ddi-fw 0.0.188__py3-none-any.whl → 0.0.190__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ddi_fw/datasets/core.py CHANGED
@@ -158,9 +158,11 @@ class BaseDataset(BaseModel):
158
158
  y_test = test[self.class_column]
159
159
 
160
160
  self.X_train = np.array(X_train)
161
- self.y_train = np.array(y_train)
161
+ # self.y_train = np.array(y_train)
162
+ self.y_train = np.array(y_train.tolist())
162
163
  self.X_test = np.array(X_test)
163
- self.y_test = np.array(y_test)
164
+ # self.y_test = np.array(y_test)
165
+ self.y_test = np.array(y_test.tolist())
164
166
 
165
167
  self.train_indexes = X_train.index
166
168
  self.test_indexes = X_test.index
ddi_fw/ml/ml_helper.py CHANGED
@@ -57,7 +57,7 @@ class MultiModalRunner:
57
57
  raise ValueError(
58
58
  "Unsupported library type. Choose 'tensorflow' or 'pytorch'.")
59
59
 
60
- def __predict(self,single_results):
60
+ def __predict(self, single_results):
61
61
  item_dict = {t[0]: t for t in self.items}
62
62
  print("multi_modal")
63
63
  print(self.multi_modal)
@@ -71,7 +71,8 @@ class MultiModalRunner:
71
71
  model_type = get_import(m.get("model_type"))
72
72
  kwargs = m.get('params')
73
73
  T = self.__create_model(self.library)
74
- single_modal = T(self.date, name, model_type, **kwargs)
74
+ single_modal = T(self.date, name, model_type,
75
+ use_mlflow=self.use_mlflow, **kwargs)
75
76
  if input_type == '1D':
76
77
  item = item_dict[input]
77
78
  single_modal.set_data(
@@ -79,7 +80,7 @@ class MultiModalRunner:
79
80
  elif input_type == '2D':
80
81
  # check keys
81
82
  filtered_dict = {k: item_dict[k]
82
- for k in inputs if k in item_dict}
83
+ for k in inputs if k in item_dict}
83
84
  print(filtered_dict.keys())
84
85
  first_input = next(iter(filtered_dict.values()))
85
86
  train_data_list = [f[1] for f in filtered_dict.values()]
@@ -64,7 +64,7 @@ def convert_to_categorical(arr, num_classes):
64
64
 
65
65
  class TFModelWrapper(ModelWrapper):
66
66
 
67
- def __init__(self, date, descriptor, model_func, use_mlflow=True, **kwargs):
67
+ def __init__(self, date, descriptor, model_func, use_mlflow=False, **kwargs):
68
68
  super().__init__(date, descriptor, model_func, **kwargs)
69
69
  self.batch_size = kwargs.get('batch_size', 128)
70
70
  self.epochs = kwargs.get('epochs', 100)
ddi_fw/utils/__init__.py CHANGED
@@ -4,4 +4,5 @@ from .py7zr_helper import Py7ZipHelper
4
4
  from .enums import UMLSCodeTypes, DrugBankTextDataTypes
5
5
  from .package_helper import get_import
6
6
  from .kaggle import create_kaggle_dataset
7
- from .categorical_data_encoding_checker import is_one_hot_encoded, is_binary_encoded, is_binary_vector,is_label_encoded
7
+ from .categorical_data_encoding_checker import is_one_hot_encoded, is_binary_encoded, is_binary_vector,is_label_encoded
8
+ from .numpy_utils import adjust_array_dims
@@ -0,0 +1,27 @@
1
+ import numpy as np
2
+
3
+ def adjust_array_dims(arr, final_ndim=2):
4
+ # Add axes if array has fewer dimensions than final_ndim
5
+ while arr.ndim < final_ndim:
6
+ arr = arr[:, np.newaxis] # Add a new axis
7
+
8
+ # Drop axes if array has more dimensions than final_ndim
9
+ while arr.ndim > final_ndim:
10
+ arr = np.squeeze(arr, axis=-1) # Remove the last axis
11
+
12
+ return arr
13
+
14
+
15
+
16
+ # # Example usage
17
+ # arr_1d = np.array([1, 2, 3, 4, 5])
18
+
19
+ # # Convert to a 3D array (iteratively adds axes)
20
+ # arr_3d = adjust_array_dims(arr_1d, final_ndim=3)
21
+ # print(arr_3d)
22
+ # print("Shape of arr_3d:", arr_3d.shape)
23
+
24
+ # # Convert to a 2D array (iteratively drops axes)
25
+ # arr_2d = adjust_array_dims(arr_3d, final_ndim=2)
26
+ # print(arr_2d)
27
+ # print("Shape of arr_2d:", arr_2d.shape)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ddi_fw
3
- Version: 0.0.188
3
+ Version: 0.0.190
4
4
  Summary: Do not use :)
5
5
  Author-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
6
6
  Maintainer-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
@@ -1,5 +1,5 @@
1
1
  ddi_fw/datasets/__init__.py,sha256=_I3iDHARwzmg7_EL5XKtB_TgG1yAkLSOVTujLL9Wz9Q,280
2
- ddi_fw/datasets/core.py,sha256=eKPbntiDhqpqaV1SlrPmuSUq_9i_5INlnJuAlwj61Nk,10630
2
+ ddi_fw/datasets/core.py,sha256=WWWd5SGHVUpJn-IJF1p1PScSWpb7VfQdcMTroufkgUk,10734
3
3
  ddi_fw/datasets/dataset_splitter.py,sha256=8H8uZTAf8N9LUZeSeHOMawtJFJhnDgUUqFcnl7dquBQ,1672
4
4
  ddi_fw/datasets/db_utils.py,sha256=OTsa3d-Iic7z3HmzSQK9UigedRbHDxYChJk0s4GfLnw,6191
5
5
  ddi_fw/datasets/setup_._py,sha256=khYVJuW5PlOY_i_A16F3UbSZ6s6o_ljw33Byw3C-A8E,1047
@@ -74,10 +74,10 @@ ddi_fw/langchain/sentence_splitter.py,sha256=h_bYElx4Ud1mwDNJfL7mUwvgadwKX3GKlSz
74
74
  ddi_fw/langchain/storage.py,sha256=OizKyWm74Js7T6Q9kez-ulUoBGzIMFo4R46h4kjUyIM,11200
75
75
  ddi_fw/ml/__init__.py,sha256=tIxiW0g6q1VsmDYVXR_ovvHQR3SCir8g2bKxx_CrS7s,221
76
76
  ddi_fw/ml/evaluation_helper.py,sha256=2-7CLSgGTqLEk4HkgCVIOt-GxfLAn6SBozJghAtHb5M,11581
77
- ddi_fw/ml/ml_helper.py,sha256=l1ZLYL3x5bHxD2bh2ezEgWDlV0ni8zGZGgj07x7KR40,6310
77
+ ddi_fw/ml/ml_helper.py,sha256=xbIg0fAJeJuB7rlgUMzCFhQ4WLBXS35x5N5gCcs6-so,6367
78
78
  ddi_fw/ml/model_wrapper.py,sha256=kabPXuo7S8tGkp9a00V04n4rXDmv7dD8wYGMjotISRc,1050
79
79
  ddi_fw/ml/pytorch_wrapper.py,sha256=pe6UsjP2XeTgLxDnIUiodoyhJTGCxV27wD4Cjxysu2Q,8553
80
- ddi_fw/ml/tensorflow_wrapper.py,sha256=-zcbd0LBg9QNMF9K1I-JC379cS3rTO7ibgsDIOnMsoc,12951
80
+ ddi_fw/ml/tensorflow_wrapper.py,sha256=lNJvg3odqMKmILecOMdcOCAOrwzWZDzxB0DWGcYWsPg,12952
81
81
  ddi_fw/ner/__init__.py,sha256=JwhGXrepomxPSsGsg2b_xPRC72AjvxOIn2CW5Mvscn0,26
82
82
  ddi_fw/ner/mmlrestclient.py,sha256=NZta7m2Qm6I_qtVguMZhqtAUjVBmmXn0-TMnsNp0jpg,6859
83
83
  ddi_fw/ner/ner.py,sha256=FHyyX53Xwpdw8Hec261dyN88yD7Z9LmJua2mIrQLguI,17967
@@ -86,11 +86,12 @@ ddi_fw/pipeline/multi_modal_combination_strategy.py,sha256=JSyuP71b1I1yuk0s2ecCJ
86
86
  ddi_fw/pipeline/multi_pipeline.py,sha256=NfcH4Ze5U-JRiH3lrxEDWj-VPxYQYtp7tq6bLCImBzs,5550
87
87
  ddi_fw/pipeline/ner_pipeline.py,sha256=Bp6BA6nozfWFaMHH6jKlzesnCGO6qiMkzdGy_ed6nh0,5947
88
88
  ddi_fw/pipeline/pipeline.py,sha256=dCXZuXOlW74ZO0e_OhS9OX0dqI9abj7CQz_lkKrDIWY,9787
89
- ddi_fw/utils/__init__.py,sha256=bqIC0YjbD0YSHtO0nWUkRs4w5nu7qBV0yU72sRzwCj8,475
89
+ ddi_fw/utils/__init__.py,sha256=HC32XkYQTYH_9vt0eX6tqQngEFG-R70hGrYkT-BcHCk,519
90
90
  ddi_fw/utils/categorical_data_encoding_checker.py,sha256=gzb_vUDBrCMUhBxY1fBYTe8hmK72p0_uw3DTga8cqP8,1580
91
91
  ddi_fw/utils/enums.py,sha256=19eJ3fX5eRK_xPvkYcukmug144jXPH4X9zQqtsFBj5A,671
92
92
  ddi_fw/utils/json_helper.py,sha256=BVU6wmJgdXPxyqLPu3Ck_9Es5RrP1PDanKvE-OSj1D4,571
93
93
  ddi_fw/utils/kaggle.py,sha256=wKRJ18KpQ6P-CubpZklEgsDtyFpR9RUL1_HyyF6ttEE,2425
94
+ ddi_fw/utils/numpy_utils.py,sha256=gd1WNq5NpWD2MBEMTtFuS5I0h8B6FAUNcq6BVOlxdhY,797
94
95
  ddi_fw/utils/package_helper.py,sha256=erl8_onmhK-41zQoaED2qyDUV9GQxmT9sdoyRp9_q5I,1056
95
96
  ddi_fw/utils/py7zr_helper.py,sha256=gOqaFIyJvTjUM-btO2x9AQ69jZOS8PoKN0wetYIckJw,4747
96
97
  ddi_fw/utils/utils.py,sha256=szwnxMTDRrZoeNRyDuf3aCbtzriwtaRk4mHSH3asLdA,4301
@@ -98,7 +99,7 @@ ddi_fw/utils/zip_helper.py,sha256=YRZA4tKZVBJwGQM0_WK6L-y5MoqkKoC-nXuuHK6CU9I,55
98
99
  ddi_fw/vectorization/__init__.py,sha256=LcJOpLVoLvHPDw9phGFlUQGeNcST_zKV-Oi1Pm5h_nE,110
99
100
  ddi_fw/vectorization/feature_vector_generation.py,sha256=Z1A_DOBqDFPqLN4YB-3oYlOQWJK-X6Oes6UFjpzR47Q,4760
100
101
  ddi_fw/vectorization/idf_helper.py,sha256=_Gd1dtDSLaw8o-o0JugzSKMt9FpeXewTh4wGEaUd4VQ,2571
101
- ddi_fw-0.0.188.dist-info/METADATA,sha256=SRAoTA4fu0suxghXx5okr-RsfC512VEotrkTCUeXBck,2542
102
- ddi_fw-0.0.188.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
103
- ddi_fw-0.0.188.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
104
- ddi_fw-0.0.188.dist-info/RECORD,,
102
+ ddi_fw-0.0.190.dist-info/METADATA,sha256=kTsCriMdtxc5BZWLUlThWAMPoYSWjPRkLFZntodwCwM,2542
103
+ ddi_fw-0.0.190.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
104
+ ddi_fw-0.0.190.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
105
+ ddi_fw-0.0.190.dist-info/RECORD,,