].deprel == 'nsubj:pass':
89
- quene.append(int(sons[root-1, j]))
90
- break
91
- quene = addMechanism(quene[0])
92
- quene.sort()
93
-
94
- mechanism = " ".join(dependency[j-1].text for j in quene)
95
- if mechanism == "the fluid retaining activities":
96
- mechanism = "the fluid"
97
- if mechanism == "atrioventricular blocking ( AV block )":
98
- mechanism = 'the atrioventricular blocking ( AV block ) activities increase'
99
-
100
- self.cache[event] = (mechanism, action,
101
- drugA.replace('_', ' ') if drugA != None else '',
102
- drugB.replace('_', ' ') if drugB != None else '')
103
-
104
-
105
- if drugA == '' or drugB == '':
106
- print(event)
107
-
108
- return mechanism, action, drugA.replace('_', ' ') if drugA != None else '', drugB.replace('_', ' ') if drugB != None else ''
109
-
110
-
111
- # drugs_pickle_path = 'drugbank/output/drugs.pkl'
112
- # drugs_df = pd.read_pickle(drugs_pickle_path)
113
-
114
- # drug_names = drugs_df['name'].to_list()
115
-
116
-
117
- # drug_names = ['Lepirudin','Ursodeoxycholic acid']
118
- # event_extractor = EventExtractor(
119
- # drug_names)
120
-
121
- # mechanisms, actions, drugA_list, drugB_list = event_extractor.extract_all(
122
- # ['The risk or severity of bleeding and bruising can be increased when Lepirudin is combined with Ursodeoxycholic acid'])
123
- # # mechanism, action, drugA, drugB = event_extractor.extract(
124
- # # 'Bivalirudin may increase the anticoagulant activities of Bromfenac')
125
-
126
-
127
- # print(mechanisms)