dclab 0.64.0__cp312-cp312-musllinux_1_2_x86_64.whl → 0.64.2__cp312-cp312-musllinux_1_2_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dclab might be problematic. Click here for more details.

dclab/_version.py CHANGED
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '0.64.0'
21
- __version_tuple__ = version_tuple = (0, 64, 0)
20
+ __version__ = version = '0.64.2'
21
+ __version_tuple__ = version_tuple = (0, 64, 2)
@@ -1,6 +1,11 @@
1
+ import re
2
+
1
3
  from . import feat_const
2
4
 
3
5
 
6
+ ML_SCORE_REGEX = re.compile(r"^ml_score_[a-z0-9]{3}$")
7
+
8
+
4
9
  def check_feature_shape(name, data):
5
10
  """Check if (non)-scalar feature matches with its data's dimensionality
6
11
 
@@ -17,11 +22,15 @@ def check_feature_shape(name, data):
17
22
  If the data's shape does not match its scalar description
18
23
  """
19
24
  if len(data.shape) == 1 and not scalar_feature_exists(name):
20
- raise ValueError(f"Feature '{name}' is not a scalar feature, but "
21
- "a 1D array was given for `data`!")
25
+ raise ValueError(
26
+ f"Feature '{name}' is not a scalar feature, but "
27
+ "a 1D array was given for `data`!"
28
+ )
22
29
  elif len(data.shape) != 1 and scalar_feature_exists(name):
23
- raise ValueError(f"Feature '{name}' is a scalar feature, but the "
24
- "`data` array is not 1D!")
30
+ raise ValueError(
31
+ f"Feature '{name}' is a scalar feature, but the "
32
+ "`data` array is not 1D!"
33
+ )
25
34
 
26
35
 
27
36
  def feature_exists(name, scalar_only=False):
@@ -56,15 +65,9 @@ def feature_exists(name, scalar_only=False):
56
65
  elif not scalar_only and name in feat_const.feature_names:
57
66
  # non-scalar feature
58
67
  valid = True
59
- else:
60
- # check whether we have an `ml_score_???` feature
61
- valid_chars = "0123456789abcdefghijklmnopqrstuvwxyz"
62
- if (name.startswith("ml_score_")
63
- and len(name) == len("ml_score_???")
64
- and name[-3] in valid_chars
65
- and name[-2] in valid_chars
66
- and name[-1] in valid_chars):
67
- valid = True
68
+ elif ML_SCORE_REGEX.match(name):
69
+ # machine-learning score feature ml_score_???
70
+ valid = True
68
71
  return valid
69
72
 
70
73
 
@@ -93,8 +96,10 @@ def feature_register(name, label=None, is_scalar=True):
93
96
  allowed_chars = "abcdefghijklmnopqrstuvwxyz_1234567890"
94
97
  feat = "".join([f for f in name if f in allowed_chars])
95
98
  if feat != name:
96
- raise ValueError("`feature` must only contain lower-case characters, "
97
- f"digits, and underscores; got '{name}'!")
99
+ raise ValueError(
100
+ "`feature` must only contain lower-case characters, "
101
+ f"digits, and underscores; got '{name}'!"
102
+ )
98
103
  if label is None:
99
104
  label = f"User-defined feature {name}"
100
105
  if feature_exists(name):
@@ -156,22 +161,16 @@ def get_feature_label(name, rtdc_ds=None, with_unit=True):
156
161
  TODO: extract feature label from ancillary information when an rtdc_ds is
157
162
  given.
158
163
  """
159
- # TODO: Is there another way of avoiding this circular import?
160
- from ..rtdc_dataset.feat_anc_core.ancillary_feature import AncillaryFeature
161
- assert feature_exists(name)
162
164
  if name in feat_const.feature_name2label:
163
165
  label = feat_const.feature_name2label[name]
166
+ elif ML_SCORE_REGEX.match(name):
167
+ # use a generic name for machine-learning features
168
+ label = f"ML score {name[-3:].upper()}"
164
169
  else:
165
- # First check whether an ancillary feature with that
166
- # name exists.
167
- for af in AncillaryFeature.features:
168
- if af.feature_name == name:
169
- labelid = af.data.outputs.index(name)
170
- label = af.data.output_labels[labelid]
171
- break
172
- else:
173
- # If that did not work, use a generic name.
174
- label = "ML score {}".format(name[-3:].upper())
170
+ exists = feature_exists(name)
171
+ msg = f"Could not find label for '{name}'"
172
+ msg += " (feature does not exist)" if not exists else ""
173
+ raise ValueError(msg)
175
174
  if not with_unit:
176
175
  if label.endswith("]") and label.count("["):
177
176
  label = label.rsplit("[", 1)[0].strip()
dclab/kde/base.py CHANGED
@@ -1,6 +1,7 @@
1
1
  import warnings
2
2
 
3
3
  import numpy as np
4
+ from scipy.interpolate import RegularGridInterpolator as RGI
4
5
 
5
6
  from .methods import bin_width_doane_div5, get_bad_vals, methods
6
7
  from .contours import find_contours_level, get_quantile_levels
@@ -316,6 +317,8 @@ class KernelDensityEstimator:
316
317
  yscale="linear"):
317
318
  """Evaluate the kernel density estimate for scatter plots
318
319
 
320
+ The KDE is evaluated with the `kde_type` function for every point.
321
+
319
322
  Parameters
320
323
  ----------
321
324
  xax: str
@@ -332,7 +335,7 @@ class KernelDensityEstimator:
332
335
  Additional keyword arguments to the KDE method
333
336
  xscale: str
334
337
  If set to "log", take the logarithm of the x-values before
335
- computing the KDE. This is useful when data are are
338
+ computing the KDE. This is useful when data are
336
339
  displayed on a log-scale. Defaults to "linear".
337
340
  yscale: str
338
341
  See `xscale`.
@@ -374,3 +377,83 @@ class KernelDensityEstimator:
374
377
  density = np.array([])
375
378
 
376
379
  return density
380
+
381
+ def get_at(self, xax="area_um", yax="deform", positions=None,
382
+ kde_type="histogram", kde_kwargs=None, xscale="linear",
383
+ yscale="linear"):
384
+ """Evaluate the kernel density estimate for specific events
385
+
386
+ The KDE is computed via linear interpolation from the output
387
+ of `get_raster`.
388
+
389
+ Parameters
390
+ ----------
391
+ xax: str
392
+ Identifier for X axis (e.g. "area_um", "aspect", "deform")
393
+ yax: str
394
+ Identifier for Y axis
395
+ positions: list of two 1d ndarrays or ndarray of shape (2, N)
396
+ The positions where the KDE will be computed. Note that
397
+ the KDE estimate is computed from the points that
398
+ are set in `self.rtdc_ds.filter.all`.
399
+ kde_type: str
400
+ The KDE method to use, see :const:`.kde_methods.methods`
401
+ kde_kwargs: dict
402
+ Additional keyword arguments to the KDE method
403
+ xscale: str
404
+ If set to "log", take the logarithm of the x-values before
405
+ computing the KDE. This is useful when data are
406
+ displayed on a log-scale. Defaults to "linear".
407
+ yscale: str
408
+ See `xscale`.
409
+
410
+ Returns
411
+ -------
412
+ density : 1d ndarray
413
+ The kernel density evaluated for the filtered events.
414
+ """
415
+ if kde_kwargs is None:
416
+ kde_kwargs = {}
417
+ xax = xax.lower()
418
+ yax = yax.lower()
419
+ kde_type = kde_type.lower()
420
+ if kde_type not in methods:
421
+ raise ValueError(f"Not a valid kde type: {kde_type}!")
422
+
423
+ # Get data
424
+ x = self.rtdc_ds[xax][self.rtdc_ds.filter.all]
425
+ y = self.rtdc_ds[yax][self.rtdc_ds.filter.all]
426
+
427
+ # Apply scale (no change for linear scale)
428
+ xs = self.apply_scale(x, xscale, xax)
429
+ ys = self.apply_scale(y, yscale, yax)
430
+
431
+ if positions:
432
+ xs = self.apply_scale(positions[0], xscale, xax)
433
+ ys = self.apply_scale(positions[1], yscale, yax)
434
+
435
+ if len(x):
436
+ xr, yr, density_grid = self.get_raster(xax=xax,
437
+ yax=yax,
438
+ kde_type=kde_type,
439
+ kde_kwargs=kde_kwargs,
440
+ xscale=xscale,
441
+ yscale=yscale)
442
+
443
+ # Apply scale (no change for linear scale)
444
+ xrs = self.apply_scale(xr, xscale, xax)
445
+ yrs = self.apply_scale(yr, yscale, yax)
446
+
447
+ # 'scipy.interp2d' has been removed in SciPy 1.14.0
448
+ # https://scipy.github.io/devdocs/tutorial/interpolate/interp_transition_guide.html
449
+ interp_func = RGI((xrs[:, 0], yrs[0, :]),
450
+ density_grid,
451
+ method="linear",
452
+ bounds_error=False,
453
+ fill_value=np.nan)
454
+ density = interp_func((xs, ys))
455
+
456
+ else:
457
+ density = np.array([])
458
+
459
+ return density
@@ -835,9 +835,9 @@ class RTDCBase(abc.ABC):
835
835
  identifier = self.config.get("experiment", {}).get("run identifier",
836
836
  None)
837
837
  if identifier is None:
838
- time = self.config.get("experiment", {}).get("time", None)
839
- date = self.config.get("experiment", {}).get("date", None)
840
- sid = self.config.get("setup", {}).get("identifier", None)
838
+ time = self.config.get("experiment", {}).get("time", None) or None
839
+ date = self.config.get("experiment", {}).get("date", None) or None
840
+ sid = self.config.get("setup", {}).get("identifier", None) or None
841
841
  if None not in [time, date, sid]:
842
842
  # only compute an identifier if all of the above are defined.
843
843
  hasher = hashlib.md5(f"{time}_{date}_{sid}".encode("utf-8"))
@@ -458,22 +458,30 @@ class Basin(abc.ABC):
458
458
  if not self._measurement_identifier_verified:
459
459
  if self.measurement_identifier is None:
460
460
  # No measurement identifier was presented by the
461
- # referencing dataset. Don't perform any checks.
461
+ # referencing dataset. We are in the dark.
462
+ # Don't perform any checks.
462
463
  self._measurement_identifier_verified = True
463
464
  else:
464
- if self.mapping == "same":
465
- # When we have identical mapping, then the measurement
466
- # identifier has to match exactly.
467
- verifier = str.__eq__
465
+ # This is the measurement identifier of the basin.
466
+ basin_identifier = self.get_measurement_identifier()
467
+ if basin_identifier is None:
468
+ # Again, we are in the dark, because the basin dataset
469
+ # does not have an identifier. This is an undesirable
470
+ # situation, but there is nothing we can do about it.
471
+ self._measurement_identifier_verified = True
468
472
  else:
469
- # When we have non-identical mapping (e.g. exported
470
- # data), then the measurement identifier has to
471
- # partially match.
472
- verifier = str.startswith
473
- self._measurement_identifier_verified = verifier(
474
- self.measurement_identifier,
475
- self.get_measurement_identifier()
476
- )
473
+ if self.mapping == "same":
474
+ # When we have identical mapping, then the
475
+ # measurement identifier has to match exactly.
476
+ verifier = str.__eq__
477
+ else:
478
+ # When we have non-identical mapping (e.g. exported
479
+ # data), then the measurement identifier has to
480
+ # partially match.
481
+ verifier = str.startswith
482
+ self._measurement_identifier_verified = verifier(
483
+ self.measurement_identifier, basin_identifier)
484
+
477
485
  check_rid = self._measurement_identifier_verified
478
486
  else:
479
487
  check_rid = True
@@ -538,8 +546,12 @@ class BasinProxy:
538
546
 
539
547
  def __getitem__(self, feat):
540
548
  if feat not in self._features:
541
- feat_obj = BasinProxyFeature(feat_obj=self.ds[feat],
542
- basinmap=self.basinmap)
549
+ if feat == "contour":
550
+ raise NotImplementedError("Feature 'contour' cannot be "
551
+ "handled by BasinProxy.")
552
+ else:
553
+ feat_obj = BasinProxyFeature(feat_obj=self.ds[feat],
554
+ basinmap=self.basinmap)
543
555
  self._features[feat] = feat_obj
544
556
  return self._features[feat]
545
557
 
dclab/statistics.py CHANGED
@@ -86,7 +86,7 @@ def flow_rate(ds):
86
86
  return np.nan
87
87
 
88
88
 
89
- def get_statistics(ds, methods=None, features=None):
89
+ def get_statistics(ds, methods=None, features=None, ret_dict=False):
90
90
  """Compute statistics for an RT-DC dataset
91
91
 
92
92
  Parameters
@@ -96,13 +96,16 @@ def get_statistics(ds, methods=None, features=None):
96
96
  methods: list of str or None
97
97
  The methods wih which to compute the statistics.
98
98
  The list of available methods is given with
99
- `dclab.statistics.Statistics.available_methods.keys()`
99
+ :func:`.available_methods.keys`
100
100
  If set to `None`, statistics for all methods are computed.
101
101
  features: list of str
102
102
  Feature name identifiers are defined by
103
- `dclab.definitions.feature_exists`.
103
+ :func:`dclab.definitions.feature_exists`.
104
104
  If set to `None`, statistics for all scalar features
105
105
  available are computed.
106
+ ret_dict: bool
107
+ Instead of returning ``(header, values)``, return a dictionary
108
+ with headers as keys.
106
109
 
107
110
  Returns
108
111
  -------
@@ -148,7 +151,10 @@ def get_statistics(ds, methods=None, features=None):
148
151
  label = dfn.get_feature_label(ft, rtdc_ds=ds)
149
152
  header.append(" ".join([mt, label]))
150
153
 
151
- return header, values
154
+ if ret_dict:
155
+ return dict(zip(header, values))
156
+ else:
157
+ return header, values
152
158
 
153
159
 
154
160
  def mode(data):
@@ -191,7 +197,24 @@ def mode(data):
191
197
  # Register all the methods
192
198
  # Methods that require an axis
193
199
  Statistics(name="Mean", req_feature=True, method=np.average)
200
+ # Premature-Optimization warning: `np.percentile` also accepts an array
201
+ # of percentiles as the `q` argument, which I would expect to yield better
202
+ # performance than computing percentiles individually. Implementing this
203
+ # would break the way we are defining statistical methods here (One
204
+ # `Statistics` instance per method) and thus requires a considerable
205
+ # amount of work (much more work than writing this text here). It would
206
+ # also make understanding the code more difficult. In addition, computing
207
+ # statistics is not done often and is extremely fast anyway for a few
208
+ # millions of events. Don't optimize this!
209
+ Statistics(name="10th Percentile", req_feature=True,
210
+ method=lambda data: np.percentile(data, 10))
211
+ Statistics(name="25th Percentile", req_feature=True,
212
+ method=lambda data: np.percentile(data, 25))
194
213
  Statistics(name="Median", req_feature=True, method=np.median)
214
+ Statistics(name="75th Percentile", req_feature=True,
215
+ method=lambda data: np.percentile(data, 75))
216
+ Statistics(name="90th Percentile", req_feature=True,
217
+ method=lambda data: np.percentile(data, 90))
195
218
  Statistics(name="Mode", req_feature=True, method=mode)
196
219
  Statistics(name="SD", req_feature=True, method=np.std)
197
220
  # Methods that work on RTDCBase
@@ -1,10 +1,10 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dclab
3
- Version: 0.64.0
3
+ Version: 0.64.2
4
4
  Summary: Library for real-time deformability cytometry (RT-DC)
5
5
  Author: Benedikt Hartmann, Eoghan O'Connell, Maik Herbig, Maximilian Schlögel, Nadia Sbaa, Paul Müller, Philipp Rosendahl, Raghava Alajangi
6
6
  Maintainer-email: Paul Müller <dev@craban.de>
7
- License: GPL-2.0-or-later
7
+ License-Expression: GPL-2.0-or-later
8
8
  Project-URL: source, https://github.com/DC-Analysis/dclab
9
9
  Project-URL: tracker, https://github.com/DC-Analysis/dclab/issues
10
10
  Project-URL: documentation, https://dclab.readthedocs.io/en/stable/
@@ -1,13 +1,13 @@
1
1
  dclab/__init__.py,sha256=wyJWhElQRPcq09vUqUnuquTU_KHgHxv6wQxuxQ988Iw,1583
2
- dclab/_version.py,sha256=zVb-mNfv7Q80VP6gLIonMXNXR1BAme5zhf4Ww25kC90,513
2
+ dclab/_version.py,sha256=mnIFaYC6sZ_j_i-gY87R5meP1KGPhfa0o-8iIIlF24U,513
3
3
  dclab/cached.py,sha256=eWTYBiI-HQM7JuPH-oxa5LLnhAX32GpRwlYg2kQ3sTA,2917
4
- dclab/downsampling.cpython-312-x86_64-linux-musl.so,sha256=dLA3nwEOrEaKuVS757blY8LzF2eA_9_M1t_18q4OQc8,1556592
4
+ dclab/downsampling.cpython-312-x86_64-linux-musl.so,sha256=RXoS0Ft5VnZd1IkXCZIeTP7HXfNFfxyfgAISWf9VRTM,1558752
5
5
  dclab/downsampling.pyx,sha256=OK7zbgGLl5gVyoU8ZBHo9EWwb8C9ChavmLNEvQvC9T0,7258
6
6
  dclab/http_utils.py,sha256=XHicbHQts5LY3zSNmYqNgAZpKTktotEiwQgJ8d2sBlk,10912
7
7
  dclab/kde_contours.py,sha256=UlU64lrzMQUZH11oZndW7xf7NFCzwP3FcVujwuqXDCI,278
8
8
  dclab/kde_methods.py,sha256=f0-zDN7ETintvGB3gSzxwgBb53YtT9jZtzI70EAX50g,365
9
9
  dclab/polygon_filter.py,sha256=qexmo-rXe06CUPZhN6EMJy4y4B5gXZeqejdvIB2arOE,13480
10
- dclab/statistics.py,sha256=tJDqPlY_Jw2Hhl-s7ugMBSZAxcRuPu4LQuBAZBXz7t8,6355
10
+ dclab/statistics.py,sha256=DWBG_Kj7cn89b_s5mqWYDCMGB881jHcCRFY-KAOBnhE,7598
11
11
  dclab/util.py,sha256=HFT5ZQV6AW8GIIruVMldukbVVdlMyKH50GUfOogAcxI,5860
12
12
  dclab/warn.py,sha256=MjJvyQeuvIXFQ2-fHDzbmXJ0scnHqqRJlIxfuLI_utE,523
13
13
  dclab/cli/__init__.py,sha256=84YzzV6aE_NY-o7wvqgvUoxBLvIOEXpSUbkVcGRyzQ0,483
@@ -21,7 +21,7 @@ dclab/cli/task_tdms2rtdc.py,sha256=u0L1Fq9rXIeQG9b72SuUIh_qYC6fG2xXxht9_rcdCao,8
21
21
  dclab/cli/task_verify_dataset.py,sha256=aqBNCA5pjBL6r9wdEgzmSl5BWPIBEgPAmoQpeFw4Nts,2705
22
22
  dclab/definitions/__init__.py,sha256=56VL7rNTjP61gpGgN2GEUKicds2aBz_nWNwzfNxO_l8,2781
23
23
  dclab/definitions/feat_const.py,sha256=3zii5bXN0d0lMtkiI8dR9ivNlNQYosZASAlOg1UKKPA,9634
24
- dclab/definitions/feat_logic.py,sha256=SXsSlAusgtE3uXcPu84dQwYZ07zxmV37DmPednA3_dM,5823
24
+ dclab/definitions/feat_logic.py,sha256=_Rr2vK-nbRNjxk5Kf8Iohs_Q3jzUe9EZJgxB9vMwxwE,5379
25
25
  dclab/definitions/meta_const.py,sha256=zqE-SrD2tJMCFWdtp_IenwnbIQg0lulvbQAw9dK0Gho,13125
26
26
  dclab/definitions/meta_logic.py,sha256=wCgb7DPRHaR8DCWw_VbwNkpslUnazzWfgX0iS8oEe90,4194
27
27
  dclab/definitions/meta_parse.py,sha256=YdaTdM8DAMsIFn5ITH9OHYGTXeAOBGWtx22oVjxXcWk,2393
@@ -35,14 +35,14 @@ dclab/external/packaging/version.py,sha256=9MLL6_EYHvGA1yCGndwL5ZmmDA_wqQsW15GyK
35
35
  dclab/external/skimage/LICENSE,sha256=ivsSBvn3c0R9mOctWRRdza7C7wdZSRYgCVxlVqUdlB8,1452
36
36
  dclab/external/skimage/__init__.py,sha256=-B2QUKHAFzQuBWuuKvPDC5JIl0Zb-x3OGmbwPaE9VwQ,72
37
37
  dclab/external/skimage/_find_contours.py,sha256=16v5eeTZBmevG8SSuXtJ6yUpVPhwfSmtc8pDD0nuuOU,9340
38
- dclab/external/skimage/_find_contours_cy.cpython-312-x86_64-linux-musl.so,sha256=KyyaZpwg1PR5zN4sF-R6QgxhlLjoW8ZB5tuhpXSuPdU,1199456
38
+ dclab/external/skimage/_find_contours_cy.cpython-312-x86_64-linux-musl.so,sha256=XpYGJs9UzuepElv0IIU3vcZX6Tjm1hSGI1bbbmEGNP8,1205472
39
39
  dclab/external/skimage/_find_contours_cy.pyx,sha256=pZJOBhMHzYEMkcz4WQVyjn7jDNrdjCfet47FU1hRAxk,7161
40
- dclab/external/skimage/_pnpoly.cpython-312-x86_64-linux-musl.so,sha256=oduZQeQ77oHu9gIaVROmGacvBOX0L82k8hwaGUPr4hw,1269856
40
+ dclab/external/skimage/_pnpoly.cpython-312-x86_64-linux-musl.so,sha256=eu87GpWjU3gh-dsvz3QlP_W2Cb0RBh0qDHjB_9B6BEQ,1272384
41
41
  dclab/external/skimage/_pnpoly.pyx,sha256=Qdn6xPazDschBqbr46DzB75MB2MnqvdnoTSBMK7kUGE,2504
42
42
  dclab/external/skimage/measure.py,sha256=y1idCqD9TUxp3-QnOiWR_d674OKaeqBJ4MN2-gVP6ro,247
43
43
  dclab/external/skimage/pnpoly.py,sha256=r8hFNiTz5XlUoNZjosqA0iyv1FPn0l7ewbplgFgkdaw,1347
44
44
  dclab/external/skimage/_shared/__init__.py,sha256=2sHZwTtJSlMTa3Q2YSvQW7jrPLMUSqDJQa-ROe5zfcw,37
45
- dclab/external/skimage/_shared/geometry.cpython-312-x86_64-linux-musl.so,sha256=j7XNvuPUmeLCsh-oKhyQ3XcJscxC779WKFwLNSzm5i8,67712
45
+ dclab/external/skimage/_shared/geometry.cpython-312-x86_64-linux-musl.so,sha256=_BOWuGXj6LjBAcOmQDE2IvvO-QRi8a5jW57CKg3PBLg,67712
46
46
  dclab/external/skimage/_shared/geometry.pxd,sha256=kRsu9ifv_rL3kbRIgSLf86p0hn2oTMp6s013lZ9bBZM,346
47
47
  dclab/external/skimage/_shared/geometry.pyx,sha256=miCHUh6mBDbRRIoaF_0xAER1MRzsCAzFdlYQZhV7RmE,1667
48
48
  dclab/external/statsmodels/LICENSE,sha256=JCyTeA3bPAyFsOpDoSVZjoui7Lu1XTrcAuf0eClKvV0,1637
@@ -76,7 +76,7 @@ dclab/isoelastics/iso_LE-2D-FEM-19-area_um-deform.txt,sha256=lcTjUUnIwj_bVBrG2T2
76
76
  dclab/isoelastics/iso_LE-2D-FEM-19-volume-deform.txt,sha256=vTcazOlOXo3BQ0NQtGB_IdHKA0neOLXZ_d3JuMU--RE,83358
77
77
  dclab/isoelastics/iso_LE-2D-ana-18-area_um-deform.txt,sha256=KD2RkhCfkrna20pLJ3UzNZZapMkhQydMYz0iKdMtRRE,46805
78
78
  dclab/kde/__init__.py,sha256=_WSLPMfxE2su6tmO5mJxUE_9ON16-pqQUQCUlzRtyKI,55
79
- dclab/kde/base.py,sha256=KuV_9_AJ4Sn14C4WAH4eF63URAVYCnaFOcLgsVCaAjo,12961
79
+ dclab/kde/base.py,sha256=w0or7ix8hnK-xqtGSyhyn48YUo55WnEEPsBjWrJna9s,16196
80
80
  dclab/kde/contours.py,sha256=WoRqBj_xK-23FZjtaYly7E2Q8sGZ16q2ILq-DmrlmC8,6742
81
81
  dclab/kde/methods.py,sha256=8g4lYUKYqt2pdA9efHVRBDCUUzmePmWPp6rljtJ0XD8,9438
82
82
  dclab/lme4/__init__.py,sha256=5WPFMTK-Yia3NJuwZEEBQ3fCyW3DiFgpZFrAwU33TV4,272
@@ -87,9 +87,9 @@ dclab/rtdc_dataset/__init__.py,sha256=MUHSGVQJ4Zc0IyU2lf01dpDWyOyNveHip-UjSkmPNv
87
87
  dclab/rtdc_dataset/check.py,sha256=lJNaz4QTe2WNlxik6zSohRHTiAYuP_bKOzSDjPGTUS0,35006
88
88
  dclab/rtdc_dataset/config.py,sha256=MvBteFya3R6Ch3U6UgTakCsJoBgVykTxS_Z25STWPHU,17432
89
89
  dclab/rtdc_dataset/copier.py,sha256=-2ISiOs4ytxN_ttXQGhaepuD2Ppy80G9UlDSZVyEoOU,14175
90
- dclab/rtdc_dataset/core.py,sha256=p1Wy9Dq1Ny4i-cfvgPfCZov_lQAhGz0--x59j-g4mTs,34753
90
+ dclab/rtdc_dataset/core.py,sha256=LjddGHdqZINXKUQcvCyCDmOofdBzyJIXN_z_C-zWGnM,34777
91
91
  dclab/rtdc_dataset/export.py,sha256=Ukmdz-Mm9iei6vhfp1lh7oNQiAbXvA2o3tRx1XlBWCM,33416
92
- dclab/rtdc_dataset/feat_basin.py,sha256=i1J6iKQQEJXdi3u-TB9y_OdxbkFPBK6_G2jeaGcBsLY,26172
92
+ dclab/rtdc_dataset/feat_basin.py,sha256=iBGhuRkIy-zbonIjYHCQdLd3V3_cebpBfDTvqyLzJK4,26921
93
93
  dclab/rtdc_dataset/feat_temp.py,sha256=XbDIS1iUUkRH0Zp9uVlwvK_untJ7hkOnKshK1Drsnt8,3694
94
94
  dclab/rtdc_dataset/filter.py,sha256=AFPUBzOIi3pqXgUdMQ5CIi9ZeGOKC71rfSZKLMLgtog,10023
95
95
  dclab/rtdc_dataset/fmt_dict.py,sha256=gumVQOiVVDFUKow_483PY7cxInqo-NiBBnBhIU8s4lg,3009
@@ -134,9 +134,9 @@ dclab/rtdc_dataset/fmt_tdms/event_mask.py,sha256=eZiDHAGG3MCVckEMHsV-YBbL-pETVLo
134
134
  dclab/rtdc_dataset/fmt_tdms/event_trace.py,sha256=Vkym0QKSw2mq1XZl5n8wDkgHXmaZwQGiMAV5AuRSJkE,5215
135
135
  dclab/rtdc_dataset/fmt_tdms/exc.py,sha256=WzrMqnyrzp8gsT8Pf7JKqGGv43ewx7d_qgtirURppRI,813
136
136
  dclab/rtdc_dataset/fmt_tdms/naming.py,sha256=biI9l1EO6BuSYgwZG0deacj4i1fMHQcW78AKXEcm5Wc,5373
137
- dclab-0.64.0.dist-info/METADATA,sha256=zfrjZaLGPiE_ZPYkVtoUGvGI-CPkjgY-eiKJshd-3bo,4755
138
- dclab-0.64.0.dist-info/WHEEL,sha256=xeOWfuBAUnjpzUAzckp_8HZXuBYCaUHe08u1Vv8L3Xk,112
139
- dclab-0.64.0.dist-info/entry_points.txt,sha256=eOpjgznu-eW-9utUpLU-77O5098YyUEgGF3ksGMdtec,273
140
- dclab-0.64.0.dist-info/top_level.txt,sha256=irvwZMgs1edY1Zj60ZFk7Almb9Zhk4k6E6aC4YPFnnM,6
141
- dclab-0.64.0.dist-info/RECORD,,
142
- dclab-0.64.0.dist-info/licenses/LICENSE,sha256=gLDaVZWRrlnLdyfOrR0qfWjLbOVcjvoJ-kCLUK0fyXA,15360
137
+ dclab-0.64.2.dist-info/METADATA,sha256=AnwRZDfaLbFx0ODuztvp4Yb_ugWo1jrWdCJZl1d5Iwc,4766
138
+ dclab-0.64.2.dist-info/WHEEL,sha256=AwHYJA1Do1jwgPIoLQR4DiHSeYY_vU6Ht9Vljq5Yt_M,112
139
+ dclab-0.64.2.dist-info/entry_points.txt,sha256=eOpjgznu-eW-9utUpLU-77O5098YyUEgGF3ksGMdtec,273
140
+ dclab-0.64.2.dist-info/top_level.txt,sha256=irvwZMgs1edY1Zj60ZFk7Almb9Zhk4k6E6aC4YPFnnM,6
141
+ dclab-0.64.2.dist-info/RECORD,,
142
+ dclab-0.64.2.dist-info/licenses/LICENSE,sha256=gLDaVZWRrlnLdyfOrR0qfWjLbOVcjvoJ-kCLUK0fyXA,15360
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.7.1)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp312-cp312-musllinux_1_2_x86_64
5
5