ddi-fw 0.0.184__py3-none-any.whl → 0.0.186__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ddi_fw/ml/ml_helper.py CHANGED
@@ -32,7 +32,7 @@ import ddi_fw.utils as utils
32
32
 
33
33
  class MultiModalRunner:
34
34
  # todo model related parameters to config
35
- def __init__(self, library, multi_modal, use_mlflow=True):
35
+ def __init__(self, library, multi_modal, use_mlflow=False):
36
36
  self.library = library
37
37
  self.multi_modal = multi_modal
38
38
  self.use_mlflow = use_mlflow
@@ -99,8 +99,8 @@ class MultiModalRunner:
99
99
  def predict(self, combinations: list = [], generate_combinations=False):
100
100
  self.prefix = utils.utc_time_as_string()
101
101
  self.date = utils.utc_time_as_string_simple_format()
102
- sum = np.zeros(
103
- (self.y_test_label.shape[0], self.y_test_label.shape[1]))
102
+ # sum = np.zeros(
103
+ # (self.y_test_label.shape[0], self.y_test_label.shape[1]))
104
104
  single_results = dict()
105
105
 
106
106
  if generate_combinations:
@@ -120,7 +120,7 @@ class TFModelWrapper(ModelWrapper):
120
120
  print(self.train_data.shape)
121
121
  models = {}
122
122
  models_val_acc = {}
123
- if self.train_idx_arr is not None and self.val_idx_arr is not None:
123
+ if self.train_idx_arr and self.val_idx_arr:
124
124
  for i, (train_idx, val_idx) in enumerate(zip(self.train_idx_arr, self.val_idx_arr)):
125
125
  print(f"Validation {i}")
126
126
 
@@ -155,7 +155,8 @@ class TFModelWrapper(ModelWrapper):
155
155
  self.train_data, self.train_label, None, None)
156
156
  models[self.descriptor] = model
157
157
  models_val_acc[self.descriptor] = checkpoint.best
158
-
158
+ if models_val_acc == {}:
159
+ return model, None
159
160
  best_model_key = max(models_val_acc, key=lambda k: models_val_acc[k])
160
161
  # best_model_key = max(models_val_acc, key=models_val_acc.get)
161
162
  best_model = models[best_model_key]
@@ -106,7 +106,7 @@ class NerParameterSearch:
106
106
  **kwargs)
107
107
 
108
108
  # train_idx_arr, val_idx_arr bir kez hesaplanması yeterli aslında
109
- X_train, X_test, y_train, y_test, X_train.index, X_test.index, train_idx_arr, val_idx_arr = dataset.load()
109
+ dataset.load()
110
110
  group_items = dataset.produce_inputs()
111
111
  for item in group_items:
112
112
  # item[0] = f'threshold_{threshold}_{item[0]}'
@@ -115,8 +115,8 @@ class NerParameterSearch:
115
115
 
116
116
  self.items.extend(group_items)
117
117
  self.y_test_label = self.items[0][4]
118
- self.train_idx_arr = train_idx_arr
119
- self.val_idx_arr = val_idx_arr
118
+ self.train_idx_arr = dataset.train_idx_arr
119
+ self.val_idx_arr = dataset.val_idx_arr
120
120
 
121
121
  def run(self, model_func, batch_size=128, epochs=100):
122
122
  mlflow.set_tracking_uri(self.tracking_uri)
@@ -244,7 +244,7 @@ class Pipeline(BaseModel):
244
244
 
245
245
  y_test_label = self.items[0][4]
246
246
  multi_modal_runner = MultiModalRunner(
247
- library=self.library, multi_modal=self.multi_modal)
247
+ library=self.library, multi_modal=self.multi_modal, use_mlflow=self.use_mlflow)
248
248
  # multi_modal_runner = MultiModalRunner(
249
249
  # library=self.library, model_func=model_func, batch_size=batch_size, epochs=epochs)
250
250
  # multi_modal = TFMultiModal(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ddi_fw
3
- Version: 0.0.184
3
+ Version: 0.0.186
4
4
  Summary: Do not use :)
5
5
  Author-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
6
6
  Maintainer-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
@@ -74,18 +74,18 @@ ddi_fw/langchain/sentence_splitter.py,sha256=h_bYElx4Ud1mwDNJfL7mUwvgadwKX3GKlSz
74
74
  ddi_fw/langchain/storage.py,sha256=OizKyWm74Js7T6Q9kez-ulUoBGzIMFo4R46h4kjUyIM,11200
75
75
  ddi_fw/ml/__init__.py,sha256=tIxiW0g6q1VsmDYVXR_ovvHQR3SCir8g2bKxx_CrS7s,221
76
76
  ddi_fw/ml/evaluation_helper.py,sha256=2-7CLSgGTqLEk4HkgCVIOt-GxfLAn6SBozJghAtHb5M,11581
77
- ddi_fw/ml/ml_helper.py,sha256=E6ef7f1UnQl6JBUdGDbbbI4FIS-904VGypT7tI0a598,8545
77
+ ddi_fw/ml/ml_helper.py,sha256=MSxdr3UpS5qFJN7TWdXDaNwBfYjzMXp7cHs2PWTpX6o,8550
78
78
  ddi_fw/ml/model_wrapper.py,sha256=kabPXuo7S8tGkp9a00V04n4rXDmv7dD8wYGMjotISRc,1050
79
79
  ddi_fw/ml/pytorch_wrapper.py,sha256=pe6UsjP2XeTgLxDnIUiodoyhJTGCxV27wD4Cjxysu2Q,8553
80
- ddi_fw/ml/tensorflow_wrapper.py,sha256=xX_rP6nzB2yQiNvGP9_PbbQt1bXiPPWEozIzpbV6Ens,12911
80
+ ddi_fw/ml/tensorflow_wrapper.py,sha256=-zcbd0LBg9QNMF9K1I-JC379cS3rTO7ibgsDIOnMsoc,12951
81
81
  ddi_fw/ner/__init__.py,sha256=JwhGXrepomxPSsGsg2b_xPRC72AjvxOIn2CW5Mvscn0,26
82
82
  ddi_fw/ner/mmlrestclient.py,sha256=NZta7m2Qm6I_qtVguMZhqtAUjVBmmXn0-TMnsNp0jpg,6859
83
83
  ddi_fw/ner/ner.py,sha256=FHyyX53Xwpdw8Hec261dyN88yD7Z9LmJua2mIrQLguI,17967
84
84
  ddi_fw/pipeline/__init__.py,sha256=tKDM_rW4vPjlYTeOkNgi9PujDzb4e9O3LK1w5wqnebw,212
85
85
  ddi_fw/pipeline/multi_modal_combination_strategy.py,sha256=JSyuP71b1I1yuk0s2ecCJZTtCED85jBtkpwTUxibJvI,1706
86
86
  ddi_fw/pipeline/multi_pipeline.py,sha256=NfcH4Ze5U-JRiH3lrxEDWj-VPxYQYtp7tq6bLCImBzs,5550
87
- ddi_fw/pipeline/ner_pipeline.py,sha256=kNGtkg5rNX5MDywzvRxmvyk-DxXAjEbYzZkp8pNlAZo,6023
88
- ddi_fw/pipeline/pipeline.py,sha256=11CgBgNxzo1KqKWudezSM2iFruoUVG-JMNbwznvt1KA,11362
87
+ ddi_fw/pipeline/ner_pipeline.py,sha256=Bp6BA6nozfWFaMHH6jKlzesnCGO6qiMkzdGy_ed6nh0,5947
88
+ ddi_fw/pipeline/pipeline.py,sha256=uMpkZnqEzH5rQDkgySdDKPzfMKfXNyO0QCsFVKUfrJ4,11390
89
89
  ddi_fw/utils/__init__.py,sha256=bqIC0YjbD0YSHtO0nWUkRs4w5nu7qBV0yU72sRzwCj8,475
90
90
  ddi_fw/utils/categorical_data_encoding_checker.py,sha256=gzb_vUDBrCMUhBxY1fBYTe8hmK72p0_uw3DTga8cqP8,1580
91
91
  ddi_fw/utils/enums.py,sha256=19eJ3fX5eRK_xPvkYcukmug144jXPH4X9zQqtsFBj5A,671
@@ -98,7 +98,7 @@ ddi_fw/utils/zip_helper.py,sha256=YRZA4tKZVBJwGQM0_WK6L-y5MoqkKoC-nXuuHK6CU9I,55
98
98
  ddi_fw/vectorization/__init__.py,sha256=LcJOpLVoLvHPDw9phGFlUQGeNcST_zKV-Oi1Pm5h_nE,110
99
99
  ddi_fw/vectorization/feature_vector_generation.py,sha256=Z1A_DOBqDFPqLN4YB-3oYlOQWJK-X6Oes6UFjpzR47Q,4760
100
100
  ddi_fw/vectorization/idf_helper.py,sha256=_Gd1dtDSLaw8o-o0JugzSKMt9FpeXewTh4wGEaUd4VQ,2571
101
- ddi_fw-0.0.184.dist-info/METADATA,sha256=LcArDcKH55AW1jIEGnnhpZsyPyH63fWrzfSrnQKHTOk,2542
102
- ddi_fw-0.0.184.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
103
- ddi_fw-0.0.184.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
104
- ddi_fw-0.0.184.dist-info/RECORD,,
101
+ ddi_fw-0.0.186.dist-info/METADATA,sha256=a8oR_ifI2j--Lmx1432hOdmHWwDvXI-j-fJ-301IWVE,2542
102
+ ddi_fw-0.0.186.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
103
+ ddi_fw-0.0.186.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
104
+ ddi_fw-0.0.186.dist-info/RECORD,,