ddi-fw 0.0.211__py3-none-any.whl → 0.0.213__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ddi_fw/ml/ml_helper.py +1 -0
- ddi_fw/ml/tensorflow_wrapper.py +3 -3
- ddi_fw/pipeline/pipeline.py +2 -2
- {ddi_fw-0.0.211.dist-info → ddi_fw-0.0.213.dist-info}/METADATA +1 -1
- {ddi_fw-0.0.211.dist-info → ddi_fw-0.0.213.dist-info}/RECORD +7 -7
- {ddi_fw-0.0.211.dist-info → ddi_fw-0.0.213.dist-info}/WHEEL +0 -0
- {ddi_fw-0.0.211.dist-info → ddi_fw-0.0.213.dist-info}/top_level.txt +0 -0
ddi_fw/ml/ml_helper.py
CHANGED
@@ -156,6 +156,7 @@ class MultiModalRunner:
|
|
156
156
|
(self.y_test_label.shape[0], self.y_test_label.shape[1]))
|
157
157
|
for item in combination:
|
158
158
|
prediction = prediction + single_results[item]
|
159
|
+
prediction = np.argmax(prediction, axis=1)
|
159
160
|
logs, metrics = evaluate(
|
160
161
|
actual=self.y_test_label, pred=prediction, info=combination_descriptor)
|
161
162
|
if self.use_mlflow:
|
ddi_fw/ml/tensorflow_wrapper.py
CHANGED
@@ -183,11 +183,11 @@ class TFModelWrapper(ModelWrapper):
|
|
183
183
|
actual = self.test_label
|
184
184
|
# if not utils.is_binary_encoded(pred):
|
185
185
|
# pred = tf.keras.utils.to_categorical(np.argmax(pred,axis=1), num_classes=self.num_classes)
|
186
|
-
|
187
|
-
|
186
|
+
pred_as_cat= convert_to_categorical(pred, self.num_classes)
|
187
|
+
actual_as_cat= convert_to_categorical(actual, self.num_classes)
|
188
188
|
|
189
189
|
logs, metrics = evaluate(
|
190
|
-
actual=
|
190
|
+
actual=actual_as_cat, pred=pred_as_cat, info=self.descriptor, print_detail=print_detail)
|
191
191
|
metrics.format_float()
|
192
192
|
mlflow.log_metrics(logs)
|
193
193
|
mlflow.log_param('best_cv', best_model_key)
|
ddi_fw/pipeline/pipeline.py
CHANGED
@@ -126,14 +126,14 @@ class Pipeline(BaseModel):
|
|
126
126
|
kwargs[k] = v
|
127
127
|
|
128
128
|
|
129
|
-
|
129
|
+
ner_df = CTakesNER(df=None).load(
|
130
130
|
filename=self.ner_data_file) if self.ner_data_file else None
|
131
131
|
|
132
132
|
dataset_splitter = self.dataset_splitter_type()
|
133
133
|
pooling_strategy = self.embedding_pooling_strategy_type(
|
134
134
|
) if self.embedding_pooling_strategy_type else None
|
135
135
|
if issubclass(self.dataset_type, TextDatasetMixin):
|
136
|
-
kwargs["ner_df"] =
|
136
|
+
kwargs["ner_df"] = ner_df
|
137
137
|
dataset = self.dataset_type(
|
138
138
|
embedding_dict=self.embedding_dict,
|
139
139
|
pooling_strategy=pooling_strategy,
|
@@ -74,10 +74,10 @@ ddi_fw/langchain/sentence_splitter.py,sha256=h_bYElx4Ud1mwDNJfL7mUwvgadwKX3GKlSz
|
|
74
74
|
ddi_fw/langchain/storage.py,sha256=OizKyWm74Js7T6Q9kez-ulUoBGzIMFo4R46h4kjUyIM,11200
|
75
75
|
ddi_fw/ml/__init__.py,sha256=tIxiW0g6q1VsmDYVXR_ovvHQR3SCir8g2bKxx_CrS7s,221
|
76
76
|
ddi_fw/ml/evaluation_helper.py,sha256=2-7CLSgGTqLEk4HkgCVIOt-GxfLAn6SBozJghAtHb5M,11581
|
77
|
-
ddi_fw/ml/ml_helper.py,sha256=
|
77
|
+
ddi_fw/ml/ml_helper.py,sha256=m6_yoZwkKgYh0RRlXExfBaE63H_UgeFOXW9Dzy1kVig,7710
|
78
78
|
ddi_fw/ml/model_wrapper.py,sha256=kabPXuo7S8tGkp9a00V04n4rXDmv7dD8wYGMjotISRc,1050
|
79
79
|
ddi_fw/ml/pytorch_wrapper.py,sha256=pe6UsjP2XeTgLxDnIUiodoyhJTGCxV27wD4Cjxysu2Q,8553
|
80
|
-
ddi_fw/ml/tensorflow_wrapper.py,sha256=
|
80
|
+
ddi_fw/ml/tensorflow_wrapper.py,sha256=Vw6M2rHDHV90jzfCr0XWpUqYVl4vmZeKsS7FUb3VkH4,12980
|
81
81
|
ddi_fw/ner/__init__.py,sha256=JwhGXrepomxPSsGsg2b_xPRC72AjvxOIn2CW5Mvscn0,26
|
82
82
|
ddi_fw/ner/mmlrestclient.py,sha256=NZta7m2Qm6I_qtVguMZhqtAUjVBmmXn0-TMnsNp0jpg,6859
|
83
83
|
ddi_fw/ner/ner.py,sha256=FHyyX53Xwpdw8Hec261dyN88yD7Z9LmJua2mIrQLguI,17967
|
@@ -85,7 +85,7 @@ ddi_fw/pipeline/__init__.py,sha256=tKDM_rW4vPjlYTeOkNgi9PujDzb4e9O3LK1w5wqnebw,2
|
|
85
85
|
ddi_fw/pipeline/multi_modal_combination_strategy.py,sha256=JSyuP71b1I1yuk0s2ecCJZTtCED85jBtkpwTUxibJvI,1706
|
86
86
|
ddi_fw/pipeline/multi_pipeline.py,sha256=SZFJ9QSPD_3mcG9NHZOtMqKyNvyWrodsdsLryMyDdUw,8686
|
87
87
|
ddi_fw/pipeline/ner_pipeline.py,sha256=Bp6BA6nozfWFaMHH6jKlzesnCGO6qiMkzdGy_ed6nh0,5947
|
88
|
-
ddi_fw/pipeline/pipeline.py,sha256=
|
88
|
+
ddi_fw/pipeline/pipeline.py,sha256=YhUBVLC29ZD2tmVd0e8X1FVBLhSKECZL2OP57oEW6HE,9171
|
89
89
|
ddi_fw/utils/__init__.py,sha256=HC32XkYQTYH_9vt0eX6tqQngEFG-R70hGrYkT-BcHCk,519
|
90
90
|
ddi_fw/utils/categorical_data_encoding_checker.py,sha256=gzb_vUDBrCMUhBxY1fBYTe8hmK72p0_uw3DTga8cqP8,1580
|
91
91
|
ddi_fw/utils/enums.py,sha256=19eJ3fX5eRK_xPvkYcukmug144jXPH4X9zQqtsFBj5A,671
|
@@ -99,7 +99,7 @@ ddi_fw/utils/zip_helper.py,sha256=YRZA4tKZVBJwGQM0_WK6L-y5MoqkKoC-nXuuHK6CU9I,55
|
|
99
99
|
ddi_fw/vectorization/__init__.py,sha256=LcJOpLVoLvHPDw9phGFlUQGeNcST_zKV-Oi1Pm5h_nE,110
|
100
100
|
ddi_fw/vectorization/feature_vector_generation.py,sha256=EBf-XAiwQwr68az91erEYNegfeqssBR29kVgrliIyac,4765
|
101
101
|
ddi_fw/vectorization/idf_helper.py,sha256=_Gd1dtDSLaw8o-o0JugzSKMt9FpeXewTh4wGEaUd4VQ,2571
|
102
|
-
ddi_fw-0.0.
|
103
|
-
ddi_fw-0.0.
|
104
|
-
ddi_fw-0.0.
|
105
|
-
ddi_fw-0.0.
|
102
|
+
ddi_fw-0.0.213.dist-info/METADATA,sha256=BjGWPBaTzKY--kJGul2QSnf5Sd96hVdwIlMJzDPE9Eo,2631
|
103
|
+
ddi_fw-0.0.213.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
|
104
|
+
ddi_fw-0.0.213.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
|
105
|
+
ddi_fw-0.0.213.dist-info/RECORD,,
|
File without changes
|
File without changes
|