dcnum 0.17.0__py3-none-any.whl → 0.23.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dcnum might be problematic. Click here for more details.

Files changed (49) hide show
  1. dcnum/_version.py +2 -2
  2. dcnum/feat/__init__.py +1 -1
  3. dcnum/feat/event_extractor_manager_thread.py +34 -25
  4. dcnum/feat/feat_background/base.py +22 -26
  5. dcnum/feat/feat_background/bg_copy.py +18 -12
  6. dcnum/feat/feat_background/bg_roll_median.py +20 -10
  7. dcnum/feat/feat_background/bg_sparse_median.py +55 -7
  8. dcnum/feat/feat_brightness/bright_all.py +41 -6
  9. dcnum/feat/feat_contour/__init__.py +4 -0
  10. dcnum/feat/{feat_moments/mt_legacy.py → feat_contour/moments.py} +32 -8
  11. dcnum/feat/feat_contour/volume.py +174 -0
  12. dcnum/feat/feat_texture/tex_all.py +28 -1
  13. dcnum/feat/gate.py +2 -2
  14. dcnum/feat/queue_event_extractor.py +30 -9
  15. dcnum/logic/ctrl.py +199 -49
  16. dcnum/logic/job.py +63 -2
  17. dcnum/logic/json_encoder.py +2 -0
  18. dcnum/meta/ppid.py +17 -3
  19. dcnum/read/__init__.py +1 -0
  20. dcnum/read/cache.py +100 -78
  21. dcnum/read/const.py +6 -4
  22. dcnum/read/hdf5_data.py +146 -23
  23. dcnum/read/mapped.py +87 -0
  24. dcnum/segm/__init__.py +6 -3
  25. dcnum/segm/segm_thresh.py +6 -18
  26. dcnum/segm/segm_torch/__init__.py +19 -0
  27. dcnum/segm/segm_torch/segm_torch_base.py +125 -0
  28. dcnum/segm/segm_torch/segm_torch_mpo.py +71 -0
  29. dcnum/segm/segm_torch/segm_torch_sto.py +88 -0
  30. dcnum/segm/segm_torch/torch_model.py +95 -0
  31. dcnum/segm/segm_torch/torch_postproc.py +93 -0
  32. dcnum/segm/segm_torch/torch_preproc.py +114 -0
  33. dcnum/segm/segmenter.py +181 -80
  34. dcnum/segm/segmenter_manager_thread.py +38 -30
  35. dcnum/segm/{segmenter_cpu.py → segmenter_mpo.py} +116 -44
  36. dcnum/segm/segmenter_sto.py +110 -0
  37. dcnum/write/__init__.py +2 -1
  38. dcnum/write/deque_writer_thread.py +9 -1
  39. dcnum/write/queue_collector_thread.py +8 -14
  40. dcnum/write/writer.py +128 -5
  41. {dcnum-0.17.0.dist-info → dcnum-0.23.1.dist-info}/METADATA +4 -2
  42. dcnum-0.23.1.dist-info/RECORD +55 -0
  43. {dcnum-0.17.0.dist-info → dcnum-0.23.1.dist-info}/WHEEL +1 -1
  44. dcnum/feat/feat_moments/__init__.py +0 -4
  45. dcnum/segm/segmenter_gpu.py +0 -64
  46. dcnum-0.17.0.dist-info/RECORD +0 -46
  47. /dcnum/feat/{feat_moments/ct_opencv.py → feat_contour/contour.py} +0 -0
  48. {dcnum-0.17.0.dist-info → dcnum-0.23.1.dist-info}/LICENSE +0 -0
  49. {dcnum-0.17.0.dist-info → dcnum-0.23.1.dist-info}/top_level.txt +0 -0
dcnum/logic/ctrl.py CHANGED
@@ -1,5 +1,6 @@
1
1
  import collections
2
2
  import datetime
3
+ import hashlib
3
4
  import json
4
5
  import logging
5
6
  from logging.handlers import QueueListener
@@ -14,6 +15,7 @@ import traceback
14
15
  import uuid
15
16
 
16
17
  import h5py
18
+ import numpy as np
17
19
 
18
20
  from ..feat.feat_background.base import get_available_background_methods
19
21
  from ..feat.queue_event_extractor import QueueEventExtractor
@@ -21,10 +23,10 @@ from ..feat import gate
21
23
  from ..feat import EventExtractorManagerThread
22
24
  from ..segm import SegmenterManagerThread, get_available_segmenters
23
25
  from ..meta import ppid
24
- from ..read import HDF5Data
25
- from .._version import version_tuple
26
+ from ..read import HDF5Data, get_mapping_indices
27
+ from .._version import version, version_tuple
26
28
  from ..write import (
27
- DequeWriterThread, HDF5Writer, QueueCollectorThread,
29
+ DequeWriterThread, HDF5Writer, QueueCollectorThread, copy_features,
28
30
  copy_metadata, create_with_basins, set_default_filter_kwargs
29
31
  )
30
32
 
@@ -43,6 +45,7 @@ valid_states = [
43
45
  "setup",
44
46
  "background",
45
47
  "segmentation",
48
+ "plumbing",
46
49
  "cleanup",
47
50
  "done",
48
51
  "error",
@@ -79,16 +82,16 @@ class DCNumJobRunner(threading.Thread):
79
82
  # current job state
80
83
  self._state = "init"
81
84
  # overall progress [0, 1]
82
- self._progress_bg = None
83
- self._progress_ex = None
85
+ self._progress_bg = None # background
86
+ self._progress_ex = None # segmentation
87
+ self._progress_bn = None # creating basins
84
88
  # segmentation frame rate
85
89
  self._segm_rate = 0
86
90
 
87
91
  # Set up logging
88
92
  # General logger for this job
89
93
  self.main_logger = logging.getLogger("dcnum")
90
- self.main_logger.setLevel(
91
- logging.DEBUG if job["debug"] else logging.INFO)
94
+ self.main_logger.setLevel(job["log_level"])
92
95
  # Log file output in target directory
93
96
  self.path_log = job["path_out"].with_suffix(".log")
94
97
  self.path_log.parent.mkdir(exist_ok=True, parents=True)
@@ -237,8 +240,12 @@ class DCNumJobRunner(threading.Thread):
237
240
  # how much fractional time each processing step takes.
238
241
  bgw = 4 # fraction of background
239
242
  exw = 27 # fraction of segmentation and feature extraction
243
+ if self.job["basin_strategy"] == "drain":
244
+ drw = 15 # because data need to be copied
245
+ else:
246
+ drw = 1 # just creating the basins in output file
240
247
  clw = 1 # fraction of cleanup operations
241
- tot = bgw + exw + clw
248
+ tot = bgw + exw + drw + clw
242
249
  progress = 0
243
250
  st = self.state
244
251
 
@@ -247,15 +254,22 @@ class DCNumJobRunner(threading.Thread):
247
254
  # background already computed
248
255
  progress += bgw / tot
249
256
  elif self._progress_bg is not None:
250
- # This is the image count of the input dataset
251
- progress += bgw / tot * (self._progress_bg.value / len(self.draw))
257
+ # This is the image count of the input dataset.
258
+ progress += self._progress_bg.value * bgw / tot
252
259
 
253
260
  # segmentation
254
261
  if valid_states.index(st) > valid_states.index("segmentation"):
255
262
  # segmentation already done
256
263
  progress += exw / tot
257
264
  elif self._progress_ex is not None:
258
- progress += exw / tot * self._progress_ex
265
+ progress += self._progress_ex * exw / tot
266
+
267
+ # draining basins
268
+ if valid_states.index(st) > valid_states.index("plumbing"):
269
+ # plumbing already done
270
+ progress += drw / tot
271
+ if self._progress_bn is not None:
272
+ progress += self._progress_bn * drw / tot
259
273
 
260
274
  if self.state == "done":
261
275
  progress = 1
@@ -310,12 +324,23 @@ class DCNumJobRunner(threading.Thread):
310
324
  # Whether pipeline hash is invalid.
311
325
  ppid.compute_pipeline_hash(**datdict) != dathash
312
326
  # Whether the input file is the original output of the pipeline.
313
- or len(self.draw) != evyield)
327
+ or len(self.draw) != evyield
328
+ # If index mapping is defined, then we always redo the pipeline.
329
+ # If the pipeline hashes are identical and index mapping is not
330
+ # None, then both pipelines were done with index mapping.
331
+ # But applying the same pipeline with index mapping in series
332
+ # will lead to a different result in the second run (e.g. 1st
333
+ # pipeline run: take every 2nd event; 2nd pipeline run: take
334
+ # every second event -> results in every 4th event in output of
335
+ # second pipeline run).
336
+ or self.draw.index_mapping is not None
337
+ )
314
338
  # Do we have to recompute the background data? In addition to the
315
339
  # hash sanity check above, check the generation, input data,
316
340
  # and background pipeline identifiers.
317
341
  redo_bg = (
318
- (datdict["gen_id"] != self.ppdict["gen_id"])
342
+ "image_bg" not in self.draw
343
+ or (datdict["gen_id"] != self.ppdict["gen_id"])
319
344
  or (datdict["dat_id"] != self.ppdict["dat_id"])
320
345
  or (datdict["bg_id"] != self.ppdict["bg_id"]))
321
346
 
@@ -361,16 +386,20 @@ class DCNumJobRunner(threading.Thread):
361
386
  # Note any new actions that work on `self.path_temp_in` are not
362
387
  # reflected in `self.path_temp_out`.
363
388
  self.path_temp_in.rename(self.path_temp_out)
364
-
365
- self.state = "cleanup"
366
-
367
- # The user would normally expect the output file to be something
368
- # that is self-contained (copying the file wildly across file
369
- # systems and network shares should not impair feature availability).
370
- # Therefore, we copy any remaining basin-based features to the
371
- # temporary output file.
372
- if self.job["no_basins_in_output"]:
373
- self.task_transfer_basin_data()
389
+ # Since no segmentation was done, the output file now does not
390
+ # contain any events. This is not really what we wanted, but we
391
+ # can still store all features in the output file if required.
392
+ if self.job["basin_strategy"] == "drain":
393
+ orig_feats = []
394
+ for feat in self.draw.h5["events"].keys():
395
+ if isinstance(self.draw.h5["events"][feat], h5py.Dataset):
396
+ # copy_features does not support Groups
397
+ orig_feats.append(feat)
398
+ with h5py.File(self.path_temp_out, "a") as h5_dst:
399
+ copy_features(h5_src=self.draw.h5,
400
+ h5_dst=h5_dst,
401
+ features=orig_feats,
402
+ mapping=None)
374
403
 
375
404
  with HDF5Writer(self.path_temp_out) as hw:
376
405
  # pipeline metadata
@@ -382,6 +411,10 @@ class DCNumJobRunner(threading.Thread):
382
411
  hw.h5.attrs["pipeline:dcnum gate"] = self.ppdict["gate_id"]
383
412
  hw.h5.attrs["pipeline:dcnum hash"] = self.pphash
384
413
  hw.h5.attrs["pipeline:dcnum yield"] = self.event_count
414
+ # index mapping information
415
+ im = self.job.kwargs["data_kwargs"].get("index_mapping", None)
416
+ dim = HDF5Data.get_ppid_index_mapping(im)
417
+ hw.h5.attrs["pipeline:dcnum mapping"] = dim
385
418
  # regular metadata
386
419
  hw.h5.attrs["experiment:event count"] = self.event_count
387
420
  hw.h5.attrs["imaging:pixel size"] = self.draw.pixel_size
@@ -419,7 +452,8 @@ class DCNumJobRunner(threading.Thread):
419
452
  with h5py.File(self.job["path_in"]) as h5_src:
420
453
  copy_metadata(h5_src=h5_src,
421
454
  h5_dst=hw.h5,
422
- # don't copy basins
455
+ # Don't copy basins, we would have to index-map
456
+ # them first.
423
457
  copy_basins=False)
424
458
  if redo_seg:
425
459
  # Store the correct measurement identifier. This is used to
@@ -429,13 +463,27 @@ class DCNumJobRunner(threading.Thread):
429
463
  # This is the identifier appendix that we use to identify this
430
464
  # dataset. Note that we only override the run identifier when
431
465
  # segmentation did actually take place.
432
- mid_ap = "dcn-" + self.pphash[:7]
433
- # This is the current measurement identifier (may be empty).
434
- mid_cur = hw.h5.attrs.get("experiment:run identifier", "")
466
+ mid_ap = f"dcn-{self.pphash[:7]}"
467
+ # This is the current measurement identifier
468
+ mid_cur = hw.h5.attrs.get("experiment:run identifier")
469
+ if not mid_cur:
470
+ # Compute a measurement identifier from the metadata
471
+ m_time = hw.h5.attrs.get("experiment:time", "none")
472
+ m_date = hw.h5.attrs.get("experiment:date", "none")
473
+ m_sid = hw.h5.attrs.get("setup:identifier", "none")
474
+ hasher = hashlib.md5(
475
+ f"{m_time}_{m_date}_{m_sid}".encode("utf-8"))
476
+ mid_cur = str(uuid.UUID(hex=hasher.hexdigest()))
435
477
  # The new measurement identifier is a combination of both.
436
478
  mid_new = f"{mid_cur}_{mid_ap}" if mid_cur else mid_ap
437
479
  hw.h5.attrs["experiment:run identifier"] = mid_new
438
480
 
481
+ # Handle basin data according to the user's request
482
+ self.state = "plumbing"
483
+ self.task_enforce_basin_strategy()
484
+
485
+ self.state = "cleanup"
486
+
439
487
  trun = datetime.timedelta(seconds=round(time.monotonic() - time_start))
440
488
  self.logger.info(f"Run duration: {str(trun)}")
441
489
  self.logger.info(time.strftime("Run stop: %Y-%m-%d-%H.%M.%S",
@@ -477,6 +525,115 @@ class DCNumJobRunner(threading.Thread):
477
525
  bic.process()
478
526
  self.logger.info("Finished background computation")
479
527
 
528
+ def task_enforce_basin_strategy(self):
529
+ """Transfer basin data from input files to output if requested
530
+
531
+ The user specified the "basin_strategy" keyword argument in
532
+ `self.job`. If this is set to "drain", then copy all basin
533
+ information from the input file to the output file. If it
534
+ is set to "tap", then only create basins in the output file.
535
+ """
536
+ self._progress_bn = 0
537
+ t0 = time.perf_counter()
538
+ # We need to make sure that the features are correctly attributed
539
+ # from the input files. E.g. if the input file already has
540
+ # background images, but we recompute the background images, then
541
+ # we have to use the data from the recomputed background file.
542
+ # We achieve this by keeping a specific order and only copying those
543
+ # features that we don't already have in the output file.
544
+ feats_raw = [
545
+ # 1. background data from the temporary input image
546
+ # (this must come before draw [sic!])
547
+ [self.dtin.h5, ["image_bg", "bg_off"], "critical"],
548
+ # 2. frame-based scalar features from the raw input file
549
+ # (e.g. "temp" or "frame")
550
+ [self.draw.h5, self.draw.features_scalar_frame, "optional"],
551
+ # 3. image features from the input file
552
+ [self.draw.h5, ["image", "image_bg", "bg_off"], "optional"],
553
+ ]
554
+ with h5py.File(self.path_temp_out, "a") as hout:
555
+ hw = HDF5Writer(hout)
556
+ # First, we have to determine the basin mapping from input to
557
+ # output. This information is stored by the QueueCollectorThread
558
+ # in the "basinmap0" feature, ready to be used by us.
559
+ if "index_unmapped" in hout["events"]:
560
+ # The unmapped indices enumerate the events in the output file
561
+ # with indices from the mapped input file. E.g. if for the
562
+ # first image in the input file, two events are found and for
563
+ # the second image in the input file, three events are found,
564
+ # then this would contain [0, 0, 1, 1, 1, ...]. If the index
565
+ # mapping of the input file was set to slice(1, 100), then the
566
+ # first image would not be there, and we would have
567
+ # [1, 1, 1, ...].
568
+ idx_um = hout["events/index_unmapped"]
569
+
570
+ # If we want to convert this to an actual basinmap feature,
571
+ # then we have to convert those indices to indices that map
572
+ # to the original input HDF5 file.
573
+ raw_im = self.draw.index_mapping
574
+ if raw_im is None:
575
+ self.logger.info("Input file mapped with basinmap0")
576
+ # Create a hard link to save time and space
577
+ hout["events/basinmap0"] = hout["events/index_unmapped"]
578
+ basinmap = idx_um
579
+ else:
580
+ basinmap = get_mapping_indices(raw_im)[idx_um]
581
+ # Store the mapped basin data in the output file.
582
+ hw.store_feature_chunk("basinmap0", basinmap)
583
+ # We don't need them anymore.
584
+ del hout["events/index_unmapped"]
585
+
586
+ # Note that `size_raw != (len(self.draw))` [sic!]. The former
587
+ # is the size of the raw dataset and the latter is its mapped
588
+ # size!
589
+ size_raw = self.draw.h5.attrs["experiment:event count"]
590
+ if (len(basinmap) == size_raw
591
+ and np.all(basinmap == np.arange(size_raw))):
592
+ # This means that the images in the input overlap perfectly
593
+ # with the images in the output, i.e. a "copy" segmenter
594
+ # was used or something is very reproducible.
595
+ # We set basinmap to None to be more efficient.
596
+ basinmap = None
597
+
598
+ else:
599
+ # The input is identical to the output, because we are using
600
+ # the same pipeline identifier.
601
+ basinmap = None
602
+
603
+ for hin, feats, importance in feats_raw:
604
+ # Only consider features that are available in the input
605
+ # and that are not already in the output.
606
+ feats = [f for f in feats
607
+ if (f in hin["events"] and f not in hout["events"])]
608
+ if not feats:
609
+ continue
610
+ elif (self.job["basin_strategy"] == "drain"
611
+ or importance == "critical"):
612
+ # DRAIN: Copy all features over to the output file.
613
+ self.logger.debug(f"Transferring {feats} to output file")
614
+ copy_features(h5_src=hin,
615
+ h5_dst=hout,
616
+ features=feats,
617
+ mapping=basinmap)
618
+ else:
619
+ # TAP: Create basins for the "optional" features in the
620
+ # output file. Note that the "critical" features never
621
+ # reach this case.
622
+ self.logger.debug(f"Creating basin for {feats}")
623
+ # Relative and absolute paths.
624
+ pin = pathlib.Path(hin.filename).resolve()
625
+ pout = pathlib.Path(hout.filename).resolve().parent
626
+ paths = [pin, os.path.relpath(pin, pout)]
627
+ hw.store_basin(name="dcnum basin",
628
+ features=feats,
629
+ mapping=basinmap,
630
+ paths=paths,
631
+ description=f"Created with dcnum {version}",
632
+ )
633
+ self._progress_bn += 1 / len(feats_raw)
634
+ t_tot = time.perf_counter() - t0
635
+ self.logger.info(f"Enforcing basin strategy time: {t_tot:.1f}s")
636
+
480
637
  def task_segment_extract(self):
481
638
  self.logger.info("Starting segmentation and feature extraction")
482
639
  # Start writer thread
@@ -501,9 +658,9 @@ class DCNumJobRunner(threading.Thread):
501
658
  num_slots = 1
502
659
  num_extractors = 1
503
660
  num_segmenters = 1
504
- elif seg_cls.hardware_processor == "cpu": # CPU segmenter
661
+ elif seg_cls.hardware_processor == "cpu": # MPO segmenter
505
662
  # We could in principle set the number of slots to one and
506
- # jave both number of extractors and number of segmenters set
663
+ # have both number of extractors and number of segmenters set
507
664
  # to the total number of CPUs. However, we would need more RAM
508
665
  # (for caching the image data) and we also have more overhead.
509
666
  # Having two slots shared between all workers is more efficient.
@@ -511,24 +668,32 @@ class DCNumJobRunner(threading.Thread):
511
668
  # Split segmentation and feature extraction workers evenly.
512
669
  num_extractors = self.job["num_procs"] // 2
513
670
  num_segmenters = self.job["num_procs"] - num_extractors
671
+ # leave one CPU for the writer and the remaining Threads
672
+ num_segmenters -= 1
514
673
  else: # GPU segmenter
515
674
  num_slots = 3
516
675
  num_extractors = self.job["num_procs"]
676
+ # leave one CPU for the writer and the remaining Threads
677
+ num_extractors -= 1
517
678
  num_segmenters = 1
518
679
  num_extractors = max(1, num_extractors)
519
680
  num_segmenters = max(1, num_segmenters)
520
681
  self.job.kwargs["segmenter_kwargs"]["num_workers"] = num_segmenters
682
+ self.job.kwargs["segmenter_kwargs"]["debug"] = self.job["debug"]
683
+ slot_chunks = mp_spawn.Array("i", num_slots, lock=False)
684
+ slot_states = mp_spawn.Array("u", num_slots, lock=False)
521
685
 
522
- slot_chunks = mp_spawn.Array("i", num_slots)
523
- slot_states = mp_spawn.Array("u", num_slots)
686
+ self.logger.debug(f"Number of slots: {num_slots}")
687
+ self.logger.debug(f"Number of segmenters: {num_segmenters}")
688
+ self.logger.debug(f"Number of extractors: {num_extractors}")
524
689
 
525
- # Initialize thread
690
+ # Initialize segmenter manager thread
526
691
  thr_segm = SegmenterManagerThread(
527
692
  segmenter=seg_cls(**self.job["segmenter_kwargs"]),
528
693
  image_data=imdat,
694
+ bg_off=self.dtin["bg_off"] if "bg_off" in self.dtin else None,
529
695
  slot_states=slot_states,
530
696
  slot_chunks=slot_chunks,
531
- debug=self.job["debug"],
532
697
  )
533
698
  thr_segm.start()
534
699
 
@@ -538,7 +703,7 @@ class DCNumJobRunner(threading.Thread):
538
703
  gate=gate.Gate(self.dtin, **self.job["gate_kwargs"]),
539
704
  num_extractors=num_extractors,
540
705
  log_queue=self.log_queue,
541
- log_level=logging.DEBUG if self.job["debug"] else logging.INFO,
706
+ log_level=self.logger.level,
542
707
  )
543
708
  fe_kwargs["extract_kwargs"] = self.job["feature_kwargs"]
544
709
 
@@ -614,21 +779,6 @@ class DCNumJobRunner(threading.Thread):
614
779
 
615
780
  self.logger.info("Finished segmentation and feature extraction")
616
781
 
617
- def task_transfer_basin_data(self):
618
- with h5py.File(self.path_temp_out, "a") as hout:
619
- hd = HDF5Data(hout)
620
- for ii, _ in enumerate(hd.basins):
621
- hindat, features = hd.get_basin_data(ii)
622
- for feat in features:
623
- if feat not in hout["events"]:
624
- self.logger.debug(
625
- f"Transferring {feat} to output file")
626
- h5py.h5o.copy(src_loc=hindat.h5["events"].id,
627
- src_name=feat.encode(),
628
- dst_loc=hout["events"].id,
629
- dst_name=feat.encode(),
630
- )
631
-
632
782
 
633
783
  def join_thread_helper(thr, timeout, retries, logger, name):
634
784
  for _ in range(retries):
dcnum/logic/job.py CHANGED
@@ -1,9 +1,11 @@
1
1
  import collections
2
2
  import copy
3
3
  import inspect
4
+ import logging
4
5
  import multiprocessing as mp
5
6
  import pathlib
6
- from typing import Dict
7
+ from typing import Dict, Literal
8
+ import warnings
7
9
 
8
10
  from ..feat import QueueEventExtractor
9
11
  from ..feat.feat_background.base import get_available_background_methods
@@ -27,10 +29,66 @@ class DCNumPipelineJob:
27
29
  feature_kwargs: Dict = None,
28
30
  gate_code: str = "norm",
29
31
  gate_kwargs: Dict = None,
30
- no_basins_in_output: bool = True,
32
+ basin_strategy: Literal["drain", "tap"] = "drain",
33
+ no_basins_in_output: bool = None,
31
34
  num_procs: int = None,
35
+ log_level: int = logging.INFO,
32
36
  debug: bool = False,
33
37
  ):
38
+ """Pipeline job recipe
39
+
40
+ Parameters
41
+ ----------
42
+ path_in: pathlib.Path | str
43
+ input data path
44
+ path_out: pathlib.Path | str
45
+ output data path
46
+ data_code: str
47
+ code of input data reader to use
48
+ data_kwargs: dict
49
+ keyword arguments for data reader
50
+ background_code: str
51
+ code of background data computer to use
52
+ background_kwargs: dict
53
+ keyword arguments for background data computer
54
+ segmenter_code: str
55
+ code of segmenter to use
56
+ segmenter_kwargs: dict
57
+ keyword arguments for segmenter
58
+ feature_code: str
59
+ code of feature extractor
60
+ feature_kwargs: dict
61
+ keyword arguments for feature extractor
62
+ gate_code: str
63
+ code for gating/event filtering class
64
+ gate_kwargs: dict
65
+ keyword arguments for gating/event filtering class
66
+ basin_strategy: str
67
+ strategy on how to handle event data; In principle, not all
68
+ events have to be stored in the output file if basins are
69
+ defined, linking back to the original file.
70
+ - You can "drain" all basins which means that the output file
71
+ will contain all features, but will also be very big.
72
+ - You can "tap" the basins, including the input file, which means
73
+ that the output file will be comparatively small.
74
+ no_basins_in_output: bool
75
+ Deprecated
76
+ num_procs: int
77
+ Number of processes to use
78
+ log_level: int
79
+ Logging level to use.
80
+ debug: bool
81
+ Whether to set logging level to "DEBUG" and
82
+ use threads instead of processes
83
+ """
84
+ if no_basins_in_output is not None:
85
+ warnings.warn("The `no_basins_in_output` keyword argument is "
86
+ "deprecated. Please use `basin_strategy` instead.")
87
+ if no_basins_in_output:
88
+ basin_strategy = "drain"
89
+ else:
90
+ basin_strategy = "tap"
91
+
34
92
  #: initialize keyword arguments for this job
35
93
  self.kwargs = {}
36
94
  spec = inspect.getfullargspec(DCNumPipelineJob.__init__)
@@ -51,6 +109,9 @@ class DCNumPipelineJob:
51
109
  if path_out is None:
52
110
  pin = pathlib.Path(path_in)
53
111
  path_out = pin.with_name(pin.stem + "_dcn.rtdc")
112
+ # Set logging level to DEBUG in debugging mode
113
+ if self.kwargs["debug"]:
114
+ self.kwargs["log_level"] = logging.DEBUG
54
115
  self.kwargs["path_out"] = pathlib.Path(path_out)
55
116
  # Set default mask kwargs for segmenter
56
117
  self.kwargs["segmenter_kwargs"].setdefault("kwargs_mask", {})
@@ -13,5 +13,7 @@ class ExtendedJSONEncoder(json.JSONEncoder):
13
13
  return int(obj)
14
14
  elif isinstance(obj, np.bool_):
15
15
  return bool(obj)
16
+ elif isinstance(obj, slice):
17
+ return "PYTHON-SLICE", (obj.start, obj.stop, obj.step)
16
18
  # Let the base class default method raise the TypeError
17
19
  return json.JSONEncoder.default(self, obj)
dcnum/meta/ppid.py CHANGED
@@ -10,7 +10,7 @@ import warnings
10
10
 
11
11
  #: Increment this string if there are breaking changes that make
12
12
  #: previous pipelines unreproducible.
13
- DCNUM_PPID_GENERATION = "7"
13
+ DCNUM_PPID_GENERATION = "10"
14
14
 
15
15
 
16
16
  class ClassWithPPIDCapabilities(Protocol):
@@ -59,7 +59,9 @@ def convert_to_dtype(value, dtype):
59
59
 
60
60
 
61
61
  def get_class_method_info(class_obj: ClassWithPPIDCapabilities,
62
- static_kw_methods: List = None):
62
+ static_kw_methods: List = None,
63
+ static_kw_defaults: Dict = None,
64
+ ):
63
65
  """Return dictionary of class info with static keyword methods docs
64
66
 
65
67
  Parameters
@@ -69,7 +71,16 @@ def get_class_method_info(class_obj: ClassWithPPIDCapabilities,
69
71
  static_kw_methods: list of callable
70
72
  The methods to inspect; all kwargs-only keyword arguments
71
73
  are extracted.
74
+ static_kw_defaults: dict
75
+ If a key in this dictionary matches an item in `static_kw_methods`,
76
+ then these are the default values returned in the "defaults"
77
+ dictionary. This is used in cases where a base class does
78
+ implement some annotations, but the subclass does not actually
79
+ use them, because e.g. they are taken from a property such as is
80
+ the case for the mask postprocessing of segmenter classes.
72
81
  """
82
+ if static_kw_defaults is None:
83
+ static_kw_defaults = {}
73
84
  doc = class_obj.__doc__ or class_obj.__init__.__doc__
74
85
  info = {
75
86
  "code": class_obj.get_ppid_code(),
@@ -82,7 +93,10 @@ def get_class_method_info(class_obj: ClassWithPPIDCapabilities,
82
93
  for mm in static_kw_methods:
83
94
  meth = getattr(class_obj, mm)
84
95
  spec = inspect.getfullargspec(meth)
85
- defau[mm] = spec.kwonlydefaults or {}
96
+ if mm_defaults := static_kw_defaults.get(mm):
97
+ defau[mm] = mm_defaults
98
+ else:
99
+ defau[mm] = spec.kwonlydefaults or {}
86
100
  annot[mm] = spec.annotations
87
101
  info["defaults"] = defau
88
102
  info["annotations"] = annot
dcnum/read/__init__.py CHANGED
@@ -2,3 +2,4 @@
2
2
  from .cache import md5sum
3
3
  from .const import PROTECTED_FEATURES
4
4
  from .hdf5_data import HDF5Data, HDF5ImageCache, concatenated_hdf5_data
5
+ from .mapped import get_mapping_indices, get_mapped_object