ddi-fw 0.0.175__py3-none-any.whl → 0.0.177__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ddi_fw/datasets/core.py CHANGED
@@ -74,6 +74,21 @@ class BaseDataset(BaseModel):
74
74
  arbitrary_types_allowed = True
75
75
 
76
76
  def produce_inputs(self):
77
+ items = []
78
+ if self.X_train is None or self.X_test is None:
79
+ raise Exception("There is no data to produce inputs")
80
+ y_train_label, y_test_label = np.array(self.y_train), np.array(self.y_test)
81
+
82
+ for index,column in enumerate(self.columns):
83
+ train_data, test_data = self.X_train[:,index], self.X_test[:,index]
84
+ items.append([f'{column}', np.nan_to_num(train_data),
85
+ y_train_label, np.nan_to_num(test_data), y_test_label])
86
+
87
+ # items.append([f'{column}_embedding', train_data,
88
+ # y_train_label, test_data, y_test_label])
89
+ return items
90
+
91
+ def produce_inputs_ex(self):
77
92
  items = []
78
93
  if self.X_train is None or self.X_test is None:
79
94
  raise Exception("There is no data to produce inputs")
@@ -130,15 +145,21 @@ class BaseDataset(BaseModel):
130
145
  train = self.dataframe[self.dataframe.index.isin(train_idx_all)]
131
146
  test = self.dataframe[self.dataframe.index.isin(test_idx_all)]
132
147
 
133
- self.X_train = train.drop(self.class_column, axis=1)
148
+ self.X_train = train.drop(self.class_column, axis=1)
134
149
  self.y_train = train[self.class_column]
135
150
  self.X_test = test.drop(self.class_column, axis=1)
136
151
  self.y_test = test[self.class_column]
137
-
152
+
138
153
  self.train_indexes = self.X_train.index
139
154
  self.test_indexes = self.X_test.index
140
155
  self.train_idx_arr = train_idx_arr
141
156
  self.val_idx_arr = val_idx_arr
157
+
158
+ # Dataframe to numpy array conversion
159
+ self.X_train = np.array(self.X_train)
160
+ self.y_train = np.array(self.y_train)
161
+ self.X_test = np.array(self.X_test)
162
+ self.y_test = np.array(self.y_test)
142
163
 
143
164
  return self.X_train, self.X_test, self.y_train, self.y_test, self.train_indexes, self.test_indexes, self.train_idx_arr, self.val_idx_arr
144
165
 
@@ -155,8 +155,11 @@ class TFModelWrapper(ModelWrapper):
155
155
  print(best_model_key)
156
156
  self.best_model = best_model
157
157
  pred = self.predict()
158
+ pred = tf.keras.utils.to_categorical(np.argmax(pred,axis=1), num_classes=self.num_classes)
159
+ actual = tf.keras.utils.to_categorical(self.test_label, num_classes=self.num_classes)
160
+
158
161
  logs, metrics = evaluate(
159
- actual=self.test_label, pred=pred, info=self.descriptor)
162
+ actual=actual, pred=pred, info=self.descriptor)
160
163
  metrics.format_float()
161
164
  return logs, metrics, pred
162
165
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ddi_fw
3
- Version: 0.0.175
3
+ Version: 0.0.177
4
4
  Summary: Do not use :)
5
5
  Author-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
6
6
  Maintainer-email: Kıvanç Bayraktar <bayraktarkivanc@gmail.com>
@@ -1,5 +1,5 @@
1
1
  ddi_fw/datasets/__init__.py,sha256=_I3iDHARwzmg7_EL5XKtB_TgG1yAkLSOVTujLL9Wz9Q,280
2
- ddi_fw/datasets/core.py,sha256=j6YpH6IqPQ2va1cC26xT-Jn3fIPsF43xD3GuluJRJb4,9372
2
+ ddi_fw/datasets/core.py,sha256=k5rxauXCNWcUW_RHfswB4oTSz-EZyWHboH64o3x8mjg,10328
3
3
  ddi_fw/datasets/dataset_splitter.py,sha256=8H8uZTAf8N9LUZeSeHOMawtJFJhnDgUUqFcnl7dquBQ,1672
4
4
  ddi_fw/datasets/db_utils.py,sha256=OTsa3d-Iic7z3HmzSQK9UigedRbHDxYChJk0s4GfLnw,6191
5
5
  ddi_fw/datasets/setup_._py,sha256=khYVJuW5PlOY_i_A16F3UbSZ6s6o_ljw33Byw3C-A8E,1047
@@ -77,7 +77,7 @@ ddi_fw/ml/evaluation_helper.py,sha256=2-7CLSgGTqLEk4HkgCVIOt-GxfLAn6SBozJghAtHb5
77
77
  ddi_fw/ml/ml_helper.py,sha256=E6ef7f1UnQl6JBUdGDbbbI4FIS-904VGypT7tI0a598,8545
78
78
  ddi_fw/ml/model_wrapper.py,sha256=kabPXuo7S8tGkp9a00V04n4rXDmv7dD8wYGMjotISRc,1050
79
79
  ddi_fw/ml/pytorch_wrapper.py,sha256=pe6UsjP2XeTgLxDnIUiodoyhJTGCxV27wD4Cjxysu2Q,8553
80
- ddi_fw/ml/tensorflow_wrapper.py,sha256=zXhQytIbCuWvdJxOcQyTu3Mz0-7NsO7uJg-1F5kVHJM,10368
80
+ ddi_fw/ml/tensorflow_wrapper.py,sha256=AeEXGbsQW6BgVf-Mgxe9NbvwNqLOqqCTGyTNxfg4G_Y,10564
81
81
  ddi_fw/ner/__init__.py,sha256=JwhGXrepomxPSsGsg2b_xPRC72AjvxOIn2CW5Mvscn0,26
82
82
  ddi_fw/ner/mmlrestclient.py,sha256=NZta7m2Qm6I_qtVguMZhqtAUjVBmmXn0-TMnsNp0jpg,6859
83
83
  ddi_fw/ner/ner.py,sha256=FHyyX53Xwpdw8Hec261dyN88yD7Z9LmJua2mIrQLguI,17967
@@ -97,7 +97,7 @@ ddi_fw/utils/zip_helper.py,sha256=YRZA4tKZVBJwGQM0_WK6L-y5MoqkKoC-nXuuHK6CU9I,55
97
97
  ddi_fw/vectorization/__init__.py,sha256=LcJOpLVoLvHPDw9phGFlUQGeNcST_zKV-Oi1Pm5h_nE,110
98
98
  ddi_fw/vectorization/feature_vector_generation.py,sha256=Z1A_DOBqDFPqLN4YB-3oYlOQWJK-X6Oes6UFjpzR47Q,4760
99
99
  ddi_fw/vectorization/idf_helper.py,sha256=_Gd1dtDSLaw8o-o0JugzSKMt9FpeXewTh4wGEaUd4VQ,2571
100
- ddi_fw-0.0.175.dist-info/METADATA,sha256=a53MGRsEAeWBAHWUw4JFEvTiygntyKgKzLzlkGK3AwE,2542
101
- ddi_fw-0.0.175.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
102
- ddi_fw-0.0.175.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
103
- ddi_fw-0.0.175.dist-info/RECORD,,
100
+ ddi_fw-0.0.177.dist-info/METADATA,sha256=LVa6DvyGtARYgDpsqlekfEqeg3nj6uPALn10NKB2eE0,2542
101
+ ddi_fw-0.0.177.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
102
+ ddi_fw-0.0.177.dist-info/top_level.txt,sha256=PMwHICFZTZtcpzQNPV4UQnfNXYIeLR_Ste-Wfc1h810,7
103
+ ddi_fw-0.0.177.dist-info/RECORD,,