ddi-fw 0.0.211__py3-none-any.whl → 0.0.213__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ddi_fw/ml/ml_helper.py CHANGED
@@ -156,6 +156,7 @@ class MultiModalRunner:
156
156
  (self.y_test_label.shape[0], self.y_test_label.shape[1]))
157
157
  for item in combination:
158
158
  prediction = prediction + single_results[item]
159
+ prediction = np.argmax(prediction, axis=1)
159
160
  logs, metrics = evaluate(
160
161
  actual=self.y_test_label, pred=prediction, info=combination_descriptor)
161
162
  if self.use_mlflow:
@@ -183,11 +183,11 @@ class TFModelWrapper(ModelWrapper):
183
183
  actual = self.test_label
184
184
  # if not utils.is_binary_encoded(pred):
185
185
  # pred = tf.keras.utils.to_categorical(np.argmax(pred,axis=1), num_classes=self.num_classes)
186
- pred= convert_to_categorical(pred, self.num_classes)
187
- actual= convert_to_categorical(actual, self.num_classes)
186
+ pred_as_cat= convert_to_categorical(pred, self.num_classes)
187
+ actual_as_cat= convert_to_categorical(actual, self.num_classes)
188
188
 
189
189
  logs, metrics = evaluate(
190
- actual=actual, pred=pred, info=self.descriptor, print_detail=print_detail)
190
+ actual=actual_as_cat, pred=pred_as_cat, info=self.descriptor, print_detail=print_detail)
191
191
  metrics.format_float()
192
192
  mlflow.log_metrics(logs)
193
193
  mlflow.log_param('best_cv', best_model_key)
@@ -126,14 +126,14 @@ class Pipeline(BaseModel):
126
126
  kwargs[k] = v
127
127
 
128
128
 
129
- self.ner_df = CTakesNER(df=None).load(
129
+ ner_df = CTakesNER(df=None).load(
130
130
  filename=self.ner_data_file) if self.ner_data_file else None
131
131
 
132
132
  dataset_splitter = self.dataset_splitter_type()
133
133
  pooling_strategy = self.embedding_pooling_strategy_type(
134
134
  ) if self.embedding_pooling_strategy_type else None
135
135
  if issubclass(self.dataset_type, TextDatasetMixin):
136
- kwargs["ner_df"] = self.ner_df
136
+ kwargs["ner_df"] = ner_df
137
137
  dataset = self.dataset_type(
138
138
  embedding_dict=self.embedding_dict,
139
139
  pooling_strategy=pooling_strategy,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ddi_fw
3
- Version: 0.0.211
3
+ Version: 0.0.213
4
4
  Summary: Do not use :)
5
5
  Author-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
6
6
  Maintainer-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
@@ -74,10 +74,10 @@ ddi_fw/langchain/sentence_splitter.py,sha256=h_bYElx4Ud1mwDNJfL7mUwvgadwKX3GKlSz
74
74
  ddi_fw/langchain/storage.py,sha256=OizKyWm74Js7T6Q9kez-ulUoBGzIMFo4R46h4kjUyIM,11200
75
75
  ddi_fw/ml/__init__.py,sha256=tIxiW0g6q1VsmDYVXR_ovvHQR3SCir8g2bKxx_CrS7s,221
76
76
  ddi_fw/ml/evaluation_helper.py,sha256=2-7CLSgGTqLEk4HkgCVIOt-GxfLAn6SBozJghAtHb5M,11581
77
- ddi_fw/ml/ml_helper.py,sha256=xacnXmS8wB28F4CR3c274VaeHUB2d_KO15dYnO0gRzE,7658
77
+ ddi_fw/ml/ml_helper.py,sha256=m6_yoZwkKgYh0RRlXExfBaE63H_UgeFOXW9Dzy1kVig,7710
78
78
  ddi_fw/ml/model_wrapper.py,sha256=kabPXuo7S8tGkp9a00V04n4rXDmv7dD8wYGMjotISRc,1050
79
79
  ddi_fw/ml/pytorch_wrapper.py,sha256=pe6UsjP2XeTgLxDnIUiodoyhJTGCxV27wD4Cjxysu2Q,8553
80
- ddi_fw/ml/tensorflow_wrapper.py,sha256=lNJvg3odqMKmILecOMdcOCAOrwzWZDzxB0DWGcYWsPg,12952
80
+ ddi_fw/ml/tensorflow_wrapper.py,sha256=Vw6M2rHDHV90jzfCr0XWpUqYVl4vmZeKsS7FUb3VkH4,12980
81
81
  ddi_fw/ner/__init__.py,sha256=JwhGXrepomxPSsGsg2b_xPRC72AjvxOIn2CW5Mvscn0,26
82
82
  ddi_fw/ner/mmlrestclient.py,sha256=NZta7m2Qm6I_qtVguMZhqtAUjVBmmXn0-TMnsNp0jpg,6859
83
83
  ddi_fw/ner/ner.py,sha256=FHyyX53Xwpdw8Hec261dyN88yD7Z9LmJua2mIrQLguI,17967
@@ -85,7 +85,7 @@ ddi_fw/pipeline/__init__.py,sha256=tKDM_rW4vPjlYTeOkNgi9PujDzb4e9O3LK1w5wqnebw,2
85
85
  ddi_fw/pipeline/multi_modal_combination_strategy.py,sha256=JSyuP71b1I1yuk0s2ecCJZTtCED85jBtkpwTUxibJvI,1706
86
86
  ddi_fw/pipeline/multi_pipeline.py,sha256=SZFJ9QSPD_3mcG9NHZOtMqKyNvyWrodsdsLryMyDdUw,8686
87
87
  ddi_fw/pipeline/ner_pipeline.py,sha256=Bp6BA6nozfWFaMHH6jKlzesnCGO6qiMkzdGy_ed6nh0,5947
88
- ddi_fw/pipeline/pipeline.py,sha256=_sRzMyxGSJo4GhM8ZJhxwvMvKsqFa1WSSECpx4SgdDw,9181
88
+ ddi_fw/pipeline/pipeline.py,sha256=YhUBVLC29ZD2tmVd0e8X1FVBLhSKECZL2OP57oEW6HE,9171
89
89
  ddi_fw/utils/__init__.py,sha256=HC32XkYQTYH_9vt0eX6tqQngEFG-R70hGrYkT-BcHCk,519
90
90
  ddi_fw/utils/categorical_data_encoding_checker.py,sha256=gzb_vUDBrCMUhBxY1fBYTe8hmK72p0_uw3DTga8cqP8,1580
91
91
  ddi_fw/utils/enums.py,sha256=19eJ3fX5eRK_xPvkYcukmug144jXPH4X9zQqtsFBj5A,671
@@ -99,7 +99,7 @@ ddi_fw/utils/zip_helper.py,sha256=YRZA4tKZVBJwGQM0_WK6L-y5MoqkKoC-nXuuHK6CU9I,55
99
99
  ddi_fw/vectorization/__init__.py,sha256=LcJOpLVoLvHPDw9phGFlUQGeNcST_zKV-Oi1Pm5h_nE,110
100
100
  ddi_fw/vectorization/feature_vector_generation.py,sha256=EBf-XAiwQwr68az91erEYNegfeqssBR29kVgrliIyac,4765
101
101
  ddi_fw/vectorization/idf_helper.py,sha256=_Gd1dtDSLaw8o-o0JugzSKMt9FpeXewTh4wGEaUd4VQ,2571
102
- ddi_fw-0.0.211.dist-info/METADATA,sha256=HO-fzXxm5AGnMMB8S0hnkOtH18bvaanoIAJgLOCP8gk,2631
103
- ddi_fw-0.0.211.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
104
- ddi_fw-0.0.211.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
105
- ddi_fw-0.0.211.dist-info/RECORD,,
102
+ ddi_fw-0.0.213.dist-info/METADATA,sha256=BjGWPBaTzKY--kJGul2QSnf5Sd96hVdwIlMJzDPE9Eo,2631
103
+ ddi_fw-0.0.213.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
104
+ ddi_fw-0.0.213.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
105
+ ddi_fw-0.0.213.dist-info/RECORD,,