dclab 0.67.0__cp314-cp314t-macosx_10_13_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dclab might be problematic. Click here for more details.

Files changed (142) hide show
  1. dclab/__init__.py +41 -0
  2. dclab/_version.py +34 -0
  3. dclab/cached.py +97 -0
  4. dclab/cli/__init__.py +10 -0
  5. dclab/cli/common.py +237 -0
  6. dclab/cli/task_compress.py +126 -0
  7. dclab/cli/task_condense.py +223 -0
  8. dclab/cli/task_join.py +229 -0
  9. dclab/cli/task_repack.py +98 -0
  10. dclab/cli/task_split.py +154 -0
  11. dclab/cli/task_tdms2rtdc.py +186 -0
  12. dclab/cli/task_verify_dataset.py +75 -0
  13. dclab/definitions/__init__.py +79 -0
  14. dclab/definitions/feat_const.py +202 -0
  15. dclab/definitions/feat_logic.py +182 -0
  16. dclab/definitions/meta_const.py +252 -0
  17. dclab/definitions/meta_logic.py +111 -0
  18. dclab/definitions/meta_parse.py +94 -0
  19. dclab/downsampling.cpython-314t-darwin.so +0 -0
  20. dclab/downsampling.pyx +230 -0
  21. dclab/external/__init__.py +4 -0
  22. dclab/external/packaging/LICENSE +3 -0
  23. dclab/external/packaging/LICENSE.APACHE +177 -0
  24. dclab/external/packaging/LICENSE.BSD +23 -0
  25. dclab/external/packaging/__init__.py +6 -0
  26. dclab/external/packaging/_structures.py +61 -0
  27. dclab/external/packaging/version.py +505 -0
  28. dclab/external/skimage/LICENSE +28 -0
  29. dclab/external/skimage/__init__.py +2 -0
  30. dclab/external/skimage/_find_contours.py +216 -0
  31. dclab/external/skimage/_find_contours_cy.cpython-314t-darwin.so +0 -0
  32. dclab/external/skimage/_find_contours_cy.pyx +188 -0
  33. dclab/external/skimage/_pnpoly.cpython-314t-darwin.so +0 -0
  34. dclab/external/skimage/_pnpoly.pyx +99 -0
  35. dclab/external/skimage/_shared/__init__.py +1 -0
  36. dclab/external/skimage/_shared/geometry.cpython-314t-darwin.so +0 -0
  37. dclab/external/skimage/_shared/geometry.pxd +6 -0
  38. dclab/external/skimage/_shared/geometry.pyx +55 -0
  39. dclab/external/skimage/measure.py +7 -0
  40. dclab/external/skimage/pnpoly.py +53 -0
  41. dclab/external/statsmodels/LICENSE +35 -0
  42. dclab/external/statsmodels/__init__.py +6 -0
  43. dclab/external/statsmodels/nonparametric/__init__.py +1 -0
  44. dclab/external/statsmodels/nonparametric/_kernel_base.py +203 -0
  45. dclab/external/statsmodels/nonparametric/kernel_density.py +165 -0
  46. dclab/external/statsmodels/nonparametric/kernels.py +36 -0
  47. dclab/features/__init__.py +9 -0
  48. dclab/features/bright.py +81 -0
  49. dclab/features/bright_bc.py +93 -0
  50. dclab/features/bright_perc.py +63 -0
  51. dclab/features/contour.py +161 -0
  52. dclab/features/emodulus/__init__.py +339 -0
  53. dclab/features/emodulus/load.py +252 -0
  54. dclab/features/emodulus/lut_HE-2D-FEM-22.txt +16432 -0
  55. dclab/features/emodulus/lut_HE-3D-FEM-22.txt +1276 -0
  56. dclab/features/emodulus/lut_LE-2D-FEM-19.txt +13082 -0
  57. dclab/features/emodulus/pxcorr.py +135 -0
  58. dclab/features/emodulus/scale_linear.py +247 -0
  59. dclab/features/emodulus/viscosity.py +260 -0
  60. dclab/features/fl_crosstalk.py +95 -0
  61. dclab/features/inert_ratio.py +377 -0
  62. dclab/features/volume.py +242 -0
  63. dclab/http_utils.py +322 -0
  64. dclab/isoelastics/__init__.py +468 -0
  65. dclab/isoelastics/iso_HE-2D-FEM-22-area_um-deform.txt +2440 -0
  66. dclab/isoelastics/iso_HE-2D-FEM-22-volume-deform.txt +2635 -0
  67. dclab/isoelastics/iso_HE-3D-FEM-22-area_um-deform.txt +1930 -0
  68. dclab/isoelastics/iso_HE-3D-FEM-22-volume-deform.txt +2221 -0
  69. dclab/isoelastics/iso_LE-2D-FEM-19-area_um-deform.txt +2151 -0
  70. dclab/isoelastics/iso_LE-2D-FEM-19-volume-deform.txt +2250 -0
  71. dclab/isoelastics/iso_LE-2D-ana-18-area_um-deform.txt +1266 -0
  72. dclab/kde/__init__.py +1 -0
  73. dclab/kde/base.py +459 -0
  74. dclab/kde/contours.py +222 -0
  75. dclab/kde/methods.py +313 -0
  76. dclab/kde_contours.py +10 -0
  77. dclab/kde_methods.py +11 -0
  78. dclab/lme4/__init__.py +5 -0
  79. dclab/lme4/lme4_template.R +94 -0
  80. dclab/lme4/rsetup.py +204 -0
  81. dclab/lme4/wrapr.py +386 -0
  82. dclab/polygon_filter.py +398 -0
  83. dclab/rtdc_dataset/__init__.py +15 -0
  84. dclab/rtdc_dataset/check.py +902 -0
  85. dclab/rtdc_dataset/config.py +533 -0
  86. dclab/rtdc_dataset/copier.py +353 -0
  87. dclab/rtdc_dataset/core.py +896 -0
  88. dclab/rtdc_dataset/export.py +867 -0
  89. dclab/rtdc_dataset/feat_anc_core/__init__.py +24 -0
  90. dclab/rtdc_dataset/feat_anc_core/af_basic.py +75 -0
  91. dclab/rtdc_dataset/feat_anc_core/af_emodulus.py +160 -0
  92. dclab/rtdc_dataset/feat_anc_core/af_fl_max_ctc.py +133 -0
  93. dclab/rtdc_dataset/feat_anc_core/af_image_contour.py +113 -0
  94. dclab/rtdc_dataset/feat_anc_core/af_ml_class.py +102 -0
  95. dclab/rtdc_dataset/feat_anc_core/ancillary_feature.py +320 -0
  96. dclab/rtdc_dataset/feat_anc_ml/__init__.py +32 -0
  97. dclab/rtdc_dataset/feat_anc_plugin/__init__.py +3 -0
  98. dclab/rtdc_dataset/feat_anc_plugin/plugin_feature.py +329 -0
  99. dclab/rtdc_dataset/feat_basin.py +762 -0
  100. dclab/rtdc_dataset/feat_temp.py +102 -0
  101. dclab/rtdc_dataset/filter.py +263 -0
  102. dclab/rtdc_dataset/fmt_dcor/__init__.py +7 -0
  103. dclab/rtdc_dataset/fmt_dcor/access_token.py +52 -0
  104. dclab/rtdc_dataset/fmt_dcor/api.py +173 -0
  105. dclab/rtdc_dataset/fmt_dcor/base.py +299 -0
  106. dclab/rtdc_dataset/fmt_dcor/basin.py +73 -0
  107. dclab/rtdc_dataset/fmt_dcor/logs.py +26 -0
  108. dclab/rtdc_dataset/fmt_dcor/tables.py +66 -0
  109. dclab/rtdc_dataset/fmt_dict.py +103 -0
  110. dclab/rtdc_dataset/fmt_hdf5/__init__.py +6 -0
  111. dclab/rtdc_dataset/fmt_hdf5/base.py +192 -0
  112. dclab/rtdc_dataset/fmt_hdf5/basin.py +30 -0
  113. dclab/rtdc_dataset/fmt_hdf5/events.py +276 -0
  114. dclab/rtdc_dataset/fmt_hdf5/feat_defect.py +164 -0
  115. dclab/rtdc_dataset/fmt_hdf5/logs.py +33 -0
  116. dclab/rtdc_dataset/fmt_hdf5/tables.py +60 -0
  117. dclab/rtdc_dataset/fmt_hierarchy/__init__.py +11 -0
  118. dclab/rtdc_dataset/fmt_hierarchy/base.py +278 -0
  119. dclab/rtdc_dataset/fmt_hierarchy/events.py +146 -0
  120. dclab/rtdc_dataset/fmt_hierarchy/hfilter.py +140 -0
  121. dclab/rtdc_dataset/fmt_hierarchy/mapper.py +134 -0
  122. dclab/rtdc_dataset/fmt_http.py +102 -0
  123. dclab/rtdc_dataset/fmt_s3.py +354 -0
  124. dclab/rtdc_dataset/fmt_tdms/__init__.py +476 -0
  125. dclab/rtdc_dataset/fmt_tdms/event_contour.py +264 -0
  126. dclab/rtdc_dataset/fmt_tdms/event_image.py +220 -0
  127. dclab/rtdc_dataset/fmt_tdms/event_mask.py +62 -0
  128. dclab/rtdc_dataset/fmt_tdms/event_trace.py +146 -0
  129. dclab/rtdc_dataset/fmt_tdms/exc.py +37 -0
  130. dclab/rtdc_dataset/fmt_tdms/naming.py +151 -0
  131. dclab/rtdc_dataset/load.py +77 -0
  132. dclab/rtdc_dataset/meta_table.py +25 -0
  133. dclab/rtdc_dataset/writer.py +1019 -0
  134. dclab/statistics.py +226 -0
  135. dclab/util.py +176 -0
  136. dclab/warn.py +15 -0
  137. dclab-0.67.0.dist-info/METADATA +153 -0
  138. dclab-0.67.0.dist-info/RECORD +142 -0
  139. dclab-0.67.0.dist-info/WHEEL +6 -0
  140. dclab-0.67.0.dist-info/entry_points.txt +8 -0
  141. dclab-0.67.0.dist-info/licenses/LICENSE +283 -0
  142. dclab-0.67.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,216 @@
1
+ import numpy as np
2
+ from . import _find_contours_cy
3
+
4
+ from collections import deque
5
+
6
+ _param_options = ('high', 'low')
7
+
8
+
9
+ def find_contours(array, level,
10
+ fully_connected='low', positive_orientation='low'):
11
+ """Find iso-valued contours in a 2D array for a given level value.
12
+
13
+ Uses the "marching squares" method to compute a the iso-valued contours of
14
+ the input 2D array for a particular level value. Array values are linearly
15
+ interpolated to provide better precision for the output contours.
16
+
17
+ Parameters
18
+ ----------
19
+ array : 2D ndarray of double
20
+ Input data in which to find contours.
21
+ level : float
22
+ Value along which to find contours in the array.
23
+ fully_connected : str, {'low', 'high'}
24
+ Indicates whether array elements below the given level value are to be
25
+ considered fully-connected (and hence elements above the value will
26
+ only be face connected), or vice-versa. (See notes below for details.)
27
+ positive_orientation : either 'low' or 'high'
28
+ Indicates whether the output contours will produce positively-oriented
29
+ polygons around islands of low- or high-valued elements. If 'low' then
30
+ contours will wind counter- clockwise around elements below the
31
+ iso-value. Alternately, this means that low-valued elements are always
32
+ on the left of the contour. (See below for details.)
33
+
34
+ Returns
35
+ -------
36
+ contours : list of (n,2)-ndarrays
37
+ Each contour is an ndarray of shape ``(n, 2)``,
38
+ consisting of n ``(row, column)`` coordinates along the contour.
39
+
40
+ Notes
41
+ -----
42
+ The marching squares algorithm is a special case of the marching cubes
43
+ algorithm [1]_. A simple explanation is available here::
44
+
45
+ http://www.essi.fr/~lingrand/MarchingCubes/algo.html
46
+
47
+ There is a single ambiguous case in the marching squares algorithm: when
48
+ a given ``2 x 2``-element square has two high-valued and two low-valued
49
+ elements, each pair diagonally adjacent. (Where high- and low-valued is
50
+ with respect to the contour value sought.) In this case, either the
51
+ high-valued elements can be 'connected together' via a thin isthmus that
52
+ separates the low-valued elements, or vice-versa. When elements are
53
+ connected together across a diagonal, they are considered 'fully
54
+ connected' (also known as 'face+vertex-connected' or '8-connected'). Only
55
+ high-valued or low-valued elements can be fully-connected, the other set
56
+ will be considered as 'face-connected' or '4-connected'. By default,
57
+ low-valued elements are considered fully-connected; this can be altered
58
+ with the 'fully_connected' parameter.
59
+
60
+ Output contours are not guaranteed to be closed: contours which intersect
61
+ the array edge will be left open. All other contours will be closed. (The
62
+ closed-ness of a contours can be tested by checking whether the beginning
63
+ point is the same as the end point.)
64
+
65
+ Contours are oriented. By default, array values lower than the contour
66
+ value are to the left of the contour and values greater than the contour
67
+ value are to the right. This means that contours will wind
68
+ counter-clockwise (i.e. in 'positive orientation') around islands of
69
+ low-valued pixels. This behavior can be altered with the
70
+ 'positive_orientation' parameter.
71
+
72
+ The order of the contours in the output list is determined by the position
73
+ of the smallest ``x,y`` (in lexicographical order) coordinate in the
74
+ contour. This is a side-effect of how the input array is traversed, but
75
+ can be relied upon.
76
+
77
+ .. warning::
78
+
79
+ Array coordinates/values are assumed to refer to the *center* of the
80
+ array element. Take a simple example input: ``[0, 1]``. The interpolated
81
+ position of 0.5 in this array is midway between the 0-element (at
82
+ ``x=0``) and the 1-element (at ``x=1``), and thus would fall at
83
+ ``x=0.5``.
84
+
85
+ This means that to find reasonable contours, it is best to find contours
86
+ midway between the expected "light" and "dark" values. In particular,
87
+ given a binarized array, *do not* choose to find contours at the low or
88
+ high value of the array. This will often yield degenerate contours,
89
+ especially around structures that are a single array element wide. Instead
90
+ choose a middle value, as above.
91
+
92
+ References
93
+ ----------
94
+ .. [1] Lorensen, William and Harvey E. Cline. Marching Cubes: A High
95
+ Resolution 3D Surface Construction Algorithm. Computer Graphics
96
+ (SIGGRAPH 87 Proceedings) 21(4) July 1987, p. 163-170).
97
+
98
+ Examples
99
+ --------
100
+ >>> a = np.zeros((3, 3))
101
+ >>> a[0, 0] = 1
102
+ >>> a
103
+ array([[ 1., 0., 0.],
104
+ [ 0., 0., 0.],
105
+ [ 0., 0., 0.]])
106
+ >>> find_contours(a, 0.5)
107
+ [array([[ 0. , 0.5],
108
+ [ 0.5, 0. ]])]
109
+ """
110
+ array = np.asarray(array, dtype=np.double)
111
+ if array.ndim != 2:
112
+ raise ValueError('Only 2D arrays are supported.')
113
+ level = float(level)
114
+ if (fully_connected not in _param_options or
115
+ positive_orientation not in _param_options):
116
+ raise ValueError('Parameters "fully_connected" and'
117
+ ' "positive_orientation" must be either "high" or'
118
+ ' "low".')
119
+ point_list = _find_contours_cy.iterate_and_store(array, level,
120
+ fully_connected == 'high')
121
+ contours = _assemble_contours(_take_2(point_list))
122
+ if positive_orientation == 'high':
123
+ contours = [c[::-1] for c in contours]
124
+ return contours
125
+
126
+
127
+ def _take_2(seq):
128
+ iterator = iter(seq)
129
+ while True:
130
+ try:
131
+ n1 = next(iterator)
132
+ n2 = next(iterator)
133
+ yield (n1, n2)
134
+ except StopIteration:
135
+ return
136
+
137
+
138
+ def _assemble_contours(points_iterator):
139
+ current_index = 0
140
+ contours = {}
141
+ starts = {}
142
+ ends = {}
143
+ for from_point, to_point in points_iterator:
144
+ # Ignore degenerate segments.
145
+ # This happens when (and only when) one vertex of the square is
146
+ # exactly the contour level, and the rest are above or below.
147
+ # This degnerate vertex will be picked up later by neighboring squares.
148
+ if from_point == to_point:
149
+ continue
150
+
151
+ tail_data = starts.get(to_point)
152
+ head_data = ends.get(from_point)
153
+
154
+ if tail_data is not None and head_data is not None:
155
+ tail, tail_num = tail_data
156
+ head, head_num = head_data
157
+ # We need to connect these two contours.
158
+ if tail is head:
159
+ # We need to closed a contour.
160
+ # Add the end point, and remove the contour from the
161
+ # 'starts' and 'ends' dicts.
162
+ head.append(to_point)
163
+ del starts[to_point]
164
+ del ends[from_point]
165
+ else: # tail is not head
166
+ # We need to join two distinct contours.
167
+ # We want to keep the first contour segment created, so that
168
+ # the final contours are ordered left->right, top->bottom.
169
+ if tail_num > head_num:
170
+ # tail was created second. Append tail to head.
171
+ head.extend(tail)
172
+ # remove all traces of tail:
173
+ del starts[to_point]
174
+ try:
175
+ del ends[tail[-1]]
176
+ except KeyError:
177
+ pass
178
+ del contours[tail_num]
179
+ # remove the old end of head and add the new end.
180
+ del ends[from_point]
181
+ ends[head[-1]] = (head, head_num)
182
+ else: # tail_num <= head_num
183
+ # head was created second. Prepend head to tail.
184
+ tail.extendleft(reversed(head))
185
+ # remove all traces of head:
186
+ del starts[head[0]]
187
+ del ends[from_point]
188
+ del contours[head_num]
189
+ # remove the old start of tail and add the new start.
190
+ del starts[to_point]
191
+ starts[tail[0]] = (tail, tail_num)
192
+ elif tail_data is None and head_data is None:
193
+ # we need to add a new contour
194
+ current_index += 1
195
+ new_num = current_index
196
+ new_contour = deque((from_point, to_point))
197
+ contours[new_num] = new_contour
198
+ starts[from_point] = (new_contour, new_num)
199
+ ends[to_point] = (new_contour, new_num)
200
+ elif tail_data is not None and head_data is None:
201
+ tail, tail_num = tail_data
202
+ # We've found a single contour to which the new segment should be
203
+ # prepended.
204
+ tail.appendleft(from_point)
205
+ del starts[to_point]
206
+ starts[from_point] = (tail, tail_num)
207
+ elif tail_data is None and head_data is not None:
208
+ head, head_num = head_data
209
+ # We've found a single contour to which the new segment should be
210
+ # appended
211
+ head.append(to_point)
212
+ del ends[from_point]
213
+ ends[to_point] = (head, head_num)
214
+ # end iteration over from_ and to_ points
215
+
216
+ return [np.array(contour) for (num, contour) in sorted(contours.items())]
@@ -0,0 +1,188 @@
1
+ #cython: cdivision=True
2
+ #cython: boundscheck=False
3
+ #cython: nonecheck=False
4
+ #cython: wraparound=False
5
+ #cython: language_level=3
6
+ import numpy as np
7
+
8
+
9
+ cdef inline double _get_fraction(double from_value, double to_value,
10
+ double level):
11
+ if (to_value == from_value):
12
+ return 0
13
+ return ((level - from_value) / (to_value - from_value))
14
+
15
+
16
+ def iterate_and_store(double[:, :] array,
17
+ double level, Py_ssize_t vertex_connect_high):
18
+ """Iterate across the given array in a marching-squares fashion,
19
+ looking for segments that cross 'level'. If such a segment is
20
+ found, its coordinates are added to a growing list of segments,
21
+ which is returned by the function. if vertex_connect_high is
22
+ nonzero, high-values pixels are considered to be face+vertex
23
+ connected into objects; otherwise low-valued pixels are.
24
+
25
+ """
26
+ if array.shape[0] < 2 or array.shape[1] < 2:
27
+ raise ValueError("Input array must be at least 2x2.")
28
+
29
+ cdef list arc_list = []
30
+ cdef Py_ssize_t n
31
+
32
+ # The plan is to iterate a 2x2 square across the input array. This means
33
+ # that the upper-left corner of the square needs to iterate across a
34
+ # sub-array that's one-less-large in each direction (so that the square
35
+ # never steps out of bounds). The square is represented by four pointers:
36
+ # ul, ur, ll, and lr (for 'upper left', etc.). We also maintain the current
37
+ # 2D coordinates for the position of the upper-left pointer. Note that we
38
+ # ensured that the array is of type 'double' and is C-contiguous (last
39
+ # index varies the fastest).
40
+
41
+ # Current coords start at 0,0.
42
+ cdef Py_ssize_t[2] coords
43
+ coords[0] = 0
44
+ coords[1] = 0
45
+
46
+ # Calculate the number of iterations we'll need
47
+ cdef Py_ssize_t num_square_steps = (array.shape[0] - 1) \
48
+ * (array.shape[1] - 1)
49
+
50
+ cdef unsigned char square_case = 0
51
+ cdef tuple top, bottom, left, right
52
+ cdef double ul, ur, ll, lr
53
+ cdef Py_ssize_t r0, r1, c0, c1
54
+
55
+ for n in range(num_square_steps):
56
+ # There are sixteen different possible square types, diagramed below.
57
+ # A + indicates that the vertex is above the contour value, and a -
58
+ # indicates that the vertex is below or equal to the contour value.
59
+ # The vertices of each square are:
60
+ # ul ur
61
+ # ll lr
62
+ # and can be treated as a binary value with the bits in that order. Thus
63
+ # each square case can be numbered:
64
+ # 0-- 1+- 2-+ 3++ 4-- 5+- 6-+ 7++
65
+ # -- -- -- -- +- +- +- +-
66
+ #
67
+ # 8-- 9+- 10-+ 11++ 12-- 13+- 14-+ 15++
68
+ # -+ -+ -+ -+ ++ ++ ++ ++
69
+ #
70
+ # The position of the line segment that cuts through (or
71
+ # doesn't, in case 0 and 15) each square is clear, except in
72
+ # cases 6 and 9. In this case, where the segments are placed
73
+ # is determined by vertex_connect_high. If
74
+ # vertex_connect_high is false, then lines like \\ are drawn
75
+ # through square 6, and lines like // are drawn through square
76
+ # 9. Otherwise, the situation is reversed.
77
+ # Finally, recall that we draw the lines so that (moving from tail to
78
+ # head) the lower-valued pixels are on the left of the line. So, for
79
+ # example, case 1 entails a line slanting from the middle of the top of
80
+ # the square to the middle of the left side of the square.
81
+
82
+ r0, c0 = coords[0], coords[1]
83
+ r1, c1 = r0 + 1, c0 + 1
84
+
85
+ ul = array[r0, c0]
86
+ ur = array[r0, c1]
87
+ ll = array[r1, c0]
88
+ lr = array[r1, c1]
89
+
90
+ # now in advance the coords indices
91
+ if coords[1] < array.shape[1] - 2:
92
+ coords[1] += 1
93
+ else:
94
+ coords[0] += 1
95
+ coords[1] = 0
96
+
97
+
98
+ square_case = 0
99
+ if (ul > level): square_case += 1
100
+ if (ur > level): square_case += 2
101
+ if (ll > level): square_case += 4
102
+ if (lr > level): square_case += 8
103
+
104
+ if (square_case != 0 and square_case != 15):
105
+ # only do anything if there's a line passing through the
106
+ # square. Cases 0 and 15 are entirely below/above the contour.
107
+
108
+ top = r0, c0 + _get_fraction(ul, ur, level)
109
+ bottom = r1, c0 + _get_fraction(ll, lr, level)
110
+ left = r0 + _get_fraction(ul, ll, level), c0
111
+ right = r0 + _get_fraction(ur, lr, level), c1
112
+
113
+ if (square_case == 1):
114
+ # top to left
115
+ arc_list.append(top)
116
+ arc_list.append(left)
117
+ elif (square_case == 2):
118
+ # right to top
119
+ arc_list.append(right)
120
+ arc_list.append(top)
121
+ elif (square_case == 3):
122
+ # right to left
123
+ arc_list.append(right)
124
+ arc_list.append(left)
125
+ elif (square_case == 4):
126
+ # left to bottom
127
+ arc_list.append(left)
128
+ arc_list.append(bottom)
129
+ elif (square_case == 5):
130
+ # top to bottom
131
+ arc_list.append(top)
132
+ arc_list.append(bottom)
133
+ elif (square_case == 6):
134
+ if vertex_connect_high:
135
+ arc_list.append(left)
136
+ arc_list.append(top)
137
+
138
+ arc_list.append(right)
139
+ arc_list.append(bottom)
140
+ else:
141
+ arc_list.append(right)
142
+ arc_list.append(top)
143
+ arc_list.append(left)
144
+ arc_list.append(bottom)
145
+ elif (square_case == 7):
146
+ # right to bottom
147
+ arc_list.append(right)
148
+ arc_list.append(bottom)
149
+ elif (square_case == 8):
150
+ # bottom to right
151
+ arc_list.append(bottom)
152
+ arc_list.append(right)
153
+ elif (square_case == 9):
154
+ if vertex_connect_high:
155
+ arc_list.append(top)
156
+ arc_list.append(right)
157
+
158
+ arc_list.append(bottom)
159
+ arc_list.append(left)
160
+ else:
161
+ arc_list.append(top)
162
+ arc_list.append(left)
163
+
164
+ arc_list.append(bottom)
165
+ arc_list.append(right)
166
+ elif (square_case == 10):
167
+ # bottom to top
168
+ arc_list.append(bottom)
169
+ arc_list.append(top)
170
+ elif (square_case == 11):
171
+ # bottom to left
172
+ arc_list.append(bottom)
173
+ arc_list.append(left)
174
+ elif (square_case == 12):
175
+ # lef to right
176
+ arc_list.append(left)
177
+ arc_list.append(right)
178
+ elif (square_case == 13):
179
+ # top to right
180
+ arc_list.append(top)
181
+ arc_list.append(right)
182
+ elif (square_case == 14):
183
+ # left to top
184
+ arc_list.append(left)
185
+ arc_list.append(top)
186
+
187
+ return arc_list
188
+
@@ -0,0 +1,99 @@
1
+ #cython: cdivision=True
2
+ #cython: boundscheck=False
3
+ #cython: nonecheck=False
4
+ #cython: wraparound=False
5
+ import numpy as np
6
+
7
+ cimport numpy as cnp
8
+ from ._shared.geometry cimport point_in_polygon, points_in_polygon
9
+
10
+ cnp.import_array()
11
+
12
+
13
+ def _grid_points_in_poly(shape, verts):
14
+ """Test whether points on a specified grid are inside a polygon.
15
+
16
+ For each ``(r, c)`` coordinate on a grid, i.e. ``(0, 0)``, ``(0, 1)`` etc.,
17
+ test whether that point lies inside a polygon.
18
+
19
+ Parameters
20
+ ----------
21
+ shape : tuple (M, N)
22
+ Shape of the grid.
23
+ verts : (V, 2) array
24
+ Specify the V vertices of the polygon, sorted either clockwise
25
+ or anti-clockwise. The first point may (but does not need to be)
26
+ duplicated.
27
+
28
+ See Also
29
+ --------
30
+ points_in_poly
31
+
32
+ Returns
33
+ -------
34
+ mask : (M, N) ndarray of bool
35
+ True where the grid falls inside the polygon.
36
+
37
+ """
38
+ cdef double[:] vx, vy
39
+ verts = np.asarray(verts)
40
+
41
+ vx = verts[:, 0].astype(np.double)
42
+ vy = verts[:, 1].astype(np.double)
43
+ cdef Py_ssize_t V = vx.shape[0]
44
+
45
+ cdef Py_ssize_t M = shape[0]
46
+ cdef Py_ssize_t N = shape[1]
47
+ cdef Py_ssize_t m, n
48
+
49
+ cdef cnp.ndarray[dtype=cnp.uint8_t, ndim=2, mode="c"] out = \
50
+ np.zeros((M, N), dtype=np.uint8)
51
+
52
+ with nogil:
53
+ for m in range(M):
54
+ for n in range(N):
55
+ out[m, n] = point_in_polygon(V, &vx[0], &vy[0], m, n)
56
+
57
+ return out.view(bool)
58
+
59
+
60
+ def _points_in_poly(points, verts):
61
+ """Test whether points lie inside a polygon.
62
+
63
+ Parameters
64
+ ----------
65
+ points : (N, 2) array
66
+ Input points, ``(x, y)``.
67
+ verts : (M, 2) array
68
+ Vertices of the polygon, sorted either clockwise or anti-clockwise.
69
+ The first point may (but does not need to be) duplicated.
70
+
71
+ See Also
72
+ --------
73
+ grid_points_in_poly
74
+
75
+ Returns
76
+ -------
77
+ mask : (N,) array of bool
78
+ True if corresponding point is inside the polygon.
79
+
80
+ """
81
+ cdef double[:] x, y, vx, vy
82
+
83
+ points = np.asarray(points)
84
+ verts = np.asarray(verts)
85
+
86
+ x = points[:, 0].astype(np.double)
87
+ y = points[:, 1].astype(np.double)
88
+
89
+ vx = verts[:, 0].astype(np.double)
90
+ vy = verts[:, 1].astype(np.double)
91
+
92
+ cdef cnp.ndarray[cnp.uint8_t, ndim=1] out = \
93
+ np.zeros(x.shape[0], dtype=np.uint8)
94
+
95
+ points_in_polygon(vx.shape[0], &vx[0], &vy[0],
96
+ x.shape[0], &x[0], &y[0],
97
+ <unsigned char*>out.data)
98
+
99
+ return out.astype(bool)
@@ -0,0 +1 @@
1
+ from . import geometry # noqa: F401
@@ -0,0 +1,6 @@
1
+ cdef unsigned char point_in_polygon(Py_ssize_t nr_verts, double *xp, double *yp,
2
+ double x, double y) nogil
3
+
4
+ cdef void points_in_polygon(Py_ssize_t nr_verts, double *xp, double *yp,
5
+ Py_ssize_t nr_points, double *x, double *y,
6
+ unsigned char *result) nogil
@@ -0,0 +1,55 @@
1
+ #cython: cdivision=True
2
+ #cython: boundscheck=False
3
+ #cython: nonecheck=False
4
+ #cython: wraparound=False
5
+
6
+
7
+ cdef inline unsigned char point_in_polygon(Py_ssize_t nr_verts, double *xp,
8
+ double *yp, double x,
9
+ double y) nogil:
10
+ """Test whether point lies inside a polygon.
11
+
12
+ Parameters
13
+ ----------
14
+ nr_verts : int
15
+ Number of vertices of polygon.
16
+ xp, yp : double array
17
+ Coordinates of polygon with length nr_verts.
18
+ x, y : double
19
+ Coordinates of point.
20
+ """
21
+ cdef Py_ssize_t i
22
+ cdef unsigned char c = 0
23
+ cdef Py_ssize_t j = nr_verts - 1
24
+ for i in range(nr_verts):
25
+ if (
26
+ (((yp[i] <= y) and (y < yp[j])) or
27
+ ((yp[j] <= y) and (y < yp[i])))
28
+ and (x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i])
29
+ ):
30
+ c = not c
31
+ j = i
32
+ return c
33
+
34
+
35
+ cdef void points_in_polygon(Py_ssize_t nr_verts, double *xp, double *yp,
36
+ Py_ssize_t nr_points, double *x, double *y,
37
+ unsigned char *result) nogil:
38
+ """Test whether points lie inside a polygon.
39
+
40
+ Parameters
41
+ ----------
42
+ nr_verts : int
43
+ Number of vertices of polygon.
44
+ xp, yp : double array
45
+ Coordinates of polygon with length nr_verts.
46
+ nr_points : int
47
+ Number of points to test.
48
+ x, y : double array
49
+ Coordinates of points.
50
+ result : unsigned char array
51
+ Test results for each point.
52
+ """
53
+ cdef Py_ssize_t n
54
+ for n in range(nr_points):
55
+ result[n] = point_in_polygon(nr_verts, xp, yp, x[n], y[n])
@@ -0,0 +1,7 @@
1
+ """skimage.measure.find_contours
2
+
3
+ This submodule is copied from skimage.measure to avoid the additional
4
+ dependency scikit-image in dclab.
5
+ """
6
+ from ._find_contours import find_contours # noqa: F401
7
+ from .pnpoly import points_in_poly # noqa: F401
@@ -0,0 +1,53 @@
1
+ from ._pnpoly import _grid_points_in_poly, _points_in_poly
2
+
3
+
4
+ def grid_points_in_poly(shape, verts):
5
+ """Test whether points on a specified grid are inside a polygon.
6
+
7
+ For each ``(r, c)`` coordinate on a grid, i.e. ``(0, 0)``, ``(0, 1)`` etc.,
8
+ test whether that point lies inside a polygon.
9
+
10
+ Parameters
11
+ ----------
12
+ shape : tuple (M, N)
13
+ Shape of the grid.
14
+ verts : (V, 2) array
15
+ Specify the V vertices of the polygon, sorted either clockwise
16
+ or anti-clockwise. The first point may (but does not need to be)
17
+ duplicated.
18
+
19
+ See Also
20
+ --------
21
+ points_in_poly
22
+
23
+ Returns
24
+ -------
25
+ mask : (M, N) ndarray of bool
26
+ True where the grid falls inside the polygon.
27
+
28
+ """
29
+ return _grid_points_in_poly(shape, verts)
30
+
31
+
32
+ def points_in_poly(points, verts):
33
+ """Test whether points lie inside a polygon.
34
+
35
+ Parameters
36
+ ----------
37
+ points : (N, 2) array
38
+ Input points, ``(x, y)``.
39
+ verts : (M, 2) array
40
+ Vertices of the polygon, sorted either clockwise or anti-clockwise.
41
+ The first point may (but does not need to be) duplicated.
42
+
43
+ See Also
44
+ --------
45
+ grid_points_in_poly
46
+
47
+ Returns
48
+ -------
49
+ mask : (N,) array of bool
50
+ True if corresponding point is inside the polygon.
51
+
52
+ """
53
+ return _points_in_poly(points, verts)
@@ -0,0 +1,35 @@
1
+ Copyright (C) 2006, Jonathan E. Taylor
2
+ All rights reserved.
3
+
4
+ Copyright (c) 2006-2008 Scipy Developers.
5
+ All rights reserved.
6
+
7
+ Copyright (c) 2009-2018 Statsmodels Developers.
8
+ All rights reserved.
9
+
10
+
11
+ Redistribution and use in source and binary forms, with or without
12
+ modification, are permitted provided that the following conditions are met:
13
+
14
+ a. Redistributions of source code must retain the above copyright notice,
15
+ this list of conditions and the following disclaimer.
16
+ b. Redistributions in binary form must reproduce the above copyright
17
+ notice, this list of conditions and the following disclaimer in the
18
+ documentation and/or other materials provided with the distribution.
19
+ c. Neither the name of Statsmodels nor the names of its contributors
20
+ may be used to endorse or promote products derived from this software
21
+ without specific prior written permission.
22
+
23
+
24
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27
+ ARE DISCLAIMED. IN NO EVENT SHALL STATSMODELS OR CONTRIBUTORS BE LIABLE FOR
28
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32
+ LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33
+ OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
34
+ DAMAGE.
35
+
@@ -0,0 +1,6 @@
1
+ """statsmodels.nonparametric.kernel_density.KDEMultivariate
2
+
3
+ This submodule is copied from statsmodels to avoid the additional
4
+ dependency in dclab.
5
+ """
6
+ from . import nonparametric # noqa: F401
@@ -0,0 +1 @@
1
+ from . import kernel_density # noqa: F401