ddfem 0.0.0__py3-none-any.whl → 0.9.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ddfem/__init__.py +4 -0
- ddfem/boundary.py +223 -0
- ddfem/dune.py +3 -0
- ddfem/examples/__init__.py +0 -0
- ddfem/examples/advection_diffusion.py +74 -0
- ddfem/examples/beam.py +147 -0
- ddfem/examples/cahn_hilliard.py +67 -0
- ddfem/examples/chemical_reaction.py +88 -0
- ddfem/examples/constant.py +46 -0
- ddfem/examples/five_circle_flat.py +197 -0
- ddfem/examples/forchheimer.py +48 -0
- ddfem/examples/hyperelasticity.py +88 -0
- ddfem/examples/linear_elasticity.py +45 -0
- ddfem/examples/plaplace.py +29 -0
- ddfem/examples/single_circle.py +135 -0
- ddfem/examples/triple_circle.py +217 -0
- ddfem/examples/triple_circle_beam.py +208 -0
- ddfem/geometry/__init__.py +18 -0
- ddfem/geometry/arc.py +48 -0
- ddfem/geometry/ball.py +24 -0
- ddfem/geometry/box.py +33 -0
- ddfem/geometry/domain.py +49 -0
- ddfem/geometry/domain_dune.py +82 -0
- ddfem/geometry/helpers.py +42 -0
- ddfem/geometry/pie.py +31 -0
- ddfem/geometry/plane.py +20 -0
- ddfem/geometry/primitive_base.py +338 -0
- ddfem/geometry/vesica.py +49 -0
- ddfem/model2ufl.py +151 -0
- ddfem/transformers/DDM1.py +36 -0
- ddfem/transformers/Fitted.py +77 -0
- ddfem/transformers/Mix0.py +107 -0
- ddfem/transformers/NNS.py +82 -0
- ddfem/transformers/NS.py +86 -0
- ddfem/transformers/__init__.py +6 -0
- ddfem/transformers/transformer_base.py +213 -0
- ddfem-0.9.0.dist-info/METADATA +26 -0
- ddfem-0.9.0.dist-info/RECORD +41 -0
- {ddfem-0.0.0.dist-info → ddfem-0.9.0.dist-info}/WHEEL +1 -1
- ddfem-0.9.0.dist-info/licenses/LICENSE +19 -0
- ddfem-0.0.0.dist-info/METADATA +0 -5
- ddfem-0.0.0.dist-info/RECORD +0 -5
- {ddfem-0.0.0.dist-info → ddfem-0.9.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,77 @@
|
|
1
|
+
from functools import reduce
|
2
|
+
|
3
|
+
from ufl import conditional, eq, grad, min_value
|
4
|
+
|
5
|
+
from ..boundary import BndFlux_c, BndFlux_v, BndValue, boundary_validation
|
6
|
+
from ..geometry.domain import Domain
|
7
|
+
from ..geometry.primitive_base import SDF
|
8
|
+
from .transformer_base import pretransformer
|
9
|
+
|
10
|
+
|
11
|
+
def Fitted(OriginalModel, domainDescription):
|
12
|
+
|
13
|
+
if isinstance(domainDescription, Domain):
|
14
|
+
domain = domainDescription
|
15
|
+
else:
|
16
|
+
domain = Domain(domainDescription)
|
17
|
+
|
18
|
+
condition = lambda k: isinstance(k, str) or isinstance(k, SDF)
|
19
|
+
|
20
|
+
class Fitted(OriginalModel):
|
21
|
+
def sigma(t, x, U, DU=None):
|
22
|
+
if DU:
|
23
|
+
return DU
|
24
|
+
return grad(U)
|
25
|
+
|
26
|
+
diffuse = {k: v for k, v in OriginalModel.boundary.items() if condition(k)}
|
27
|
+
boundary = {k: v for k, v in OriginalModel.boundary.items() if not condition(k)}
|
28
|
+
|
29
|
+
bndSDFs = {k: domain.bndSDFs(k) for k in diffuse.keys()}
|
30
|
+
|
31
|
+
boundary_flux_cs, boundary_flux_vs, boundary_values = boundary_validation(
|
32
|
+
OriginalModel, override_boundary_dict=diffuse
|
33
|
+
)
|
34
|
+
|
35
|
+
def make_boundary_function(key, mv, bndSDFs=bndSDFs):
|
36
|
+
sdf = bndSDFs[key]
|
37
|
+
closest_sdf = lambda x: reduce(
|
38
|
+
min_value,
|
39
|
+
([abs(v(x)) for b, v in bndSDFs.items()]),
|
40
|
+
)
|
41
|
+
|
42
|
+
boundary_map = lambda x: conditional(eq(closest_sdf(x), abs(sdf(x))), 1, 0)
|
43
|
+
|
44
|
+
if isinstance(mv, BndFlux_v):
|
45
|
+
return BndFlux_v(
|
46
|
+
lambda t, x, u, DU, n: boundary_map(x) * mv(t, x, u, DU, n),
|
47
|
+
)
|
48
|
+
|
49
|
+
elif isinstance(mv, BndFlux_c):
|
50
|
+
return BndFlux_c(
|
51
|
+
lambda t, x, u, n: boundary_map(x) * mv(t, x, u, n),
|
52
|
+
)
|
53
|
+
|
54
|
+
def make_boundary_conditional(key, bndSDFs=bndSDFs, tol=1e-2):
|
55
|
+
sdf = bndSDFs[key]
|
56
|
+
return lambda x: abs(sdf(x)) < tol
|
57
|
+
|
58
|
+
for bc_key, bc_value in boundary_values.items():
|
59
|
+
boundary[make_boundary_conditional(bc_key)] = bc_value
|
60
|
+
|
61
|
+
for bc_key in boundary_flux_cs.keys() | boundary_flux_vs.keys():
|
62
|
+
if bc_key in boundary_flux_cs and bc_key in boundary_flux_vs:
|
63
|
+
af = make_boundary_function(bc_key, boundary_flux_cs[bc_key])
|
64
|
+
df = make_boundary_function(bc_key, boundary_flux_vs[bc_key])
|
65
|
+
boundary[make_boundary_conditional(bc_key)] = [af, df]
|
66
|
+
|
67
|
+
elif bc_key in boundary_flux_cs and bc_key not in boundary_flux_vs:
|
68
|
+
af = make_boundary_function(bc_key, boundary_flux_cs[bc_key])
|
69
|
+
boundary[make_boundary_conditional(bc_key)] = af
|
70
|
+
|
71
|
+
elif bc_key not in boundary_flux_cs and bc_key in boundary_flux_vs:
|
72
|
+
df = make_boundary_function(bc_key, boundary_flux_vs[bc_key])
|
73
|
+
boundary[make_boundary_conditional(bc_key)] = df
|
74
|
+
else:
|
75
|
+
raise ValueError()
|
76
|
+
|
77
|
+
return Fitted
|
@@ -0,0 +1,107 @@
|
|
1
|
+
from ufl import grad, outer
|
2
|
+
|
3
|
+
from .transformer_base import transformer
|
4
|
+
|
5
|
+
"""
|
6
|
+
Diffusion:
|
7
|
+
Paper with sigma = grad(phi u) - grad(phi)g
|
8
|
+
phi Asigma.(grad(phi v) + grad(phi)v) + 1/4 (Agrad(phi),grad(phi))(u-g)v
|
9
|
+
= phi Asigma.(phi grad(v) + 2grad(phi)v) + 1/4 (Agrad(phi),grad(phi))(u-g)v
|
10
|
+
= phi^2 Asigma.grad(v) + 2phi Asigma.grad(phi)v + 1/4 (Agrad(phi),grad(phi))(u-g)v
|
11
|
+
|
12
|
+
orig.F_v(u,Du) = A Du
|
13
|
+
orig.S_i(u,Du) = -div(ADg)
|
14
|
+
|
15
|
+
mix0.F_v = phi^2 orig.F_v(u,sigma)
|
16
|
+
mix0.S_i = phi^2 orig.S_i(u,sigma) - 2phi orig.F_v(u,sigma).grad(phi) - 1/4 F_v(u,grad(phi)(u-g)).grad(phi)
|
17
|
+
|
18
|
+
model = mix0.F_v(u,Du).grad(v) - mix0.S_i(u,Du)v
|
19
|
+
= phi^2 Asigma.grad(v) + phi^2 div(ADg)v + 2phi Asigma.grad(phi)v + 1/4 Agrad(phi)(u-g).grad(phi)
|
20
|
+
= phi Asigma.grad(phi v) - phi Asigma.grad(phi)v + phi^2 div(ADg)v + 2phi Asigma.grad(phi)v
|
21
|
+
+ 1/4 Agrad(phi).grad(phi)(u-g)
|
22
|
+
= phi Asigma.(grad(phi v) + grad(phi)v) + phi^2 div(ADg)v + 1/4 Agrad(phi).grad(phi))(u-g)
|
23
|
+
|
24
|
+
Advection:
|
25
|
+
orig.F_c = bu
|
26
|
+
orig.S_e = div(bg)
|
27
|
+
|
28
|
+
mix0.F_c(u) = phi^2 orig.F_c(u)
|
29
|
+
= phi^2 bu
|
30
|
+
mix0.S_e(u) = phi^2 orig.S_e(u) - phi orig.F_c(u+g).grad(phi)
|
31
|
+
= phi^2 div(bg) + phi (u+g) b.grad(phi)
|
32
|
+
|
33
|
+
model = - mix0.F_c(u).grad(v) - mix0.S_e(u)v
|
34
|
+
= - phi^2 u b.grad(v) - phi^2 div(bg)v - phi (u+g) b.grad(phi)v
|
35
|
+
= ( div(phi u phi b) - phi (u+g) b.grad(phi) - phi^2 div(bg) )v
|
36
|
+
= ( phi b.grad(phi u) + phi u div(phi b) - phi (u+g) b.grad(phi) - phi^2 div(bg) )v
|
37
|
+
= ( phi b.(grad(phi u)-g grad(phi))
|
38
|
+
- phi u b.grad(phi) + phi^2 u div(b) + phi u b.grad(phi)
|
39
|
+
- phi^2 b.grad(g) - phi^2 g div(b) )v
|
40
|
+
= ( phi b.(phi sigma) + phi^2 div(b)(u-g) - phi^2 b.grad(g) )v
|
41
|
+
= phi^2 ( b.(sigma - grad(g)) + div(b)(u-g) ) v
|
42
|
+
|
43
|
+
paper = phi b . sigma v
|
44
|
+
= phi b . [grad(phi u) - g.grad(phi)] v
|
45
|
+
"""
|
46
|
+
|
47
|
+
|
48
|
+
@transformer
|
49
|
+
def Mix0DDM(Model):
|
50
|
+
|
51
|
+
class DDModel(Model):
|
52
|
+
def sigma(t, x, U, DU=None):
|
53
|
+
if not DU:
|
54
|
+
DU = grad(U)
|
55
|
+
sigma = DU + outer(
|
56
|
+
DDModel.BT.jumpV(t, x, U), grad(DDModel.phi(x))
|
57
|
+
) / DDModel.phi(x)
|
58
|
+
return sigma
|
59
|
+
|
60
|
+
def S_e_source(t, x, U, DU):
|
61
|
+
return DDModel.phi(x) ** 2 * Model.S_e(t, x, U, DDModel.sigma(t, x, U, DU))
|
62
|
+
|
63
|
+
def S_e_convection(t, x, U, DU):
|
64
|
+
# unsure if using Model.F_c is the right choice here - works in the linear case.
|
65
|
+
convec = (
|
66
|
+
DDModel.phi(x)
|
67
|
+
* Model.F_c(t, x, 2 * U - DDModel.BT.jumpV(t, x, U))
|
68
|
+
* grad(DDModel.phi(x))
|
69
|
+
)
|
70
|
+
|
71
|
+
convec -= DDModel.phi(x) * DDModel.BT.BndFlux_cExt(t, x, U)
|
72
|
+
return convec
|
73
|
+
|
74
|
+
def S_outside(t, x, U, DU):
|
75
|
+
return -(
|
76
|
+
DDModel.BT.jumpV(t, x, U)
|
77
|
+
* (1 - DDModel.phi(x)) ** 2
|
78
|
+
/ (DDModel.epsilon**2)
|
79
|
+
)
|
80
|
+
|
81
|
+
def S_i_source(t, x, U, DU):
|
82
|
+
return DDModel.phi(x) ** 2 * Model.S_i(t, x, U, DDModel.sigma(t, x, U, DU))
|
83
|
+
|
84
|
+
def S_i_diffusion(t, x, U, DU):
|
85
|
+
Fv = Model.F_v(t, x, U, DDModel.sigma(t, x, U, DU))
|
86
|
+
diffusion = 2 * DDModel.phi(x) * Fv * grad(DDModel.phi(x))
|
87
|
+
|
88
|
+
gp = grad(DDModel.phi(x))
|
89
|
+
uogp = outer((DDModel.BT.jumpV(t, x, U)), gp)
|
90
|
+
# use of F_v is probably not correct...
|
91
|
+
diffusion += (
|
92
|
+
# Model.F_v_lin_mult(t, x, U, Mix0DDM.sigma(t,x, U, DU), uogp)
|
93
|
+
Model.F_v(t, x, U, uogp)
|
94
|
+
* gp
|
95
|
+
/ 4
|
96
|
+
)
|
97
|
+
|
98
|
+
diffusion += DDModel.phi(x) * DDModel.BT.jumpFv(t, x, U, DU, Fv)
|
99
|
+
return -diffusion
|
100
|
+
|
101
|
+
def F_c(t, x, U):
|
102
|
+
return DDModel.phi(x) ** 2 * Model.F_c(t, x, U)
|
103
|
+
|
104
|
+
def F_v(t, x, U, DU):
|
105
|
+
return DDModel.phi(x) ** 2 * Model.F_v(t, x, U, DDModel.sigma(t, x, U, DU))
|
106
|
+
|
107
|
+
return DDModel
|
@@ -0,0 +1,82 @@
|
|
1
|
+
from ufl import as_vector, conditional, dot, grad, sqrt, zero
|
2
|
+
|
3
|
+
from .transformer_base import transformer
|
4
|
+
|
5
|
+
"""
|
6
|
+
Paper: using x^- = 1/2(x-|x|), x^+ = 1/2(x+|x|) so that x = x^+ + x^-, i.e., x^+ - x = - x^-
|
7
|
+
the advection b.grad(u)v is replaced with
|
8
|
+
phi b.grad(u) v + [b.grad(phi)]^+ (u-g)v
|
9
|
+
= div(phi bu)v - div(phi b) uv + [b.grad(phi)]^+ (u-g)v
|
10
|
+
= - phi u b.grad(v) - phi div(b) uv - b.grad(phi) uv + [b.grad(phi)]^+ uv - [b.grad(phi)]^+ gv
|
11
|
+
= - phi u b.grad(v) - phi div(b) uv + ([b.grad(phi)]^+ - b.grad(phi)) uv - [b.grad(phi)]^+ gv
|
12
|
+
= - phi u b.grad(v) - phi div(b) uv - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
13
|
+
|
14
|
+
orig.F_c = bu
|
15
|
+
orig.S_e = div(bg)
|
16
|
+
|
17
|
+
ddm2.F_c(u) = phi orig.F_c(u)
|
18
|
+
= phi bu
|
19
|
+
ddm2.S_e(u) = phi orig.S_e(u) + [b.grad(phi)]^- u
|
20
|
+
= phi div(bg) + [b.grad(phi)]^- u + [b.grad(phi)]^+ gv
|
21
|
+
|
22
|
+
model = - ddm2.F_c(u).grad(v) - ddm2.S_e(u)v
|
23
|
+
= - phi u b.grad(v) - phi div(bg)v - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
24
|
+
= div(phi u b)v - phi div(b)gv - phi b.grad(g) v - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
25
|
+
= phi b.grad(u)v + div(phi b)uv - phi div(b)gv - phi b.grad(g) v - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
26
|
+
= phi b.grad(u)v + phi div(b) uv + b.grad(phi)uv - [b.grad(phi)]^- uv - phi div(b)gv - phi b.grad(g) v - [b.grad(phi)]^+ gv
|
27
|
+
= phi b.(grad(u) - grad(g)) v + phi div(b) (u-g)v + b.grad(phi)uv - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
28
|
+
= phi b.(grad(u) - grad(g)) v + phi div(b) (u-g)v + [b.grad(phi)]^+ (u-g)v
|
29
|
+
"""
|
30
|
+
|
31
|
+
|
32
|
+
@transformer
|
33
|
+
def NDDM(Model):
|
34
|
+
class DDModel(Model):
|
35
|
+
def S_e_source(t, x, U, DU):
|
36
|
+
return DDModel.phi(x) * Model.S_e(t, x, U, DDModel.sigma(t, x, U, DU))
|
37
|
+
|
38
|
+
def S_e_convection(t, x, U, DU):
|
39
|
+
if DDModel.BT.BndValueExt is not None:
|
40
|
+
direction = Model.F_c_lin_mult(t, x, U, -grad(DDModel.phi(x))) # fc * n
|
41
|
+
flux_u = Model.F_c(t, x, U) * -grad(DDModel.phi(x))
|
42
|
+
flux_g = Model.F_c(t, x, DDModel.BT.BndValueExt(t, x, U)) * -grad(
|
43
|
+
DDModel.phi(x)
|
44
|
+
)
|
45
|
+
convec = []
|
46
|
+
for i in range(U.ufl_shape[0]):
|
47
|
+
convec.append(
|
48
|
+
conditional(direction[i, i] > 0, flux_u[i], flux_g[i])
|
49
|
+
)
|
50
|
+
convec = -as_vector(convec)
|
51
|
+
else:
|
52
|
+
convec = zero(U.ufl_shape)
|
53
|
+
|
54
|
+
convec -= DDModel.BT.BndFlux_cExt(t, x, U)
|
55
|
+
return convec
|
56
|
+
|
57
|
+
def S_outside(t, x, U, DU):
|
58
|
+
return -(
|
59
|
+
DDModel.BT.jumpV(t, x, U) * (1 - DDModel.phi(x)) / (DDModel.epsilon**2)
|
60
|
+
)
|
61
|
+
|
62
|
+
def S_i_source(t, x, U, DU):
|
63
|
+
return DDModel.phi(x) * Model.S_i(t, x, U, DDModel.sigma(t, x, U, DU))
|
64
|
+
|
65
|
+
def S_i_diffusion(t, x, U, DU):
|
66
|
+
beta = 3 * (1 - DDModel.phi(x)) / (2 * DDModel.epsilon)
|
67
|
+
diffusion = beta * (
|
68
|
+
sqrt(dot(grad(DDModel.phi(x)), grad(DDModel.phi(x))))
|
69
|
+
* DDModel.BT.jumpV(t, x, U)
|
70
|
+
)
|
71
|
+
Fv = Model.F_v(t, x, U, DDModel.sigma(t, x, U, DU))
|
72
|
+
diffusion += Fv * grad(DDModel.phi(x))
|
73
|
+
diffusion += DDModel.BT.jumpFv(t, x, U, DU, Fv)
|
74
|
+
return -diffusion
|
75
|
+
|
76
|
+
def F_c(t, x, U):
|
77
|
+
return DDModel.phi(x) * Model.F_c(t, x, U)
|
78
|
+
|
79
|
+
def F_v(t, x, U, DU):
|
80
|
+
return DDModel.phi(x) * Model.F_v(t, x, U, DDModel.sigma(t, x, U, DU))
|
81
|
+
|
82
|
+
return DDModel
|
ddfem/transformers/NS.py
ADDED
@@ -0,0 +1,86 @@
|
|
1
|
+
from ufl import as_vector, conditional, dot, grad, outer, sqrt, zero
|
2
|
+
|
3
|
+
from .transformer_base import transformer
|
4
|
+
|
5
|
+
"""
|
6
|
+
Paper: using x^- = 1/2(x-|x|), x^+ = 1/2(x+|x|) so that x = x^+ + x^-, i.e., x^+ - x = - x^-
|
7
|
+
the advection b.grad(u)v is replaced with
|
8
|
+
phi b.grad(u) v + [b.grad(phi)]^+ (u-g)v
|
9
|
+
= div(phi bu)v - div(phi b) uv + [b.grad(phi)]^+ (u-g)v
|
10
|
+
= - phi u b.grad(v) - phi div(b) uv - b.grad(phi) uv + [b.grad(phi)]^+ uv - [b.grad(phi)]^+ gv
|
11
|
+
= - phi u b.grad(v) - phi div(b) uv + ([b.grad(phi)]^+ - b.grad(phi)) uv - [b.grad(phi)]^+ gv
|
12
|
+
= - phi u b.grad(v) - phi div(b) uv - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
13
|
+
|
14
|
+
orig.F_c = bu
|
15
|
+
orig.S_e = div(bg)
|
16
|
+
|
17
|
+
ddm2.F_c(u) = phi orig.F_c(u)
|
18
|
+
= phi bu
|
19
|
+
ddm2.S_e(u) = phi orig.S_e(u) + [b.grad(phi)]^- u
|
20
|
+
= phi div(bg) + [b.grad(phi)]^- u + [b.grad(phi)]^+ gv
|
21
|
+
|
22
|
+
model = - ddm2.F_c(u).grad(v) - ddm2.S_e(u)v
|
23
|
+
= - phi u b.grad(v) - phi div(bg)v - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
24
|
+
= div(phi u b)v - phi div(b)gv - phi b.grad(g) v - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
25
|
+
= phi b.grad(u)v + div(phi b)uv - phi div(b)gv - phi b.grad(g) v - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
26
|
+
= phi b.grad(u)v + phi div(b) uv + b.grad(phi)uv - [b.grad(phi)]^- uv - phi div(b)gv - phi b.grad(g) v - [b.grad(phi)]^+ gv
|
27
|
+
= phi b.(grad(u) - grad(g)) v + phi div(b) (u-g)v + b.grad(phi)uv - [b.grad(phi)]^- uv - [b.grad(phi)]^+ gv
|
28
|
+
= phi b.(grad(u) - grad(g)) v + phi div(b) (u-g)v + [b.grad(phi)]^+ (u-g)v
|
29
|
+
"""
|
30
|
+
|
31
|
+
|
32
|
+
@transformer
|
33
|
+
def NSDDM(Model):
|
34
|
+
class DDModel(Model):
|
35
|
+
def S_e_source(t, x, U, DU):
|
36
|
+
return DDModel.phi(x) * Model.S_e(t, x, U, DDModel.sigma(t, x, U, DU))
|
37
|
+
|
38
|
+
def S_e_convection(t, x, U, DU):
|
39
|
+
if DDModel.BT.BndValueExt is not None:
|
40
|
+
direction = Model.F_c_lin_mult(t, x, U, -grad(DDModel.phi(x))) # fc * n
|
41
|
+
flux_u = Model.F_c(t, x, U) * -grad(DDModel.phi(x))
|
42
|
+
flux_g = Model.F_c(t, x, DDModel.BT.BndValueExt(t, x, U)) * -grad(
|
43
|
+
DDModel.phi(x)
|
44
|
+
)
|
45
|
+
convec = []
|
46
|
+
for i in range(U.ufl_shape[0]):
|
47
|
+
convec.append(
|
48
|
+
conditional(direction[i, i] > 0, flux_u[i], flux_g[i])
|
49
|
+
)
|
50
|
+
convec = -as_vector(convec)
|
51
|
+
else:
|
52
|
+
convec = zero(U.ufl_shape)
|
53
|
+
|
54
|
+
convec -= DDModel.BT.BndFlux_cExt(t, x, U)
|
55
|
+
return convec
|
56
|
+
|
57
|
+
def S_outside(t, x, U, DU):
|
58
|
+
return -(
|
59
|
+
DDModel.BT.jumpV(t, x, U) * (1 - DDModel.phi(x)) / (DDModel.epsilon**2)
|
60
|
+
)
|
61
|
+
|
62
|
+
def S_i_source(t, x, U, DU):
|
63
|
+
return DDModel.phi(x) * Model.S_i(t, x, U, DDModel.sigma(t, x, U, DU))
|
64
|
+
|
65
|
+
def S_i_diffusion(t, x, U, DU):
|
66
|
+
beta = 6 * (1 - DDModel.phi(x)) / DDModel.epsilon
|
67
|
+
diffusion = beta * (
|
68
|
+
sqrt(dot(grad(DDModel.phi(x)), grad(DDModel.phi(x))))
|
69
|
+
* DDModel.BT.jumpV(t, x, U)
|
70
|
+
)
|
71
|
+
Fv = Model.F_v(t, x, U, DDModel.sigma(t, x, U, DU))
|
72
|
+
diffusion += Fv * grad(DDModel.phi(x))
|
73
|
+
diffusion += DDModel.BT.jumpFv(t, x, U, DU, Fv)
|
74
|
+
return -diffusion
|
75
|
+
|
76
|
+
def F_c(t, x, U):
|
77
|
+
return DDModel.phi(x) * Model.F_c(t, x, U)
|
78
|
+
|
79
|
+
def F_v(t, x, U, DU):
|
80
|
+
diffusion = DDModel.phi(x) * Model.F_v(t, x, U, DDModel.sigma(t, x, U, DU))
|
81
|
+
|
82
|
+
out = outer(DDModel.BT.jumpV(t, x, U), grad(DDModel.phi(x)))
|
83
|
+
diffusion += Model.F_v_lin_mult(t, x, U, DDModel.sigma(t, x, U, DU), out)
|
84
|
+
return diffusion
|
85
|
+
|
86
|
+
return DDModel
|
@@ -0,0 +1,213 @@
|
|
1
|
+
from ufl import as_matrix, diff, dot, grad, inner, replace, variable, zero
|
2
|
+
from ufl.algorithms.ad import expand_derivatives
|
3
|
+
|
4
|
+
from ..boundary import BndFlux_c, BndFlux_v, BndValue, BoundaryTerms
|
5
|
+
|
6
|
+
|
7
|
+
def pretransformer(Model, domainDescription):
|
8
|
+
class DDBase(Model):
|
9
|
+
BT = BoundaryTerms(Model, domainDescription)
|
10
|
+
boundary = BT.physical
|
11
|
+
domain = BT.domain
|
12
|
+
|
13
|
+
hasFlux_c = hasattr(Model, "F_c")
|
14
|
+
hasFlux_v = hasattr(Model, "F_v")
|
15
|
+
hasSource_i = hasattr(Model, "S_i")
|
16
|
+
hasSource_e = hasattr(Model, "S_e")
|
17
|
+
|
18
|
+
hasOutFactor_i = hasattr(Model, "outFactor_i")
|
19
|
+
hasOutFactor_e = hasattr(Model, "outFactor_e")
|
20
|
+
|
21
|
+
if BT.BndValueExt is not None:
|
22
|
+
boundary[lambda x: DDBase.domain.chi(x) < 0.5] = BndValue(BT.BndValueExt)
|
23
|
+
|
24
|
+
assert (
|
25
|
+
hasOutFactor_i or hasOutFactor_e
|
26
|
+
), "Dirichlet boundary requires the attribute outFactor_i or outFactor_e for outside term scaling"
|
27
|
+
else:
|
28
|
+
|
29
|
+
if hasFlux_c:
|
30
|
+
valFc = BndFlux_c(lambda t, x, U, n: -DDBase.BT.BndFlux_cExt(t, x, U))
|
31
|
+
if hasFlux_v:
|
32
|
+
valFv = BndFlux_v(
|
33
|
+
lambda t, x, U, DU, n: DDBase.BT.BndFlux_vExt(t, x, U, DU)
|
34
|
+
)
|
35
|
+
if hasFlux_c and hasFlux_v:
|
36
|
+
valN = [valFc, valFv]
|
37
|
+
elif hasFlux_c:
|
38
|
+
valN = valFc
|
39
|
+
elif hasFlux_v:
|
40
|
+
valN = valFv
|
41
|
+
boundary[lambda x: DDBase.domain.chi(x) < 0.5] = valN
|
42
|
+
|
43
|
+
phi = domain.phi
|
44
|
+
epsilon = domain.omega.epsilon
|
45
|
+
ep = domain.external_projection
|
46
|
+
|
47
|
+
def sigma(t, x, U, DU=None):
|
48
|
+
if DU:
|
49
|
+
return DU
|
50
|
+
return grad(U)
|
51
|
+
|
52
|
+
if hasSource_e:
|
53
|
+
|
54
|
+
def S_e(t, x, U, DU):
|
55
|
+
return replace(
|
56
|
+
expand_derivatives(Model.S_e(t, x, U, DU)),
|
57
|
+
{x: DDBase.ep(x)},
|
58
|
+
)
|
59
|
+
|
60
|
+
if hasSource_i:
|
61
|
+
|
62
|
+
def S_i(t, x, U, DU):
|
63
|
+
return replace(
|
64
|
+
expand_derivatives(Model.S_i(t, x, U, DU)),
|
65
|
+
{x: DDBase.ep(x)},
|
66
|
+
)
|
67
|
+
|
68
|
+
if hasFlux_c:
|
69
|
+
|
70
|
+
def F_c(t, x, U):
|
71
|
+
# return Model.F_c(t, DDBase.ep(x), U)
|
72
|
+
|
73
|
+
return replace(
|
74
|
+
expand_derivatives(Model.F_c(t, x, U)),
|
75
|
+
{x: DDBase.ep(x)},
|
76
|
+
)
|
77
|
+
|
78
|
+
if hasFlux_v:
|
79
|
+
|
80
|
+
def F_v(t, x, U, DU):
|
81
|
+
# return Model.F_v(t, DDBase.ep(x), U, DU)
|
82
|
+
|
83
|
+
return replace(
|
84
|
+
expand_derivatives(Model.F_v(t, x, U, DU)),
|
85
|
+
{x: DDBase.ep(x)},
|
86
|
+
)
|
87
|
+
|
88
|
+
# U_t + div[F_c(x,t,U) - F_v(x,t,U,grad[U]) ] = S(x,t,U, grad[U]).
|
89
|
+
|
90
|
+
def F_c_lin(t, x, U):
|
91
|
+
U = variable(U)
|
92
|
+
d = diff(Model.F_c(t, x, U), U)
|
93
|
+
d = expand_derivatives(d)
|
94
|
+
return d
|
95
|
+
|
96
|
+
# U.ufl_shape == (1,)
|
97
|
+
# F_c(U).ufl_shape == (1, 2,)
|
98
|
+
# diff(F_c(U), U).ufl_shape == (1, 2, 1)
|
99
|
+
# n.ufl_shape == (2,)
|
100
|
+
#
|
101
|
+
# s, t = F_c(U).ufl_shape
|
102
|
+
# f_c = as_matrix([[dot(d[i, j, :], U) for j in range(t)] for i in range(s)])
|
103
|
+
#
|
104
|
+
# w, = U.ufl_shape
|
105
|
+
# convec = as_vector([dot([f_c[w, :], n) for i in range(w)]) # f_c * n
|
106
|
+
#
|
107
|
+
# switch order
|
108
|
+
|
109
|
+
def F_c_lin_mult(t, x, U, n):
|
110
|
+
G = DDBase.F_c_lin(t, x, U)
|
111
|
+
# try:
|
112
|
+
# d = dot(G, n)
|
113
|
+
# print("F_c dot")
|
114
|
+
# return d
|
115
|
+
# except:
|
116
|
+
m, d, m_ = G.ufl_shape
|
117
|
+
return as_matrix(
|
118
|
+
[[dot(G[i, :, k], n) for k in range(m_)] for i in range(m)]
|
119
|
+
)
|
120
|
+
|
121
|
+
def F_v_lin(t, x, U, DU):
|
122
|
+
DU = variable(DU)
|
123
|
+
d = diff(Model.F_v(t, x, U, DU), DU)
|
124
|
+
d = expand_derivatives(d)
|
125
|
+
return d
|
126
|
+
|
127
|
+
def F_v_lin_mult(t, x, U, DU, v):
|
128
|
+
G = DDBase.F_v_lin(t, x, U, DU)
|
129
|
+
# try:
|
130
|
+
# d = dot(G, v)
|
131
|
+
# print("F_v dot")
|
132
|
+
# return d
|
133
|
+
# except:
|
134
|
+
m, d = v.ufl_shape
|
135
|
+
return as_matrix(
|
136
|
+
[[inner(G[i, k, :, :], v) for k in range(d)] for i in range(m)]
|
137
|
+
)
|
138
|
+
|
139
|
+
return DDBase
|
140
|
+
|
141
|
+
|
142
|
+
def posttransformer(DDModel):
|
143
|
+
class DDM(DDModel):
|
144
|
+
if DDModel.hasSource_e or DDModel.hasFlux_c or DDModel.hasOutFactor_e:
|
145
|
+
|
146
|
+
def S_e(t, x, U, DU):
|
147
|
+
total = zero(U.ufl_shape)
|
148
|
+
|
149
|
+
if DDModel.hasOutFactor_e:
|
150
|
+
total += DDModel.outFactor_e * DDModel.S_outside(t, x, U, DU)
|
151
|
+
if DDModel.hasSource_e:
|
152
|
+
total += DDModel.S_e_source(t, x, U, DU)
|
153
|
+
if DDModel.hasFlux_c:
|
154
|
+
total += DDModel.S_e_convection(t, x, U, DU)
|
155
|
+
return total
|
156
|
+
|
157
|
+
else:
|
158
|
+
try:
|
159
|
+
del DDModel.S_e
|
160
|
+
except AttributeError:
|
161
|
+
pass
|
162
|
+
|
163
|
+
if DDModel.hasSource_i or DDModel.hasFlux_v or DDModel.hasOutFactor_i:
|
164
|
+
|
165
|
+
def S_i(t, x, U, DU):
|
166
|
+
total = zero(U.ufl_shape)
|
167
|
+
|
168
|
+
if DDModel.hasOutFactor_i:
|
169
|
+
total += DDModel.outFactor_i * DDModel.S_outside(t, x, U, DU)
|
170
|
+
if DDModel.hasSource_i:
|
171
|
+
total += DDModel.S_i_source(t, x, U, DU)
|
172
|
+
if DDModel.hasFlux_v:
|
173
|
+
total += DDModel.S_i_diffusion(t, x, U, DU)
|
174
|
+
return total
|
175
|
+
|
176
|
+
else:
|
177
|
+
try:
|
178
|
+
del DDModel.S_i
|
179
|
+
except AttributeError:
|
180
|
+
pass
|
181
|
+
|
182
|
+
if DDModel.hasFlux_c:
|
183
|
+
|
184
|
+
def F_c(t, x, U):
|
185
|
+
return DDModel.F_c(t, x, U)
|
186
|
+
|
187
|
+
else:
|
188
|
+
try:
|
189
|
+
del DDModel.F_c
|
190
|
+
except AttributeError:
|
191
|
+
pass
|
192
|
+
|
193
|
+
if DDModel.hasFlux_v:
|
194
|
+
|
195
|
+
def F_v(t, x, U, DU):
|
196
|
+
return DDModel.F_v(t, x, U, DU)
|
197
|
+
|
198
|
+
else:
|
199
|
+
try:
|
200
|
+
del DDModel.F_v
|
201
|
+
except AttributeError:
|
202
|
+
pass
|
203
|
+
|
204
|
+
return DDM
|
205
|
+
|
206
|
+
|
207
|
+
def transformer(transformer):
|
208
|
+
def _transformer(OriginalModel, domainDescription):
|
209
|
+
PreModel = pretransformer(OriginalModel, domainDescription)
|
210
|
+
Model = transformer(PreModel)
|
211
|
+
return posttransformer(Model)
|
212
|
+
|
213
|
+
return _transformer
|
@@ -0,0 +1,26 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: ddfem
|
3
|
+
Version: 0.9.0
|
4
|
+
Summary: Diffuse domain finite element solver
|
5
|
+
Author-email: Luke Benfield <luke.benfield@warwick.ac.uk>, Andreas Dedner <a.s.dedner@warwick.ac.uk>
|
6
|
+
License-Expression: MIT
|
7
|
+
Project-URL: Homepage, https://...
|
8
|
+
Project-URL: Issues, https://...
|
9
|
+
Classifier: Programming Language :: Python :: 3
|
10
|
+
Classifier: Operating System :: OS Independent
|
11
|
+
Requires-Python: >=3.9
|
12
|
+
Description-Content-Type: text/markdown
|
13
|
+
License-File: LICENSE
|
14
|
+
Requires-Dist: fenics-ufl>=2022
|
15
|
+
Requires-Dist: numpy
|
16
|
+
Dynamic: license-file
|
17
|
+
|
18
|
+
# Diffuse Domain Finite Element Methods
|
19
|
+
|
20
|
+
This is a package for solving complex PDEs based on the diffuse domain idea.
|
21
|
+
|
22
|
+
Build package by running
|
23
|
+
|
24
|
+
```bash
|
25
|
+
python3 -m build
|
26
|
+
```
|
@@ -0,0 +1,41 @@
|
|
1
|
+
ddfem/__init__.py,sha256=N860erjFVjXifNwEQ_ejRF99ub195M6eC9GIOqeIhyU,106
|
2
|
+
ddfem/boundary.py,sha256=qpvvjRBBUZHZULIRovuz1h8U30KQRtYERIJxN5O251c,7570
|
3
|
+
ddfem/dune.py,sha256=oU4bKiG4AndEhMVhAi1Nnmo9cEhjceTW3X2ptv6ombU,67
|
4
|
+
ddfem/model2ufl.py,sha256=lEEmMmZWbcxprHD9pRWwZfIdiLg3ScQkR7V_N48qqAw,4265
|
5
|
+
ddfem/examples/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
6
|
+
ddfem/examples/advection_diffusion.py,sha256=9UPILICF3Sfh3SA7zJk6iDabXmvIa4GowJd62qaWOd8,2081
|
7
|
+
ddfem/examples/beam.py,sha256=awZvrgw92ANJgD1MGhhEVZ0eBsSNmhuwegpS8AHiiPk,4687
|
8
|
+
ddfem/examples/cahn_hilliard.py,sha256=-T6p5-BY98sQ5y9Vcd2YVokamQQ66nA7uUqJDRQjzB0,2308
|
9
|
+
ddfem/examples/chemical_reaction.py,sha256=9zNgGuCT25Z0Z_ru8pNoK1MOOrYA8r3UkfGvmNRQXpw,2488
|
10
|
+
ddfem/examples/constant.py,sha256=6wFiKnsbjMKk9hInJwnCa8d7Thp7uPZGJ-1805V243Y,1508
|
11
|
+
ddfem/examples/five_circle_flat.py,sha256=NbNmmz8jMwfFa7ZfEDUq0g5BF94z_ivvbPA2jVLs6PM,6049
|
12
|
+
ddfem/examples/forchheimer.py,sha256=3mpdYVzRn9tmtq7kQBP-vlx9L7HmAHdqbVVRABRd2TY,1311
|
13
|
+
ddfem/examples/hyperelasticity.py,sha256=YyoZhruTMpTfUIL4ioOkwe9FFPf_ffCMHsMsBV4SZ_w,2373
|
14
|
+
ddfem/examples/linear_elasticity.py,sha256=N3wpzzhD4wRpBqmEYFV39_Nx7RuNgfeEMsTWpdzIdgk,1164
|
15
|
+
ddfem/examples/plaplace.py,sha256=yiuYdJpDrFHl1oLG7WWtAs26x2s9vjSXlTsijXTPBxc,751
|
16
|
+
ddfem/examples/single_circle.py,sha256=m3tg7frVTLnP8Cxfx_6fbvoUb2mJ3ltgNnrX5URAwRw,4601
|
17
|
+
ddfem/examples/triple_circle.py,sha256=bo8ZD1B7biXe1HwVDv97O6B5EVsku5TCft3Oqamay7E,7089
|
18
|
+
ddfem/examples/triple_circle_beam.py,sha256=J9_U2MuRBGnhUT1w_IimuyfTLzds_XD2CCv9o4nWD_w,6607
|
19
|
+
ddfem/geometry/__init__.py,sha256=ePmkipwfdhM88qrStE__n0VFKqvl8AKK4VjsAsivt4Y,295
|
20
|
+
ddfem/geometry/arc.py,sha256=ouK8gxkd2f8RtpAK33p6-zU5RoyMejxEge2IEcCOtR4,1381
|
21
|
+
ddfem/geometry/ball.py,sha256=Q_ped9ay3KypU8sKutAXPH9XkEFJx5hIK7qTCy1Y26E,679
|
22
|
+
ddfem/geometry/box.py,sha256=ecXUMI2a17-hZZyUXol08z7wk3IZn1yHE_CV9YIyR18,915
|
23
|
+
ddfem/geometry/domain.py,sha256=n4Cu1sFy19ONUuQec2EICtoSBYzS-H_sLB2YxU5dads,1363
|
24
|
+
ddfem/geometry/domain_dune.py,sha256=2ArzeRU42o4-TS21DXajPSCXj_3SlgGdehgN7QJhQzc,2600
|
25
|
+
ddfem/geometry/helpers.py,sha256=kunsuciuJJwkcZgDn8A7wbKYSqIAYjdvhei_YfjvVtk,1049
|
26
|
+
ddfem/geometry/pie.py,sha256=WjgYPI6YvkcxPTQB1SjdN22dFQHV0X8kSO6QcXDLBSU,1003
|
27
|
+
ddfem/geometry/plane.py,sha256=hCRLa06yXfXzfms2JIbAusdPf5qFUy9DrjNDfZ-0TGA,500
|
28
|
+
ddfem/geometry/primitive_base.py,sha256=gq3s2CIXk1qBnOEGys217yd_zXQr_UXrDXRpagQ3oiY,9419
|
29
|
+
ddfem/geometry/vesica.py,sha256=g28RxdoDpUiq9QR9sHUJkO05-F3YTDOTOxcNm1tyV4E,1747
|
30
|
+
ddfem/transformers/DDM1.py,sha256=73TW_mCPjdvRGo65D9uMUiw7ygYZCQuGFPIPvEmz43o,1092
|
31
|
+
ddfem/transformers/Fitted.py,sha256=GdaA0znMfw_U_QNAngZSYJB3ZJgH_BAnvrL_viZqals,2908
|
32
|
+
ddfem/transformers/Mix0.py,sha256=ZYeL6jrIIFCvVjCt_evB7sOG0ES3tmm5j-6W8gjK11k,3816
|
33
|
+
ddfem/transformers/NNS.py,sha256=lGQVCd1x6KrzVyOEAIttaDXBFjP9nLBIj9wnp_fvYtg,3416
|
34
|
+
ddfem/transformers/NS.py,sha256=fsih358oeayvmovhTAuddjbx7O0K_faF5qTAMQdHH8s,3612
|
35
|
+
ddfem/transformers/__init__.py,sha256=okno6aFZoIPaJRi_Nw7cM63jpy18rS2yHsSuG7Vb4Og,195
|
36
|
+
ddfem/transformers/transformer_base.py,sha256=Ey6iGk203lnzJOhLjMxyQNgKbclba_RIPpMW22OT7zQ,6347
|
37
|
+
ddfem-0.9.0.dist-info/licenses/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
|
38
|
+
ddfem-0.9.0.dist-info/METADATA,sha256=opemBPw8Y5D8ZSGNGoyYo2t0yosVrtwZqr5_i81_U8E,718
|
39
|
+
ddfem-0.9.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
40
|
+
ddfem-0.9.0.dist-info/top_level.txt,sha256=LF2T9-5A2Bak81PqbCcsAex8d5Xrla2Wq8yrlQi-ZtY,6
|
41
|
+
ddfem-0.9.0.dist-info/RECORD,,
|
@@ -0,0 +1,19 @@
|
|
1
|
+
Copyright (c) 2018 The Python Packaging Authority
|
2
|
+
|
3
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
4
|
+
of this software and associated documentation files (the "Software"), to deal
|
5
|
+
in the Software without restriction, including without limitation the rights
|
6
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
7
|
+
copies of the Software, and to permit persons to whom the Software is
|
8
|
+
furnished to do so, subject to the following conditions:
|
9
|
+
|
10
|
+
The above copyright notice and this permission notice shall be included in all
|
11
|
+
copies or substantial portions of the Software.
|
12
|
+
|
13
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
14
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
15
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
16
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
17
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
18
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
19
|
+
SOFTWARE.
|
ddfem-0.0.0.dist-info/METADATA
DELETED
ddfem-0.0.0.dist-info/RECORD
DELETED
@@ -1,5 +0,0 @@
|
|
1
|
-
ddfem/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
|
-
ddfem-0.0.0.dist-info/METADATA,sha256=L2owp_gZwgOsfVmOwLKaADCMA6yiPSplXAJFHUyt6-g,171
|
3
|
-
ddfem-0.0.0.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
4
|
-
ddfem-0.0.0.dist-info/top_level.txt,sha256=LF2T9-5A2Bak81PqbCcsAex8d5Xrla2Wq8yrlQi-ZtY,6
|
5
|
-
ddfem-0.0.0.dist-info/RECORD,,
|
File without changes
|