dbdicom 0.2.1__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of dbdicom might be problematic. Click here for more details.

Files changed (50) hide show
  1. dbdicom/__init__.py +4 -3
  2. dbdicom/create.py +34 -97
  3. dbdicom/dro.py +174 -0
  4. dbdicom/ds/dataset.py +31 -4
  5. dbdicom/ds/types/mr_image.py +18 -7
  6. dbdicom/extensions/__init__.py +9 -0
  7. dbdicom/{wrappers → extensions}/dipy.py +191 -205
  8. dbdicom/extensions/elastix.py +503 -0
  9. dbdicom/extensions/matplotlib.py +107 -0
  10. dbdicom/extensions/numpy.py +271 -0
  11. dbdicom/{wrappers → extensions}/scipy.py +130 -31
  12. dbdicom/{wrappers → extensions}/skimage.py +1 -1
  13. dbdicom/extensions/sklearn.py +243 -0
  14. dbdicom/extensions/vreg.py +1390 -0
  15. dbdicom/external/dcm4che/bin/emf2sf +57 -57
  16. dbdicom/manager.py +70 -36
  17. dbdicom/pipelines.py +66 -0
  18. dbdicom/record.py +266 -43
  19. dbdicom/types/instance.py +54 -19
  20. dbdicom/types/series.py +2183 -412
  21. dbdicom/utils/image.py +256 -48
  22. dbdicom-0.2.4.dist-info/METADATA +89 -0
  23. {dbdicom-0.2.1.dist-info → dbdicom-0.2.4.dist-info}/RECORD +26 -41
  24. {dbdicom-0.2.1.dist-info → dbdicom-0.2.4.dist-info}/WHEEL +1 -1
  25. dbdicom/external/__pycache__/__init__.cpython-310.pyc +0 -0
  26. dbdicom/external/__pycache__/__init__.cpython-37.pyc +0 -0
  27. dbdicom/external/dcm4che/__pycache__/__init__.cpython-310.pyc +0 -0
  28. dbdicom/external/dcm4che/__pycache__/__init__.cpython-37.pyc +0 -0
  29. dbdicom/external/dcm4che/bin/__pycache__/__init__.cpython-310.pyc +0 -0
  30. dbdicom/external/dcm4che/bin/__pycache__/__init__.cpython-37.pyc +0 -0
  31. dbdicom/external/dcm4che/lib/linux-x86/libclib_jiio.so +0 -0
  32. dbdicom/external/dcm4che/lib/linux-x86-64/libclib_jiio.so +0 -0
  33. dbdicom/external/dcm4che/lib/linux-x86-64/libopencv_java.so +0 -0
  34. dbdicom/external/dcm4che/lib/solaris-sparc/libclib_jiio.so +0 -0
  35. dbdicom/external/dcm4che/lib/solaris-sparc/libclib_jiio_vis.so +0 -0
  36. dbdicom/external/dcm4che/lib/solaris-sparc/libclib_jiio_vis2.so +0 -0
  37. dbdicom/external/dcm4che/lib/solaris-sparcv9/libclib_jiio.so +0 -0
  38. dbdicom/external/dcm4che/lib/solaris-sparcv9/libclib_jiio_vis.so +0 -0
  39. dbdicom/external/dcm4che/lib/solaris-sparcv9/libclib_jiio_vis2.so +0 -0
  40. dbdicom/external/dcm4che/lib/solaris-x86/libclib_jiio.so +0 -0
  41. dbdicom/external/dcm4che/lib/solaris-x86-64/libclib_jiio.so +0 -0
  42. dbdicom/utils/vreg.py +0 -2626
  43. dbdicom/wrappers/__init__.py +0 -7
  44. dbdicom/wrappers/elastix.py +0 -855
  45. dbdicom/wrappers/numpy.py +0 -119
  46. dbdicom/wrappers/sklearn.py +0 -151
  47. dbdicom/wrappers/vreg.py +0 -273
  48. dbdicom-0.2.1.dist-info/METADATA +0 -276
  49. {dbdicom-0.2.1.dist-info → dbdicom-0.2.4.dist-info}/LICENSE +0 -0
  50. {dbdicom-0.2.1.dist-info → dbdicom-0.2.4.dist-info}/top_level.txt +0 -0
dbdicom/types/series.py CHANGED
@@ -3,15 +3,18 @@ from __future__ import annotations
3
3
 
4
4
  import os
5
5
  import math
6
+ from numbers import Number
6
7
 
7
8
  import numpy as np
8
9
  import nibabel as nib
10
+ import vreg
11
+
9
12
 
10
13
  from dbdicom.record import Record, read_dataframe_from_instance_array
11
14
  from dbdicom.ds import MRImage
12
15
  import dbdicom.utils.image as image_utils
13
16
  from dbdicom.manager import Manager
14
- # import dbdicom.wrappers.scipy as scipy_utils
17
+ # import dbdicom.extensions.scipy as scipy_utils
15
18
  from dbdicom.utils.files import export_path
16
19
 
17
20
 
@@ -50,6 +53,8 @@ class Series(Record):
50
53
 
51
54
  # replace by clone(). Adopt implies move rather than copy
52
55
  def adopt(self, instances):
56
+ if len(instances)==0:
57
+ return []
53
58
  uids = [i.uid for i in instances]
54
59
  uids = self.manager.copy_to_series(uids, self.uid, **self.attributes)
55
60
  if isinstance(uids, list):
@@ -65,10 +70,6 @@ class Series(Record):
65
70
  else:
66
71
  return self.record('Instance', uids, **attr)
67
72
 
68
-
69
-
70
-
71
-
72
73
  def export_as_dicom(self, path):
73
74
  folder = self.label()
74
75
  path = export_path(path, folder)
@@ -81,24 +82,22 @@ class Series(Record):
81
82
  mgr.import_dataset(ds)
82
83
  copy.remove()
83
84
 
84
-
85
85
  def export_as_png(self, path, **kwargs):
86
86
  #Export all images as png files
87
87
  folder = self.label()
88
88
  path = export_path(path, folder)
89
89
  images = self.images()
90
90
  for i, img in enumerate(images):
91
- img.status.progress(i+1, len(images), 'Exporting png..')
91
+ img.progress(i+1, len(images), 'Exporting png..')
92
92
  img.export_as_png(path, **kwargs)
93
93
 
94
-
95
94
  def export_as_csv(self, path):
96
95
  #Export all images as csv files
97
96
  folder = self.label()
98
97
  path = export_path(path, folder)
99
98
  images = self.images()
100
99
  for i, img in enumerate(images):
101
- img.status.progress(i+1, len(images), 'Exporting csv..')
100
+ img.progress(i+1, len(images), 'Exporting csv..')
102
101
  img.export_as_csv(path)
103
102
 
104
103
  def export_as_npy(self, path, dims=None):
@@ -110,13 +109,12 @@ class Series(Record):
110
109
  img.progress(i+1, len(images), 'Exporting npy..')
111
110
  img.export_as_npy(path)
112
111
  else:
113
- array = self.ndarray(dims)
112
+ array = self.pixel_values(dims)
114
113
  filepath = self.label()
115
114
  filepath = os.path.join(path, filepath + '.npy')
116
115
  with open(filepath, 'wb') as f:
117
116
  np.save(f, array)
118
117
 
119
-
120
118
  def export_as_nifti(self, path, dims=None):
121
119
  if dims is None:
122
120
  folder = self.label()
@@ -142,469 +140,1724 @@ class Series(Record):
142
140
  filepath = os.path.join(path, filepath + '[' + str(i) + '].nii')
143
141
  nib.save(nifti1_image, filepath)
144
142
 
145
-
146
143
  def import_dicom(self, files):
147
144
  uids = self.manager.import_datasets(files)
148
145
  self.manager.move_to(uids, self.uid)
149
146
 
150
147
 
151
148
 
152
- def subseries(self, **kwargs)->Series:
153
- """Extract a subseries based on values of header elements.
149
+ def coords(self, dims=('InstanceNumber', ), mesh=False, slice={}, coords={}, exclude=False, **filters)->dict:
150
+ """return a dictionary of coordinates.
154
151
 
155
152
  Args:
156
- kwargs: Any number of valid DICOM (tag, value) keyword arguments.
153
+ dims (tuple, optional): Dimensions along which the shape is to be determined. If dims is not provided, they default to InstanceNumber.
154
+
155
+ Raises:
156
+ ValueError: If the dimensions do not produce suitable coordinates.
157
157
 
158
158
  Returns:
159
- Series: a new series as a sibling under the same parent.
159
+ dict: dictionary of coordinates, one entry for each dimension. The values for each coordinate are returned as an darray with one dimension.
160
160
 
161
- See Also:
162
- :func:`~split_by`
161
+ See also:
162
+ `set_coords`
163
163
 
164
164
  Example:
165
165
 
166
- Create a multi-slice series with multiple flip angles and repetition times:
166
+ Create an empty series with 3 slice dimensions:
167
167
 
168
168
  >>> coords = {
169
- ... 'SliceLocation': np.arange(16),
170
- ... 'FlipAngle': [2, 15, 30],
171
- ... 'RepetitionTime': [2.5, 5.0, 7.5],
169
+ ... 'SliceLocation': np.array([0,1,2,0,1,2]),
170
+ ... 'FlipAngle': np.array([2,2,2,10,10,10]),
171
+ ... 'RepetitionTime': np.array([1,5,15,1,5,15]),
172
172
  ... }
173
- >>> zeros = db.zeros((128, 128, 16, 3, 2), coords)
174
-
175
- Create a new series containing only the data with flip angle 2 and repetition time 7.5:
173
+ >>> series = db.empty_series(coords)
174
+
175
+ Retrieve the coordinates:
176
176
 
177
- >>> volume = zeros.subseries(FlipAngle=2.0, RepetitionTime=7.5)
177
+ >>> coords = series.coords(tuple(coords))
178
+ >>> coords['FlipAngle']
179
+ [2,10,2,10,2,10]
180
+ >>> coords['RepetitionTime']
181
+ [1,1,5,5,15,15]
178
182
 
179
- Check that the volume series now has two dimensions of size 1:
183
+ Check the result in default dimensions:
180
184
 
181
- >>> array = volume.ndarray(dims=tuple(coords))
182
- >>> print(array.shape)
183
- (128, 128, 16, 1, 1)
185
+ >>> coords = series.coords()
186
+ >>> coords['InstanceNumber']
187
+ [1,2,3,4,5,6]
184
188
 
185
- and only one flip angle and repetition time:
189
+ In this case the slice location and flip angle along are sufficient to identify the frames, so these are valid coordinates:
186
190
 
187
- >>> print(volume.FlipAngle, volume.RepetitionTime)
188
- 2.0 7.5
191
+ >>> coords = series.coords(('SliceLocation', 'FlipAngle'))
192
+ >>> coords['SliceLocation']
193
+ [0,0,1,1,2,2]
189
194
 
190
- and that the parent study now has two series:
195
+ # However slice location and acquisition time are not sufficient as coordinates because each combination appears twice. So this throws an error:
191
196
 
192
- >>> volume.study().print()
193
- ---------- STUDY ---------------
194
- Study New Study [None]
195
- Series 001 [New Series]
196
- Nr of instances: 96
197
- Series 002 [New Series]
198
- Nr of instances: 16
199
- --------------------------------
197
+ >>> series.coords(('SliceLocation','RepetitionTime'))
198
+ ValueError: These are not proper coordinates. Coordinate values must be unique.
200
199
  """
201
- return subseries(self, move=False, **kwargs)
202
200
 
201
+ if np.isscalar(dims):
202
+ dims = (dims,)
203
+
204
+ # Default empty coordinates
205
+ vcoords = {}
206
+ for i, tag in enumerate(dims):
207
+ vcoords[tag] = np.array([])
208
+
209
+ # Get all frames and return if empty
210
+ frames = self.instances()
211
+ if frames == []:
212
+ return vcoords
213
+
214
+ # Read values and sort
215
+ fltr = {**slice, **filters}
216
+ values = [f[list(dims)+list(fltr)+list(tuple(coords))] for f in frames]
217
+ values.sort()
218
+
219
+ # Check dimensions
220
+ cvalues = [v[:len(dims)] for v in values]
221
+ cvalues = np.array(cvalues).T
222
+ _check_if_ivals(cvalues)
223
+
224
+ # Filter values
225
+ values = _filter_values(values, fltr, coords, exclude=exclude)
226
+
227
+ # If requested, mesh values
228
+ if mesh:
229
+ values = _meshvals(values)
230
+ mshape = values.shape[1:]
231
+
232
+ # Build coordinates
233
+ if values.size > 0:
234
+ for i, tag in enumerate(dims):
235
+ vcoords[tag] = values[i,...]
236
+ if mesh: # Is this necessary? Is already in the right shape
237
+ vcoords[tag] = vcoords[tag].reshape(mshape)
238
+
239
+ return vcoords
203
240
 
204
- def split_by(self, keyword: str | tuple) -> list:
205
- """Split the series into multiple subseries based on keyword value.
206
241
 
207
- Args:
208
- keyword (str | tuple): A valid DICOM keyword or hexadecimal (group, element) tag.
242
+ def values(self, *tags, dims=('InstanceNumber', ), return_coords=False, mesh=True, slice={}, coords={}, exclude=False, **filters)->np.ndarray:
243
+ """Return the values of one or more attributes for each frame in the series.
209
244
 
210
- Raises:
211
- ValueError: if an invalid or missing keyword is provided.
212
- ValueError: if all images have the same value for the keyword, so no subseries can be derived. An exception is raised rather than a copy of the series to avoid unnecessary copies being made. If that is the intention, use series.copy() instead.
245
+ Args:
246
+ tag (str or tuple): either a keyword string or a (group, element) tag of a DICOM data element.
247
+ dims (tuple, optional): Dimensions of the resulting array. If *dims* is not provided, values are ordered by InstanceNumber. Defaults to None.
248
+ inds (dict, optional): Dictionary with indices to retrieve a slice of the entire array. Defaults to None.
249
+ select (dict, optional): A dictionary of values for DICOM attributes to filter the result. By default the data are not filtered.
250
+ filters (dict, optional): keyword arguments to filter the data by value of DICOM attributes.
213
251
 
214
252
  Returns:
215
- list: A list of ``Series`` instances, where each element has the same value of the given keyword.
253
+ An `numpy.ndarray` of values with dimensions as specified by *dims*. If the value is not defined in *one or more* of the slices, an empty array is returned.
216
254
 
217
- See Also:
218
- :func:`~subseries`
255
+ See also:
256
+ `unique`
257
+ `coords`
258
+ `gridcoords`
219
259
 
220
- Example:
260
+ Note:
261
+ In order to list the values in the case one or more are absent in the headers, use `Series.unique()` instead.
221
262
 
222
- Create a single-slice series with multiple flip angles and repetition times:
263
+ Example:
264
+
265
+ Create a zero-filled series with 3 slice dimensions:
223
266
 
224
267
  >>> coords = {
225
- ... 'FlipAngle': [2, 15, 30],
226
- ... 'RepetitionTime': [2.5, 7.5],
227
- ... }
228
- >>> zeros = db.zeros((128, 128, 3, 2), coords)
229
- >>> zeros.print()
230
- ---------- SERIES --------------
231
- Series 001 [New Series]
232
- Nr of instances: 6
233
- MRImage 000001
234
- MRImage 000002
235
- MRImage 000003
236
- MRImage 000004
237
- MRImage 000005
238
- MRImage 000006
239
- --------------------------------
268
+ ... 'SliceLocation': 10*np.arange(4),
269
+ ... 'FlipAngle': np.array([2, 15, 30]),
270
+ ... 'RepetitionTime': np.array([2.5, 5.0]), }
271
+ >>> zeros = db.zeros((128,128,4,3,2), coords)
240
272
 
241
- Splitting this series by FlipAngle now creates 3 new series in the same study, with 2 images each. By default the fixed value of the splitting attribute is written in the series description:
273
+ # If values() is called without dimensions, a flat array is returned with one value per frame, ordered by instance number:
242
274
 
243
- >>> FA = zeros.split_by('FlipAngle')
244
- >>> zeros.study().print()
245
- ---------- STUDY ---------------
246
- Study New Study [None]
247
- Series 001 [New Series]
248
- Nr of instances: 6
249
- Series 002 [New Series[FlipAngle = 2.0]]
250
- Nr of instances: 2
251
- Series 003 [New Series[FlipAngle = 15.0]]
252
- Nr of instances: 2
253
- Series 004 [New Series[FlipAngle = 30.0]]
254
- Nr of instances: 2
255
- --------------------------------
275
+ >>> zeros.values('InstanceNumber')
276
+ [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,191,20,21,22,23,24]
277
+ >>> zros.values('FlipAngle')
278
+ [2,2,15,15,30,30,2,2,15,15,30,30,2,2,15,15,30,30,2,2,15,15,30,30]
256
279
 
257
- Check the flip angle of the split series:
258
- >>> for series in FA:
259
- ... print(series.FlipAngle)
260
- 2.0
261
- 15.0
262
- 30.0
263
- """
264
-
265
- self.status.message('Reading values..')
266
- try:
267
- values = self[keyword]
268
- except:
269
- msg = str(keyword) + ' is not a valid DICOM keyword'
270
- raise ValueError(msg)
271
- if len(values) == 1:
272
- msg = 'Cannot split by ' + str(keyword) + '\n'
273
- msg += 'All images have the same value'
274
- raise ValueError(msg)
275
-
276
- self.status.message('Splitting series..')
277
- split_series = []
278
- desc = self.instance().SeriesDescription + '[' + keyword + ' = '
279
- for v in values:
280
- kwargs = {keyword: v}
281
- new = self.subseries(**kwargs)
282
- new.SeriesDescription = desc + str(v) + ']'
283
- split_series.append(new)
284
- return split_series
280
+ if dimensions are provided, an array of the appropriate shape is returned:
285
281
 
282
+ >>> dims = tuple(coords)
283
+ >>> tacq = series.values('AcquisitionTime', dims)
284
+ >>> tacq.shape
285
+ (4,3,2)
286
+ >>> tacq[0,0,0]
287
+ 28609.057496
286
288
 
287
- # TODO: This needs the same API as ndarray with coord and slice arguments.
288
- # TODO: This also needs a set_slice_group.
289
- # TODO: Currently based on image orientation only rather than complete affine.
290
- def slice_groups(self, dims=('InstanceNumber',)) -> list:
291
- """Return a list of slice groups in the series.
289
+ In this case all values are the same:
292
290
 
293
- In dbdicom, a *slice group* is defined as a series of slices that have the same orientation. It is common for a single series to have images with multiple orientations, such as in localizer series in MRI. For such a series, returning all data in a single array may not be meaningful.
291
+ >>> np.unique(tacq)
292
+ [28609.057496]
294
293
 
295
- Formally, a *slice group* is a dictionary with two entries: 'ndarray' is the numpy.ndarray with the data along the dimensions provided by the dims argument, and 'affine' is the 4x4 affine matrix of the slice group. The function returns a list of such dictionaries, one for each slice group in the series.
294
+ If a value is not defined in the header, None is returned:
295
+ >>> series.values('Gobbledigook')[:2]
296
+ [None None]
296
297
 
297
- Args:
298
- dims (tuple, optional): Dimensions for the returned arrays. Defaults to ('InstanceNumber',).
298
+ Specify keywords to select a subset of values:
299
299
 
300
- Returns:
301
- list: A list of slice groups (dictionaries), one for each slice group in the series.
300
+ >>> tacq = zeros.values('AcquisitionTime', dims, FlipAngle=15)
301
+ >>> tacq.shape
302
+ (4, 1, 2)
302
303
 
303
- Examples:
304
+ If none exist, and emptry array is returned:
304
305
 
305
- >>> series = db.ones((128,128,5,10))
306
- >>> sgroups = series.slice_groups(dims=('SliceLocation', 'AcquisitionTime'))
306
+ >>> tacq = zeros.values('AcquisitionTime', dims, FlipAngle=0)
307
+ >>> tacq.size
308
+ 0
307
309
 
308
- Since there is only one slice group in the series, ``sgroups`` is a list with one element:
310
+ Multiple possible values can be selected with arrays:
309
311
 
310
- >>> print(len(sgroups))
311
- 1
312
+ >>> tacq = zeros.values('AcquisitionTime', dims, FlipAngle=np.array([15,30]))
313
+ >>> tacq.shape
314
+ (4, 2, 2)
312
315
 
313
- The array of the slice group is the entire volume of the series:
316
+ Any number of keywords can be added as filters:
314
317
 
315
- >>> print(sgroups[0]['ndarray'].shape)
316
- (128, 128, 5, 10)
318
+ >>> tacq = zeros.values('AcquisitionTime', dims, FlipAngle=np.array([15,30]), SliceLocation=np.array([10,20]))
319
+ >>> tacq.shape
320
+ (2, 2, 2)
317
321
 
318
- And the affine of the series has not changed from the default (identity):
322
+ Filters can alos be set using the *select* argument:
319
323
 
320
- >>> print(sgroups[0]['affine'])
321
- [[1. 0. 0. 0.]
322
- [0. 1. 0. 0.]
323
- [0. 0. 1. 0.]
324
- [0. 0. 0. 1.]]
324
+ >>> tacq = zeros.values('AcquisitionTime', dims, select={'FlipAngle': 15})
325
+ >>> tacq.shape
326
+ (4, 1, 2)
327
+
328
+ This also allows (group, element) tags:
329
+
330
+ >>> tacq = zeros.values('AcquisitionTime', dims, select={(0x0018, 0x1314): 15})
331
+ >>> tacq.shape
332
+ (4, 1, 2)
325
333
 
334
+ Selections can also be made using indices rather than values:
335
+
336
+ >>> tacq = zeros.values('FlipAngle', dims, inds={'FlipAngle': 1})
337
+ >>> tacq.shape
338
+ (4, 1, 2)
339
+
340
+ >>> tacq = zeros.values('AcquisitionTime', dims, inds={'FlipAngle':np.arange(2)})
341
+ >>> tacq.shape
342
+ (4, 2, 2)
326
343
  """
344
+
345
+ if np.isscalar(dims):
346
+ dims = (dims,)
347
+
348
+ # Default return values
349
+ values = np.array([]).reshape((0,0))
350
+ vcoords = {}
351
+ for i, tag in enumerate(dims):
352
+ vcoords[tag] = np.array([])
327
353
 
328
- slice_groups = []
329
- image_orientation = self.ImageOrientationPatient
354
+ # Get all frames and return if empty
355
+ frames = self.instances()
356
+ if frames == []:
357
+ if return_coords:
358
+ return values, vcoords
359
+ return values
360
+
361
+ # Read values and sort
362
+ filters = {**slice, **filters}
363
+ values = []
364
+ for i, f in enumerate(frames):
365
+ self.progress(i+1,len(frames), 'Reading values..')
366
+ v = f[list(dims)+list(tags)+list(tuple(filters))+list(tuple(coords))]
367
+ values.append(v)
368
+ fsort = sorted(range(len(values)), key=lambda k: values[k][:len(dims)])
369
+ values = [values[i] for i in fsort]
370
+
371
+ # Check if dimensions are proper
372
+ # Need object array here because the values can be different type including lists.
373
+ cvalues = [v[:len(dims)] for v in values]
374
+ cvalues = np.array(cvalues, dtype=object).T
375
+ _check_if_ivals(cvalues)
376
+
377
+ # Filter values
378
+ values = _filter_values(values, filters, coords, exclude=exclude)
379
+ if values.size == 0:
380
+ if return_coords:
381
+ if len(tags) == 1:
382
+ return values, vcoords
383
+ else:
384
+ values = [np.array([]) for _ in range(len(tags))]
385
+ return tuple(values) + (vcoords,)
386
+ return values
387
+ cvalues = values[:len(dims),:]
388
+ values = values[len(dims):,:]
389
+
390
+ # If requested, mesh values
391
+ if mesh:
392
+ cmesh = _meshvals(cvalues)
393
+ values = _meshdata(values, cvalues, cmesh)
394
+ cvalues = cmesh
395
+
396
+ # Create return values
397
+ if len(tags) == 1:
398
+ values = values[0,...]
399
+ else:
400
+ values = [values[i,...] for i in range(values.shape[0])]
401
+ values = tuple(values)
402
+
403
+ if return_coords:
404
+ for i, tag in enumerate(dims):
405
+ vcoords[tag] = cvalues[i,...]
406
+ if len(tags) == 1:
407
+ return values, vcoords
408
+ else:
409
+ return values + (vcoords,)
410
+ else:
411
+ return values
330
412
 
331
- # Multiple slice groups in series - return list of cuboids
332
- if isinstance(image_orientation[0], list):
333
- for dir in image_orientation:
334
- slice_group = instance_array(self, ImageOrientationPatient=dir)
335
- affine = _slice_group_affine_matrix(list(slice_group), dir)
336
- array, _ = _get_pixel_array_from_instance_array(slice_group, sortby=list(dims), pixels_first=True)
337
- slice_groups.append({'ndarray': array[...,0], 'affine': affine})
413
+
414
+
415
+
416
+
417
+ def frames(
418
+ self, dims=('InstanceNumber', ), return_coords=False,
419
+ return_vals=(), mesh=True, slice={}, coords={}, exclude=False,
420
+ **filters):
421
+ """Return the frames of given coordinates in the correct order"""
422
+
423
+ if np.isscalar(dims):
424
+ dims = (dims,)
425
+
426
+ # Default return values
427
+ values = np.array([]).reshape((0,0))
428
+ vcoords = {}
429
+ for i, tag in enumerate(dims):
430
+ vcoords[tag] = np.array([])
431
+ if mesh:
432
+ fshape = tuple([0]*len(dims))
433
+ else:
434
+ fshape = (0,)
435
+
436
+ # Get all frames and return if empty
437
+ frames_sel = self.instances()
438
+ if frames_sel == []:
439
+
440
+ # Empty return values
441
+ frames = np.array([]).reshape(fshape)
442
+ rval = (frames,)
443
+ if return_coords:
444
+ rval += (vcoords, )
445
+ if return_vals != ():
446
+ rval += (values, )
447
+ if len(rval)==1:
448
+ return rval[0]
449
+ else:
450
+ return rval
451
+
452
+ # Read values and sort
453
+ filters = {**slice, **filters}
454
+ values = [f[list(dims)+list(return_vals)+list(tuple(filters))+list(tuple(coords))] for f in frames_sel]
455
+ fsort = sorted(range(len(values)), key=lambda k: values[k][:len(dims)])
456
+ values = [values[i] for i in fsort]
457
+
458
+ # Check dimensions
459
+ cvalues = [v[:len(dims)] for v in values]
460
+ cvalues = np.array(cvalues).T
461
+ _check_if_ivals(cvalues)
462
+
463
+ # Create array of frames.
464
+ frames = np.empty(len(frames_sel), dtype=object)
465
+ for i in range(len(fsort)):
466
+ frames[i] = frames_sel[fsort[i]]
467
+
468
+ # Filter values
469
+ finds = _filter_values_ind(values, filters, coords, exclude=exclude)
470
+ if finds.size==0:
471
+ # Empty return values
472
+ frames = np.array([]).reshape(fshape)
473
+ rval = (frames,)
474
+ if return_coords:
475
+ rval += (vcoords, )
476
+ if return_vals != ():
477
+ rval += (np.array([]), )
478
+ if len(rval)==1:
479
+ return rval[0]
480
+ else:
481
+ return rval
482
+ frames = frames[finds]
483
+ values = _filter_values(values, filters, coords, exclude=exclude)
484
+ cvalues = values[:len(dims),:]
485
+ values = values[len(dims):,:]
486
+
487
+ # If requested, mesh values
488
+ if mesh:
489
+ cmesh = _meshvals(cvalues)
490
+ values = _meshdata(values, cvalues, cmesh)
491
+ frames = _meshdata(frames.reshape((1,frames.size)), cvalues, cmesh)
492
+ frames = frames[0,...]
493
+ cvalues = cmesh
494
+
495
+ # Create return values
496
+ rval = (frames,)
497
+ if return_coords:
498
+ for i, tag in enumerate(dims):
499
+ vcoords[tag] = cvalues[i,...]
500
+ rval += (vcoords, )
501
+ if return_vals != ():
502
+ rval += (values, )
503
+ if len(rval)==1:
504
+ return rval[0]
505
+ else:
506
+ return rval
338
507
 
339
- # Single slice group in series - return a list with a single affine matrix
508
+
509
+ def expand(self, coords={}, gridcoords={}): # gridcoords -> slice
510
+
511
+ if coords != {}:
512
+ pass
513
+ elif gridcoords != {}:
514
+ coords = _grid_to_coords(gridcoords)
340
515
  else:
341
- slice_group = instance_array(self)
342
- affine = _slice_group_affine_matrix(list(slice_group), image_orientation)
343
- array, _ = _get_pixel_array_from_instance_array(slice_group, sortby=list(dims), pixels_first=True)
344
- slice_groups.append({'ndarray': array[...,0], 'affine': affine})
516
+ msg = 'Cannot expand without new coordinates'
517
+ raise ValueError(msg)
345
518
 
346
- return slice_groups
519
+ # If the series is not empty, first check that the new coordinates are valid.
520
+ if not self.empty():
521
+ current_coords = self.coords(tuple(coords))
522
+ try:
523
+ _concatenate_coords((current_coords, coords))
524
+ except:
525
+ msg = 'Cannot expand - the new coordinates overlap with existing coordinates.'
526
+ raise ValueError(msg)
347
527
 
528
+ # Expand the series to the new coordinates
529
+ size = _coords_size(coords)
530
+ for i in range(size):
531
+ ds = self.init_dataset()
532
+ for c in coords:
533
+ ds.set_values(c, coords[c].ravel()[i])
534
+ self.new_instance(ds)
348
535
 
349
- def affine(self)->list:
350
- """Return a list of unique affine matrices in the series
351
536
 
352
- Raises:
353
- ValueError: if the file is corrupted and necessary DICOM attributes are not included.
537
+ def set_coords(self, new_coords:dict, dims=(), slice={}, coords={}, **filters):
538
+ """Set a dictionary of coordinates.
354
539
 
355
- Returns:
356
- list: list of 4x4 ndarrays with the unique affine matrices of the series.
540
+ Args:
541
+ coords (dict): Dictionary of coordinates.
542
+ dims (tuple, optional): Dimensions of at which the new coordinates are to be best. If *dims* is not set, the dimensions are assumed to be the same as those of *coords* or *grid*. Defaults to None.
543
+
544
+ Raises:
545
+ ValueError: if the coordinates provided are not properly formatted or have the wrong shape.
357
546
 
358
547
  See also:
359
- :func:`~set_affine`
548
+ `coords`
549
+ `set_gridcoords`
360
550
 
361
551
  Example:
362
- Check that the default affine is the identity:
363
552
 
364
- >>> zeros = db.zeros((128,128,10))
365
- >>> print(zeros.affine())
366
- [array([
367
- [1., 0., 0., 0.],
368
- [0., 1., 0., 0.],
369
- [0., 0., 1., 0.],
370
- [0., 0., 0., 1.]], dtype=float32)]
553
+ Create an empty series:
371
554
 
372
- Note this is a list of one single element as the series only has a single slice group.
373
- """
374
- image_orientation = self.ImageOrientationPatient
375
- if image_orientation is None:
376
- msg = 'ImageOrientationPatient not defined in the DICOM header \n'
377
- msg += 'This is a required DICOM field \n'
378
- msg += 'The data may be corrupted - please check'
379
- raise ValueError(msg)
380
- # Multiple slice groups in series - return list of affine matrices
381
- if isinstance(image_orientation[0], list):
382
- affine_matrices = []
383
- for dir in image_orientation:
384
- slice_group = self.instances(ImageOrientationPatient=dir)
385
- affine = _slice_group_affine_matrix(slice_group, dir)
386
- affine_matrices.append(affine)
387
- return affine_matrices
388
- # Single slice group in series - return a list with a single affine matrix
389
- else:
390
- slice_group = self.instances()
391
- affine = _slice_group_affine_matrix(slice_group, image_orientation)
392
- return [affine]
555
+ >>> coords = {
556
+ ... 'SliceLocation': np.array([0,1,2,0,1,2]),
557
+ ... 'FlipAngle': np.array([2,2,2,10,10,10]),
558
+ ... 'RepetitionTime': np.array([1,5,15,1,5,15]),
559
+ ... }
560
+ >>> series = db.empty_series(coords)
561
+
562
+ Change the flip angle of 15 to 12:
393
563
 
564
+ >>> coords = series.coords(tuple(coords))
565
+ >>> fa = coords['FlipAngle']
566
+ >>> fa[np.where(fa==2)] = 5
567
+ >>> series.set_coords(coords)
394
568
 
395
- def set_affine(self, affine:np.eye()):
396
- """Set the affine matrix of a series.
569
+ Check the new coordinates:
397
570
 
398
- The affine is defined as a 4x4 numpy array with bottom row [0,0,0,1]. The final column represents the position of the top right hand corner of the first slice. The first three columns represent rotation and scaling with respect to the axes of the reference frame.
571
+ >>> new_coords = series.coords(dims)
572
+ >>> new_coords['FlipAngle']
573
+ [5,10,5,10,5,10]
574
+
575
+ Create a new set of coordinates along slice location and acquisition time:
576
+
577
+ >>> new_coords = {
578
+ ... 'SliceLocation': np.array([0,0,1,1,2,2]),
579
+ ... 'AcquisitionTime': np.array([0,60,0,60,0,60]),
580
+ ... }
581
+ >>> series.set_coords(new_coords, ('SliceLocation', 'FlipAngle'))
582
+
583
+ # Inspect the new coordinates - each slice now has two acquisition times corresponding to the flip angles:
584
+
585
+ >>> coords['SliceLocation']
586
+ [0,0,1,1,2,2]
587
+ >>> coords['AcquisitionTime']
588
+ [0,60,0,60,0,60]
589
+ >>> coords['FlipAngle']
590
+ [5,10,5,10,5,10]
591
+
592
+ # Check that an error is raised if coordinate values have different sizes:
593
+ >>> new_coords = {
594
+ ... 'SliceLocation': np.zeros(24),
595
+ ... 'AcquisitionTime': np.ones(25),
596
+ ... }
597
+ >>> series.set_coords(new_coords, dims)
598
+ ValueError: Coordinate values must all have the same size
599
+
600
+ # An error is also raised if they have all the same size but the values are not unique:
601
+
602
+ >>> new_coords = {
603
+ ... 'SliceLocation': np.zeros(24),
604
+ ... 'AcquisitionTime': np.ones(24),
605
+ ... }
606
+ >>> series.set_coords(new_coords, dims)
607
+ ValueError: Coordinate values must all have the same size
608
+
609
+ # .. or when the number does not match up with the size of the series:
610
+
611
+ >>> new_coords = {
612
+ ... 'SliceLocation': np.arange(25),
613
+ ... 'AcquisitionTime': np.arange(25),
614
+ ... }
615
+ >>> series.set_coords(new_coords, dims)
616
+ ValueError: Shape of coordinates does not match up with the size of the series.
617
+
618
+ """
619
+ if dims == ():
620
+ dims = tuple(new_coords)
621
+ elif np.isscalar(dims):
622
+ dims = (dims,)
623
+ new_coords = _check_if_coords(new_coords)
624
+ frames = self.frames(dims, slice=slice, coords=coords, **filters)
625
+ if frames.size == 0:
626
+ # If the series is empty, assignment of coords is unambiguous
627
+ self.expand(new_coords)
628
+ else:
629
+ size = _coords_size(new_coords)
630
+ if size != frames.size:
631
+ msg = 'Cannot set ' + str(size) + ' coordinates in ' + str(frames.size) + ' frames.'
632
+ msg += '\nThe number of new coordinates must equal the number of frames.'
633
+ raise ValueError(msg)
634
+ # If setting a subset, check if the new set of coordinates is valid
635
+ if len({**slice, **coords, **filters}) > 0:
636
+ complement = self.coords(dims, slice=slice, coords=coords, exclude=True, **filters)
637
+ if _coords_size(complement) > 0:
638
+ try:
639
+ _concatenate_coords((new_coords, complement))
640
+ except:
641
+ msg = 'Cannot set coordinates - this would produce invalid coordinates for the series'
642
+ raise ValueError(msg)
643
+ frames = frames.flatten()
644
+ values = _coords_vals(new_coords)
645
+ for f, frame in enumerate(frames):
646
+ frame[list(new_coords)] = list(values[:,f])
647
+
648
+
649
+ def set_values(self, values, tags, dims=('InstanceNumber', ), slice={}, coords={}, **filters):
650
+ # Note tags, values is a more logical order considering we have self.values(tags)
651
+ """Set the values of an attribute.
399
652
 
400
653
  Args:
401
- affine (numpy.ndarray): 4x4 numpy array
654
+ tag: either a keyword string or a (group, element) tag of a DICOM data element.
655
+ value: a single value or a numpy array of values for the attribute.
656
+ dims (tuple, optional): Dimensions of *value*. If *value* is a single value, *dims* is ignored. Otherwise, if *dim* is not provided, values are ordered by instance number. Defaults to None.
402
657
 
403
- Raises:
404
- ValueError: if the series is empty. The information of the affine matrix is stored in the header and can not be stored in an empty series.
658
+ Raises:
659
+ ValueError: if the size of *value* does not match the size of the series.
405
660
 
406
661
  See also:
407
- :func:`~affine`
662
+ `value`
408
663
 
409
664
  Example:
410
- Create a series with unit affine array:
411
665
 
412
- >>> zeros = db.zeros((128,128,10))
413
- >>> print(zeros.affine())
414
- [array([
415
- [1., 0., 0., 0.],
416
- [0., 1., 0., 0.],
417
- [0., 0., 1., 0.],
418
- [0., 0., 0., 1.]], dtype=float32)]
666
+ Create a zero-filled series with 3 slice dimensions.
419
667
 
420
- Rotate the volume over 90 degrees in the xy-plane:
668
+ >>> loc = np.arange(4)
669
+ >>> fa = [2, 15, 30]
670
+ >>> tr = [2.5, 5.0]
671
+ >>> coords = {
672
+ ... 'SliceLocation': np.arange(4),
673
+ ... 'FlipAngle': [2, 15, 30],
674
+ ... 'RepetitionTime': [2.5, 5.0] }
675
+ >>> series = db.zeros((128,128,8,3,2), coords)
421
676
 
422
- >>> affine = np.array([
423
- ... [1., 0., 0., 0.],
424
- ... [0., 1., 0., 0.],
425
- ... [0., 0., 1., 0.],
426
- ... [0., 0., 0., 1.],
427
- ... ])
428
- >>> zeros.set_affine(affine)
677
+ Change the acquisition time of the series to midnight (0 sec):
429
678
 
430
- Apart from the rotation, also change the resolution to (3mm, 3mm, 1.5mm):
679
+ >>> series.value('AcquisitionTime')
680
+ 28609.057496
681
+ >>> series.set_value('AcquisitionTime', 0)
682
+ >>> series.value('AcquisitionTime')
683
+ 0
431
684
 
432
- >>> affine = np.array([
433
- ... [0., -3., 0., 0.],
434
- ... [3., 0., 0., 0.],
435
- ... [0., 0., 1.5, 0.],
436
- ... [0., 0., 0., 1.],
437
- ... ])
438
- >>> zeros.set_affine(affine)
685
+ Set the acquisition time to a different value for each flip angle:
439
686
 
440
- # Now rotate, change resolution, and shift the top right hand corner of the lowest slice to position (-30mm, 20mm, 120mm):
687
+ >>> tacq = np.repeat(60*np.arange(3), 8)
688
+ >>> series.set_value('AcquisitionTime', tacq, dims=('FlipAngle','InstanceNumber'))
441
689
 
442
- >>> affine = np.array([
443
- ... [0., -3., 0., -30.],
444
- ... [3., 0., 0., 20.],
445
- ... [0., 0., 1.5, 120.],
446
- ... [0., 0., 0., 1.],
447
- ... ])
448
- >>> zeros.set_affine(affine)
690
+ Set the acquisition time to a different value for each flip angle and acquisition time:
449
691
 
450
- Note changing the affine will affect multiple DICOM tags, such as slice location and image positions:
692
+ >>> tacq = np.repeat(60*np.arange(6), 4)
693
+ >>> series.set_value('AcquisitionTime', tacq, dims=('FlipAngle','RepetitionTime','SliceLocation'))
451
694
 
452
- >>> print(zeros.SliceLocation)
453
- [120.0, 121.5, 123.0, 124.5, 126.0, 127.5, 129.0, 130.5, 132.0, 133.5]
695
+ Note: the size of the value and of the series need to match up. If not, an error is raised:
454
696
 
455
- In this case, since the slices are stacked in parallel to the z-axis, the slice location starts at the lower z-coordinate of 120mm and then increments slice-by-slice with the slice thickness of 1.5mm.
697
+ >>> series.set_value('AcquisitionTime', np.arange(25), dims=tuple(coords))
698
+ ValueError: The size of the value array is different from the size of the series.
699
+ The value array has shape (25,), but the series has shape (4, 3).
700
+
701
+ """
702
+
703
+ if np.isscalar(dims):
704
+ dims = (dims,)
705
+
706
+ if not isinstance(values, tuple):
707
+ self.set_values((values,), (tags,), dims=dims, slice=slice, coords=coords, **filters)
708
+ return
709
+
710
+ # Get frames to set:
711
+ frames = self.frames(dims, mesh=False, slice=slice, coords=coords, **filters)
712
+ if frames.size == 0:
713
+ msg = 'Cannot set values to an empty series. Use Series.expand() to create empty frames first.'
714
+ raise ValueError(msg)
456
715
 
716
+ # Check that values all have the proper format:
717
+ values = list(values)
718
+ for i, v in enumerate(values):
719
+ #if not isinstance(v, np.ndarray):
720
+ # values[i] = np.full(frames.shape, v)
721
+ if isinstance(v, np.ndarray):
722
+ if values[i].size != frames.size:
723
+ msg = 'Cannot set values: number of values does not match number of frames.'
724
+ raise ValueError(msg)
725
+ values[i] = values[i].ravel()
726
+
727
+ # Set values
728
+ for f, frame in enumerate(frames):
729
+ self.progress(f+1, frames.size, 'Writing values..')
730
+ frame[list(tags)] = [v if np.isscalar(v) else v[f] for v in values]
731
+ #frame[list(tags)] = [v[f] for v in values]
732
+
733
+
734
+ def set_gridcoords(self, gridcoords:dict, dims=(), slice={}, coords={}, **filters):
735
+ """ Set a dictionary of grid coordinates.
736
+
737
+ Args:
738
+ coords (dict): dictionary of grid coordinates
739
+ dims (tuple, optional): Dimensions of at which the new coordinates are to be best. If *dims* is not set, the dimensions are assumed to be the same as those of *coords* or *grid*. Defaults to None.
740
+
741
+ See also:
742
+ `gridcoords`
743
+ `set_coords`
744
+
745
+ Examples:
746
+
747
+ Create an empty series with 3 slice dimensions:
748
+
749
+ >>> gridcoords = {
750
+ ... 'SliceLocation': np.arange(4),
751
+ ... 'FlipAngle': np.array([2, 15, 30]),
752
+ ... 'RepetitionTime': np.array([2.5, 5.0]),
753
+ ... }
754
+ >>> series = db.empty_series()
755
+ >>> series.set_gridcoords(gridcoords)
756
+
757
+ Get the coordinates as a mesh
758
+
759
+ >>> dims = tuple(gridcoords)
760
+ >>> coords = series.meshcoords(dims)
761
+ >>> coords['SliceLocation'].shape
762
+ (4, 3, 2)
763
+ >>> coords['FlipAngle'][1,1,1]
764
+ 15
765
+ """
766
+ setcoords = _grid_to_coords(gridcoords)
767
+ self.set_coords(setcoords, dims=dims, slice=slice, coords=coords, **filters)
768
+
769
+
770
+ def gridcoords(self, dims=('InstanceNumber', ), slice={}, coords={}, exclude=False, **filters)->dict:
771
+ """return a dictionary of grid coordinates.
772
+
773
+ Args:
774
+ dims (tuple): Attributes to be used as coordinates.
775
+
776
+ Returns:
777
+ dict: dictionary of coordinates, one entry for each dimension.
778
+
779
+ See also:
780
+ `coords`
781
+ `set_gridcoords`
782
+
783
+ Examples:
784
+
785
+ Create an empty series with 3 slice dimensions:
786
+
787
+ >>> gridcoords = {
788
+ ... 'SliceLocation': np.arange(4),
789
+ ... 'FlipAngle': np.array([2, 15, 30]),
790
+ ... 'RepetitionTime': np.array([2.5, 5.0]),
791
+ ... }
792
+ >>> series = db.empty_series(gridcoords=gridcoords)
793
+
794
+ Recover the grid coordinates:
795
+
796
+ >>> gridcoords_rec = series.gridcoords(tuple(gridcoords))
797
+ >>> coords_rec['SliceLocation']
798
+ [0. 1. 2. 3.]
799
+ >>> coords_rec['FlipAngle']
800
+ [ 2. 15. 30.]
801
+ >>> coords_rec['RepetitionTime']
802
+ [2.5 5. ]
803
+
804
+ Note an error is raised if the coordinates are not grid coordinates:
805
+
806
+ >>> coords = {
807
+ ... 'SliceLocation': np.array([0,1,2,0,1,2]),
808
+ ... 'FlipAngle': np.array([10,10,10,2,2,2]),
809
+ ... 'RepetitionTime': np.array([1,5,15,1,5,15]),
810
+ ... }
811
+ >>> series = db.empty_series(coords)
812
+
813
+ The coordinates form a proper mesh, so this works fine:
814
+
815
+ >>> coords = series.meshcoords(tuple(coords))
816
+
817
+ But this raises an error:
818
+
819
+ >>> series.gridcoords(tuple(coords))
820
+ ValueError: These are not grid coordinates.
821
+ """
822
+ meshcoords = self.coords(dims=dims, mesh=True, slice=slice, coords=coords, exclude=exclude, **filters)
823
+ return _meshcoords_to_grid(meshcoords)
824
+
825
+
826
+ def shape(self, dims=('InstanceNumber', ), mesh=True, slice={}, coords={}, exclude=False, **filters)->tuple:
827
+ """Return the shape of the series along given dimensions.
828
+
829
+ Args:
830
+ dims (tuple, optional): Dimensions along which the shape is to be determined. If dims is not provided, the shape of the flattened series is returned. Defaults to None.
831
+
832
+ Returns:
833
+ tuple: one value for each element of dims.
834
+
835
+ Raises:
836
+ ValueError: if the shape in the specified dimensions is ambiguous (because the number of slices is not unique at each location)
837
+ ValueError: if the shape in the specified dimensions is not well defined (because there is no slice at one or more locations).
838
+
839
+ See also:
840
+ `coords`
841
+ `gridcoords`
842
+ `spacing`
843
+
844
+ Example:
845
+
846
+ Create a zero-filled series with 3 dimensions.
847
+
848
+ >>> coords = {
849
+ >>> 'SliceLocation': np.arange(4),
850
+ >>> 'FlipAngle': [2, 15, 30],
851
+ >>> 'RepetitionTime': [2.5, 5.0] }
852
+ >>> series = db.zeros((128,128,4,3,2), coords)
853
+
854
+ Check the shape of a flattened series:
855
+ >>> series.shape()
856
+ (24,)
857
+
858
+ Check the shape along all 3 dimensions:
859
+
860
+ >>> dims = tuple(coords)
861
+ >>> series.shape(dims)
862
+ (4, 3, 2)
863
+
864
+ Swap the first two dimensions:
865
+
866
+ >>> series.shape((dims[1], dims[0], dims[2]))
867
+ (3, 4, 2)
868
+
869
+ Determine the shape along another DICOM attribute:
870
+
871
+ >>> series.shape(('FlipAngle', 'InstanceNumber'))
872
+ (3, 8)
873
+
874
+ The shape of an empty series is zero along any dimension:
875
+
876
+ >>> series.new_sibling().shape(dims)
877
+ (0, 0, 0)
878
+
879
+ If one or more of the dimensions is not defined in the header, this raises an error:
880
+
881
+ >>> series.shape(('FlipAngle', 'Gobbledigook'))
882
+ ValueError: series shape is not well defined in dimensions (FlipAngle, Gobbledigook, )
883
+ --> Some of the dimensions are not defined in the header.
884
+ --> Hint: use Series.value() to find the undefined values.
885
+
886
+ An error is also raised if the values are defined, but are not unique. In this case, all acquisition times are the same so this raises an error:
887
+
888
+ >>> series.shape(('FlipAngle', 'AcquisitionTime'))
889
+ ValueError: series shape is ambiguous in dimensions (FlipAngle, AcquisitionTime, )
890
+ --> Multiple slices exist at some or all locations.
891
+ --> Hint: use Series.unique() to list the values at all locations.
892
+
893
+ """
894
+ frames = self.frames(dims=dims, mesh=mesh, slice=slice, coords=coords, exclude=exclude, **filters)
895
+ return frames.shape
896
+
897
+
898
+ def unique(self, *tags, sortby=(), slice={}, coords={}, exclude=False, return_locs=False, **filters) -> np.ndarray:
899
+ """Return the unique values of an attribute, sorted by any number of variables.
900
+
901
+ Args:
902
+ tag: either a keyword string or a (group, element) tag of a DICOM data element.
903
+ sortby (tuple, optional): Dimensions of the resulting array. If *sortby* is not provided, then an array of unique values is returned.
904
+
905
+ Returns:
906
+ np.ndarray: a sorted array of unique values of the attribute, with dimensions as specified by *dims*. If *dims* is provided, the result has the dimensions of *dims* and each element of the array is an array unique values.
907
+
908
+ See also:
909
+ `value`
910
+ `unique_affines`
911
+ `coords`
912
+ `gridcoords`
913
+
914
+ Example:
915
+ Create a zero-filled series with 3 slice dimensions:
916
+
917
+ >>> loc = np.arange(4)
918
+ >>> fa = [2, 15, 30]
919
+ >>> tr = [2.5, 5.0]
920
+ >>> coords = {
921
+ ... 'SliceLocation': np.arange(4),
922
+ ... 'FlipAngle': [2, 15, 30],
923
+ ... 'RepetitionTime': [2.5, 5.0] }
924
+ >>> series = db.zeros((128,128,8,3,2), coords)
925
+
926
+ Recover the unique values of any coordinate, such as the flip angle:
927
+
928
+ >>> series.value('FlipAngle')
929
+ [ 2. 15. 30.]
930
+
931
+ List the flip angles for each slice location separately:
932
+
933
+ >>> fa = series.unique('FlipAngle', sortby=('SliceLocation', ))
934
+ >>> fa[0]
935
+ [ 2. 15. 30.]
936
+ >>> fa[3]
937
+ [ 2. 15. 30.]
938
+
939
+ List the flip angles for each slice location and repetition time:
940
+
941
+ >>> fa = series.unique('FlipAngle', sortby=('SliceLocation', 'RepetitionTime'))
942
+ >>> fa.shape
943
+ (4, 2)
944
+ >>> fa[1,1]
945
+ [ 2. 15. 30.]
946
+
947
+ Getting the values for a non-existing attribute produces an empty array:
948
+
949
+ >>> gbbl = series.unique('Gobbledigook')
950
+ >>> gbbl.size
951
+ 0
952
+ >>> gbbl.shape
953
+ (0,)
954
+
955
+ Getting a non-existing attribute for each slice location produces an array of the expected shape, where each element is an empty array:
956
+
957
+ >>> gbbl = series.unique('Gobbledigook', sortby=('SliceLocation',))
958
+ >>> gbbl.shape
959
+ (4,)
960
+ >>> gbbl.size
961
+ 4
962
+ >>> gbbl[-1].size
963
+ 0
964
+ """
965
+ # If no sorting is required, return an array of unique values
966
+
967
+ vals = self.values(*(tags+sortby), slice=slice, coords=coords, exclude=exclude, **filters)
968
+
969
+ if sortby == ():
970
+ if len(tags) == 1:
971
+ uv = vals[vals != np.array(None)]
972
+ return np.unique(uv)
973
+ uvals = []
974
+ for v in vals:
975
+ uv = v[v != np.array(None)]
976
+ uvals.append(np.unique(uv))
977
+ return tuple(uvals)
978
+
979
+ # Create a flat location array
980
+ loc = []
981
+ for k in range(len(sortby)):
982
+ v = vals[len(tags)+k]
983
+ v = v[v != np.array(None)]
984
+ loc.append(np.unique(v))
985
+ loc = np.meshgrid(*tuple(loc), indexing='ij')
986
+ shape = loc[0].shape
987
+ loc = [l.ravel() for l in loc]
988
+
989
+ # Build an array of unique values at each location and each tag
990
+ uvals = np.empty((len(tags), loc[0].size), dtype=np.ndarray)
991
+ for i in range(loc[0].size):
992
+ k = 0
993
+ ind = vals[len(tags)+k] == loc[k][i]
994
+ for k in range(1, len(sortby)):
995
+ ind = ind & (vals[len(tags)+k] == loc[k][i])
996
+ for t in range(len(tags)):
997
+ vti = vals[t][ind]
998
+ vti = vti[vti != np.array(None)]
999
+ uvals[t,i] = np.unique(vti)
1000
+
1001
+ # Refactor to return values
1002
+ if len(tags) == 1:
1003
+ uvals = uvals[0,:].reshape(shape)
1004
+ else:
1005
+ uvals = [uvals[t,:].reshape(shape) for t in range(len(tags))]
1006
+ uvals = tuple(uvals)
1007
+ if return_locs:
1008
+ loc = [l.reshape(shape) for l in loc]
1009
+ loc = tuple(loc)
1010
+ return uvals, loc
1011
+ else:
1012
+ return uvals
1013
+
1014
+
1015
+ def pixel_values(self, dims=('InstanceNumber', ), return_coords=False, slice={}, coords={}, **filters) -> np.ndarray:
1016
+ """Return a numpy.ndarray with pixel data.
1017
+
1018
+ Args:
1019
+ dims (tuple, optional): Dimensions of the result, as a tuple of valid DICOM tags of any length. If *dims* is not provided, pixel values are ordered by instance number. Defaults to None.
1020
+ inds (dict, optional): Dictionary with indices to retrieve a slice of the entire array. Defaults to None.
1021
+ select (dict, optional): A dictionary of values for DICOM attributes to filter the result. By default the data are not filtered.
1022
+ filters (dict, optional): keyword arguments to filter the data by value of DICOM attributes.
1023
+
1024
+ Returns:
1025
+ np.ndarray: pixel data. The number of dimensions will be 2 plus the number of elements in *dim*. The first two indices will enumerate (column, row) indices in the slice, the other dimensions are as specified by the *dims* argument.
1026
+
1027
+ The function returns an empty array when no data are found at the specified locations.
1028
+
1029
+ Raises:
1030
+ ValueError: Indices must be in the dimensions provided. If *ind* is set but keys are not part of *dims*.
1031
+ ValueError: if the images are different shapes.
1032
+
1033
+ See also:
1034
+ `set_pixel_values`
1035
+
1036
+ Example:
1037
+ Create a zero-filled array with 3 slice dimensions:
1038
+
1039
+ >>> coords = {
1040
+ ... 'SliceLocation': 10*np.arange(4),
1041
+ ... 'FlipAngle': np.array([2, 15, 30]),
1042
+ ... 'RepetitionTime': np.array([2.5, 5.0]),
1043
+ ... }
1044
+ >>> zeros = db.zeros((128,64,4,3,2), coords)
1045
+
1046
+ Retrieve the pixel array of the series:
1047
+
1048
+ >>> dims = tuple(coords)
1049
+ >>> array = zeros.pixel_values(dims)
1050
+ >>> array.shape
1051
+ (128, 64, 4, 3, 2)
1052
+
1053
+ To retrieve an array containing only the data with flip angle 15:
1054
+
1055
+ >>> array = zeros.pixel_values(dims, FlipAngle=15)
1056
+ >>> array.shape
1057
+ (128, 64, 4, 1, 2)
1058
+
1059
+ If no data fit the requirement, and empty array is returned:
1060
+
1061
+ >>> array = zeros.pixel_values(dims, FlipAngle=15)
1062
+ >>> array.size
1063
+ 0
1064
+
1065
+ Multiple possible values can be specified as an array:
1066
+
1067
+ >>> array = zeros.pixel_values(dims, FlipAngle=np.array([15,30]))
1068
+ >>> array.shape
1069
+ (128, 64, 4, 2, 2)
1070
+
1071
+ And multiple filters can be specified by adding keyword arguments. The following returns an array of pixel values with flip angle of 15 or 30, and slice location of 10 or 20:
1072
+
1073
+ >>> array = zeros.pixel_values(dims, FlipAngle=np.array([15,30]), SliceLocation=np.array([10,20]))
1074
+ >>> array.shape
1075
+ (128, 64, 2, 2, 2)
1076
+
1077
+ The filters can be any DICOM attribute:
1078
+
1079
+ >>> array = zeros.pixel_values(dims, AcquisitionTime=0)
1080
+ >>> array.size
1081
+ 0
1082
+
1083
+ The filters can also be specified as a dictionary of values:
1084
+
1085
+ >>> array = zeros.pixel_values(dims, select={'FlipAngle': 15})
1086
+ >>> array.shape
1087
+ (128, 64, 4, 1, 2)
1088
+
1089
+ Since keywords need to be strings in python, this is the only way to specify filters with (group, element) tags:
1090
+
1091
+ >>> array = zeros.pixel_values(dims, select={(0x0018, 0x1314): 15})
1092
+ >>> array.shape
1093
+ (128, 64, 4, 1, 2)
1094
+
1095
+ Using the *inds* argument, the pixel array can be indexed to avoid reading a large array if only a subarray is required:
1096
+
1097
+ >>> array = zeros.pixel_values(dims, inds={'FlipAngle': 1})
1098
+ >>> array.shape
1099
+ (128, 64, 4, 1, 2)
1100
+
1101
+ Note unlike filters defind by *value*, the indices must be provided in the dimensions of the array. If not, a `ValueError` is raised:
1102
+
1103
+ >>> zeros.pixel_values(dims, inds={'AcquisitionTime':0})
1104
+ ValueError: Indices must be in the dimensions provided.
1105
+ """
1106
+ if np.isscalar(dims):
1107
+ dims = (dims,)
1108
+ frames = self.frames(dims, return_coords=return_coords, slice=slice, coords=coords, **filters)
1109
+ if return_coords:
1110
+ frames, fcoords = frames
1111
+ if frames.size == 0:
1112
+ shape = (0,0) + frames.shape
1113
+ values = np.array([]).reshape(shape)
1114
+ if return_coords:
1115
+ return values, fcoords
1116
+ else:
1117
+ return values
1118
+
1119
+ # Read values
1120
+ fshape = frames.shape
1121
+ frames = frames.ravel()
1122
+ values = []
1123
+ for f, frame in enumerate(frames):
1124
+ self.progress(f+1, len(frames), 'Reading pixel values..')
1125
+ values.append(frame.get_pixel_array())
1126
+
1127
+ # Check that all matrix sizes are the same
1128
+ vshape = np.array([v.shape for v in values])
1129
+ vshape = np.unique(vshape.T, axis=1)
1130
+ if vshape.shape[1] > 1:
1131
+ msg = 'Cannot extract an array of pixel values - not all frames have the same matrix size.'
1132
+ raise ValueError(msg)
1133
+
1134
+ # Create the array
1135
+ values = np.stack(values, axis=-1)
1136
+ values = values.reshape(values.shape[:2] + fshape)
1137
+ if return_coords:
1138
+ return values, fcoords
1139
+ else:
1140
+ return values
1141
+
1142
+
1143
+ def set_pixel_values(self, values:np.ndarray, dims:tuple=None, slice={}, coords={}, **filters):
1144
+ """Set a numpy.ndarray with pixel data.
1145
+
1146
+ Args:
1147
+ dims (tuple, optional): Dimensions of the pixel values, as a tuple of valid DICOM tags of any length. If *dims* is not provided, pixel values are ordered by instance number. Defaults to None.
1148
+ inds (dict, optional): Dictionary with indices to set a slice of the entire array. Defaults to None.
1149
+ select (dict, optional): A dictionary of values for DICOM attributes to set specific frames.
1150
+ filters (dict, optional): keyword arguments to set specific frames.
1151
+
1152
+ Raises:
1153
+ ValueError: if the values are the incorrect shape for the dimensions.
1154
+
1155
+ See also:
1156
+ `pixel_values`
1157
+
1158
+ Example:
1159
+ Create a zero-filled array with 3 slice dimensions:
1160
+
1161
+ >>> coords = {
1162
+ ... 'SliceLocation': 10*np.arange(4),
1163
+ ... 'FlipAngle': np.array([2, 15, 30]),
1164
+ ... 'RepetitionTime': np.array([2.5, 5.0]),
1165
+ ... }
1166
+ >>> zeros = db.zeros((128,64,4,3,2), coords)
1167
+ """
1168
+ if dims is None:
1169
+ if slice != {}:
1170
+ dims = tuple(slice)
1171
+ elif coords != {}:
1172
+ dims = tuple(coords)
1173
+ else:
1174
+ dims = ('InstanceNumber', )
1175
+ elif np.isscalar(dims):
1176
+ dims = (dims,)
1177
+ # Get frames to set:
1178
+ frames = self.frames(dims, slice=slice, coords=coords, **filters)
1179
+ if frames.size == 0:
1180
+ if slice != {}:
1181
+ self.expand(gridcoords=slice)
1182
+ frames = self.frames(dims)
1183
+ else:
1184
+ msg = 'Cannot set values to an empty series. Use Series.expand() to create empty frames first, or set the loc keyword to define coordinates for the new frames.'
1185
+ raise ValueError(msg)
1186
+
1187
+ if np.prod(values.shape[2:]) != frames.size:
1188
+ msg = 'The size of the pixel value array is different from the size of the series.'
1189
+ msg += '\nThe pixel array has shape ' + str(values.shape[2:]) + ', '
1190
+ msg += 'but the series has shape ' + str(frames.shape) + '.'
1191
+ raise ValueError(msg)
1192
+ frames = frames.ravel()
1193
+ values = values.reshape(values.shape[:2] + (-1,))
1194
+ for f, frame in enumerate(frames):
1195
+ self.progress(f+1, frames.size, 'Writing pixel values..')
1196
+ frame.set_pixel_array(values[:,:,f])
1197
+
1198
+ def volume(self):
1199
+ return self.volumes(stack=True)
1200
+
1201
+ def volumes(self, dims='SliceLocation', mesh=True, stack=False):
1202
+ """Return vreg volumes for each frame, or stacked"""
1203
+
1204
+ frames = self.frames(dims, mesh=mesh)
1205
+ vols = [f.volume() for f in frames.reshape(-1)]
1206
+ vols = np.asarray(vols).reshape(frames.shape)
1207
+ if not stack:
1208
+ return vols
1209
+ shape = vols.shape
1210
+ vols = vols.reshape((shape[0],-1))
1211
+ vols_stack = []
1212
+ for k in range(vols.shape[1]):
1213
+ vstack = vreg.concatenate(vols[:,k], prec=3)
1214
+ vols_stack.append(vstack)
1215
+ if len(shape) == 1:
1216
+ return vols_stack[0]
1217
+ else:
1218
+ return np.asarray(vols_stack).reshape(shape[1:])
1219
+
1220
+
1221
+ def set_volumes(self, volumes, dims='SliceLocation', mesh=True):
1222
+
1223
+ # Convert affines to arrays if needed
1224
+ if isinstance(volumes, list):
1225
+ volumes = np.array(volumes)
1226
+
1227
+ # Get frames
1228
+ frames = self.frames(dims, mesh=mesh)
1229
+
1230
+ # One affine for each frame
1231
+ if volumes.shape == frames.shape:
1232
+ volumes = volumes.reshape(-1)
1233
+ for i, f in enumerate(frames.reshape(-1)):
1234
+ self.progress(i, frames.size, 'Setting affines.. ')
1235
+ f.set_volume(volumes[i])
1236
+
1237
+ # Different number of affines and frames
1238
+ else:
1239
+ # A volumetric series
1240
+ if frames.ndim==1:
1241
+ volumes = volumes.reshape(-1)
1242
+ if volumes.size > 1:
1243
+ raise ValueError(
1244
+ "Cannot set volumes. A volume can only "
1245
+ "have one element.")
1246
+ volumes = volumes[0].split(frames.size)
1247
+ for z, f in enumerate(frames):
1248
+ self.progress(z+1, frames.size, 'Setting volumes.. ')
1249
+ f.set_volume(volumes[z])
1250
+
1251
+ # Multislice affine replicated across all times
1252
+ elif volumes.size == frames.shape[0]:
1253
+ frames = frames.reshape((frames.shape[0],-1))
1254
+ volumes = volumes.reshape(-1)
1255
+ nz, nt = frames.shape
1256
+ cnt=0
1257
+ for z in range(nz):
1258
+ for t in range(nt):
1259
+ cnt+=1
1260
+ self.progress(cnt, nt*nz, 'Setting volumes.. ')
1261
+ frames[z,t].set_volume(volumes[z])
1262
+
1263
+ # One volume replicated across all times
1264
+ elif volumes.size==1:
1265
+ frames = frames.reshape((frames.shape[0],-1))
1266
+ nz, nt = frames.shape
1267
+ volumes = volumes[0].split(nz)
1268
+ cnt=0
1269
+ for z in range(nz):
1270
+ for t in range(nt):
1271
+ cnt+=1
1272
+ self.progress(cnt, nt*nz, 'Setting volumes.. ')
1273
+ frames[z,t].set_volume(volumes[z])
1274
+
1275
+ # Volume for each time point
1276
+ elif volumes.shape == frames.shape[1:]:
1277
+ frames = frames.reshape((frames.shape[0],-1))
1278
+ volumes = volumes.reshape(-1)
1279
+ nz, nt = frames.shape
1280
+ cnt=0
1281
+ for t in range(nt):
1282
+ volumes_t = volumes[t].split(nz)
1283
+ for z, f in enumerate(frames[:,t]):
1284
+ cnt+=1
1285
+ self.progress(cnt, nt*nz, 'Setting volumes.. ')
1286
+ f.set_volume(volumes_t[z])
1287
+
1288
+ # Incompatible shapes
1289
+ else:
1290
+ raise ValueError(
1291
+ "Cannot set volumes. The volume array has an incompatible "
1292
+ "shape or size.")
1293
+ return self
1294
+
1295
+
1296
+ def affines(self, dims='SliceLocation', mesh=True, stack=False):
1297
+ """Return affines for each frame"""
1298
+
1299
+ frames = self.frames(dims, mesh=mesh)
1300
+ affines = [f.affine() for f in frames.reshape(-1)]
1301
+ affines = np.asarray(affines).reshape(frames.shape)
1302
+ if not stack:
1303
+ return affines
1304
+ shape = affines.shape
1305
+ affines = affines.reshape((shape[0],-1))
1306
+ nt = affines.shape[1]
1307
+ affines_stack = np.empty(nt, dtype=np.ndarray)
1308
+ for t in range(nt):
1309
+ affines_stack[t] = image_utils.stack_affines(affines[:,t])
1310
+ if len(shape)==1:
1311
+ return affines_stack[0]
1312
+ else:
1313
+ return affines_stack.reshape(shape[1:])
1314
+
1315
+ def set_affines(self, affines, dims='SliceLocation', mesh=True):
1316
+
1317
+ # Convert affines to arrays if needed
1318
+ if isinstance(affines, np.ndarray):
1319
+ aff = np.empty(1, dtype=np.ndarray)
1320
+ aff[0] = affines
1321
+ affines = aff
1322
+ elif isinstance(affines, list):
1323
+ aff = np.empty(len(affines), dtype=np.ndarray)
1324
+ for i, a in enumerate(affines):
1325
+ aff[i] = a
1326
+ affines = aff
1327
+
1328
+ # Get frames
1329
+ frames = self.frames(dims, mesh=mesh)
1330
+
1331
+ # One affine for each frame
1332
+ if affines.shape == frames.shape:
1333
+ affines = affines.reshape(-1)
1334
+ for i, f in enumerate(frames.reshape(-1)):
1335
+ self.progress(i, frames.size, 'Setting affines.. ')
1336
+ f.set_affine(affines[i])
1337
+
1338
+ # Different number of affines and frames
1339
+ else:
1340
+ # A volumetric series
1341
+ if frames.ndim==1:
1342
+ affines = affines.reshape(-1)
1343
+ if affines.size > 1:
1344
+ raise ValueError(
1345
+ "Cannot set affines. A volumetric affine can only "
1346
+ "have one element.")
1347
+ affines = image_utils.unstack_affine(affines[0], frames.shape[0])
1348
+ for z, f in enumerate(frames):
1349
+ self.progress(z+1, frames.size, 'Setting affines.. ')
1350
+ f.set_affine(affines[z])
1351
+
1352
+ # Multislice affine replicated across all times
1353
+ elif affines.size == frames.shape[0]:
1354
+ frames = frames.reshape((frames.shape[0],-1))
1355
+ affines = affines.reshape(-1)
1356
+ nz, nt = frames.shape
1357
+ cnt=0
1358
+ for z in range(nz):
1359
+ for t in range(nt):
1360
+ cnt+=1
1361
+ self.progress(cnt, nt*nz, 'Setting affines.. ')
1362
+ frames[z,t].set_affine(affines[z])
1363
+
1364
+ # One volume affine replicated across all times
1365
+ elif affines.size==1:
1366
+ frames = frames.reshape((frames.shape[0],-1))
1367
+ nz, nt = frames.shape
1368
+ affines = image_utils.unstack_affine(affines[0], nz)
1369
+ cnt=0
1370
+ for z in range(nz):
1371
+ for t in range(nt):
1372
+ cnt+=1
1373
+ self.progress(cnt, nt*nz, 'Setting affines.. ')
1374
+ frames[z,t].set_affine(affines[z])
1375
+
1376
+ # Volume affine for each time point
1377
+ elif affines.shape == frames.shape[1:]:
1378
+ frames = frames.reshape((frames.shape[0],-1))
1379
+ affines = affines.reshape(-1)
1380
+ nz, nt = frames.shape
1381
+ cnt=0
1382
+ for t in range(nt):
1383
+ affines_t = image_utils.unstack_affine(affines[t], nz)
1384
+ for z, f in enumerate(frames[:,t]):
1385
+ cnt+=1
1386
+ self.progress(cnt, nt*nz, 'Setting affines.. ')
1387
+ f.set_affine(affines_t[z])
1388
+
1389
+ # Incompatible shapes
1390
+ else:
1391
+ raise ValueError(
1392
+ "Cannot set affines. The affine array has an incompatible "
1393
+ "shape or size.")
1394
+ return self
1395
+
1396
+
1397
+ # TODO: make obsolete (ignores dimensions or multi-volume series)
1398
+ def affine(self, slice={}, coords={}, **filters) -> np.ndarray:
1399
+ """Return the affine of the Series.
1400
+
1401
+ Raises:
1402
+ ValueError: if the DICOM file is corrupted
1403
+ ValueError: if the affine is not unique.
1404
+
1405
+ Returns:
1406
+ np.ndarray: affine matrix as a 4x4 numpy array.
1407
+
1408
+ See also:
1409
+ `set_affine`
1410
+ `unique_affines`
1411
+
1412
+ Example:
1413
+ Check that the default affine is the identity:
1414
+
1415
+ >>> zeros = db.zeros((128,128,10))
1416
+ >>> zeros.affine()
1417
+ [[1., 0., 0., 0.],
1418
+ [0., 1., 0., 0.],
1419
+ [0., 0., 1., 0.],
1420
+ [0., 0., 0., 1.]]
1421
+ """
1422
+
1423
+ # Read values
1424
+ tags = ('ImageOrientationPatient', 'ImagePositionPatient', 'PixelSpacing', 'SliceThickness', )
1425
+ orientation, pos, spacing, thick = self.values(*tags, slice=slice, coords=coords, **filters)
1426
+
1427
+ # Single slice
1428
+ if len(pos) == 1:
1429
+ return image_utils.affine_matrix(orientation[0], pos[0], spacing[0], thick[0])
1430
+
1431
+ # Multiple orientations - raise error
1432
+ orientation = np.unique(orientation)
1433
+ if len(orientation) > 1:
1434
+ msg = 'The series has multiple affines. '
1435
+ msg += '\nUse Series.unique_affines() to return an array of unique affines.'
1436
+ raise ValueError(msg)
1437
+ orientation = orientation[0]
1438
+
1439
+ # Multiple pixel spacings - raise error
1440
+ spacing = np.unique(spacing)
1441
+ if len(spacing) > 1:
1442
+ msg = 'The series has multiple pixel spacings. '
1443
+ msg += '\nAffine array of the series is not well defined.'
1444
+ raise ValueError(msg)
1445
+ spacing = spacing[0]
1446
+
1447
+ # All the same slice locations
1448
+ upos = np.unique(pos)
1449
+ if len(upos) == 1:
1450
+ return image_utils.affine_matrix(orientation, pos[0], spacing, thick[0])
1451
+
1452
+ # Different slice locations but not all different - raise error
1453
+ if len(upos) != len(pos):
1454
+ msg = 'Some frames have the same ImagePositionPatient. '
1455
+ msg += '\nAffine matrix of the series is not well defined.'
1456
+ raise ValueError(msg)
1457
+
1458
+ return image_utils.affine_matrix_multislice(orientation, pos, spacing)
1459
+
1460
+ # TODO: amke obsolete - does not handle dimensions or multislice vs volume
1461
+ def set_affine(self, affine:np.ndarray, dims=('InstanceNumber',), slice={}, coords={}, multislice=False, **filters):
1462
+ """Set the affine matrix of a series.
1463
+
1464
+ The affine is defined as a 4x4 numpy array with bottom row [0,0,0,1]. The final column represents the position of the top right hand corner of the first slice. The first three columns represent rotation and scaling with respect to the axes of the reference frame.
1465
+
1466
+ Args:
1467
+ affine (numpy.ndarray): 4x4 numpy array
1468
+
1469
+ Raises:
1470
+ ValueError: if the series is empty. The information of the affine matrix is stored in the header and can not be stored in an empty series.
1471
+
1472
+ See also:
1473
+ `affine`
1474
+ `unique_affines`
1475
+
1476
+ Example:
1477
+ Create a series with unit affine array:
1478
+
1479
+ >>> zeros = db.zeros((128,128,10))
1480
+ >>> zeros.affine()
1481
+ [[1., 0., 0., 0.],
1482
+ [0., 1., 0., 0.],
1483
+ [0., 0., 1., 0.],
1484
+ [0., 0., 0., 1.]]
1485
+
1486
+ Rotate the volume over 90 degrees in the xy-plane:
1487
+
1488
+ >>> affine = np.array([
1489
+ ... [1., 0., 0., 0.],
1490
+ ... [0., 1., 0., 0.],
1491
+ ... [0., 0., 1., 0.],
1492
+ ... [0., 0., 0., 1.],
1493
+ ... ])
1494
+ >>> zeros.set_affine(affine)
1495
+
1496
+ Apart from the rotation, also change the resolution to (3mm, 3mm, 1.5mm):
1497
+
1498
+ >>> affine = np.array([
1499
+ ... [0., -3., 0., 0.],
1500
+ ... [3., 0., 0., 0.],
1501
+ ... [0., 0., 1.5, 0.],
1502
+ ... [0., 0., 0., 1.],
1503
+ ... ])
1504
+ >>> zeros.set_affine(affine)
1505
+
1506
+ Now rotate, change resolution, and shift the top right hand corner of the lowest slice to position (-30mm, 20mm, 120mm):
1507
+
1508
+ >>> affine = np.array([
1509
+ ... [0., -3., 0., -30.],
1510
+ ... [3., 0., 0., 20.],
1511
+ ... [0., 0., 1.5, 120.],
1512
+ ... [0., 0., 0., 1.],
1513
+ ... ])
1514
+ >>> zeros.set_affine(affine)
1515
+
1516
+ Note: changing the affine will affect multiple DICOM tags, such as slice location and image positions:
1517
+
1518
+ >>> zeros.SliceLocation
1519
+ [120.0, 121.5, 123.0, 124.5, 126.0, 127.5, 129.0, 130.5, 132.0, 133.5]
1520
+
1521
+ In this case, since the slices are stacked in parallel to the z-axis, the slice location starts at the lower z-coordinate of 120mm and then increments slice-by-slice with the slice thickness of 1.5mm.
1522
+
1523
+ """
1524
+
1525
+ frames = self.frames(dims=dims, slice=slice, coords=coords, **filters)
1526
+ if frames.size == 0:
1527
+ msg = 'Cannot set affine matrix in an empty series. Use Series.expand() to create empty frames first.'
1528
+ raise ValueError(msg)
1529
+
1530
+ # For each slice location, the slice position needs to be updated too
1531
+ # Need the coordinates of the vector parallel to the z-axis of the volume.
1532
+ a = image_utils.dismantle_affine_matrix(affine)
1533
+ ez = a['SpacingBetweenSlices']*np.array(a['slice_cosine'])
1534
+
1535
+ # if multislice:
1536
+ # slice_thickness = self.unique('SliceThickness')[0]
1537
+
1538
+ # Set the affine slice-by-slice
1539
+ affine_z = affine.copy()
1540
+ for z, frame in enumerate(frames):
1541
+ self.progress(z+1, frames.size, 'Writing affine..')
1542
+ affine_z[:3, 3] = affine[:3, 3] + z*ez
1543
+ if multislice:
1544
+ thickness = frame.SliceThickness
1545
+ frame.affine_matrix = affine_z
1546
+ if multislice:
1547
+ frame.SliceThickness = thickness
1548
+
1549
+ # if multislice:
1550
+ # self.set_values(slice_thickness,'SliceThickness')
1551
+
1552
+
1553
+ # consider renaming copy() - but breaks backward compatibility - this is not a slice really
1554
+ def extract(self, slice={}, coords={}, **filters) -> Series:
1555
+ """Get a slice of the series by dimension values
1556
+
1557
+ Args:
1558
+ coordinates (dict, optional): dictionary of tag:value pairs where the value is either a single value or an array of values.
1559
+ coords (dict): Provide coordinates for the slice, either as dimension=value pairs, or as a dictionary where the keys list the dimensions, and the values are provided as scalars, 1D or meshgrid arrays of coordinates.
1560
+
1561
+ See also:
1562
+ `islice`
1563
+ `split_by`
1564
+
1565
+ Example:
1566
+ Create a zero-filled array, describing 8 MRI images each measured at 3 flip angles and 2 repetition times:
1567
+
1568
+ >>> coords = {
1569
+ ... 'SliceLocation': np.arange(8),
1570
+ ... 'FlipAngle': [2, 15, 30],
1571
+ ... 'RepetitionTime': [2.5, 5.0],
1572
+ ... }
1573
+ >>> series = db.zeros((128,128,8,3,2), coords)
1574
+
1575
+ Slice the series at flip angle 15:
1576
+
1577
+ >>> fa15 = series.slice(FlipAngle=15)
1578
+
1579
+ Retrieve the array and check the dimensions:
1580
+
1581
+ >>> array = fa15.pixel_values(dims=tuple(coords))
1582
+ >>> print(array.shape)
1583
+ (128, 128, 8, 1, 2)
1584
+
1585
+ Multiple possible values can be specified as a list or np.ndarray:
1586
+
1587
+ >>> fa15 = series.slice(SliceLocation=[0,5], FlipAngle=15)
1588
+ >>> array = fa15.pixel_values(dims=tuple(coords))
1589
+ >>> print(array.shape)
1590
+ (128, 128, 2, 1, 2)
1591
+
1592
+ Values can also be provided as a dictionary, which is useful for instance for private tags that do not have a keyword string. So the following are equivalent:
1593
+
1594
+ >>> fa15 = series.slice(SliceLocation=[0,5], FlipAngle=15)
1595
+ >>> fa15 = series.slice({SliceLocation:[0,5], FlipAngle:15})
1596
+ >>> fa15 = series.slice({(0x0020, 0x1041):[0,5], (0x0018, 0x1314):15})
1597
+ """
1598
+
1599
+ frames = self.frames(slice=slice, coords=coords, **filters)
1600
+ result = self.new_sibling()
1601
+ # result.adopt(frames) # faster but no progress bar
1602
+ for f, frame in enumerate(frames):
1603
+ self.progress(f+1, len(frames), 'Creating slice..')
1604
+ frame.copy_to(result)
1605
+ return result
1606
+
1607
+
1608
+ def split_by(self, tag: str | tuple) -> list:
1609
+ """Split the series into multiple subseries based on keyword value.
1610
+
1611
+ Args:
1612
+ keyword (str | tuple): A valid DICOM keyword or hexadecimal (group, element) tag.
1613
+
1614
+ Raises:
1615
+ ValueError: if an invalid or missing keyword is provided.
1616
+ ValueError: if all images have the same value for the keyword, so no subseries can be derived. An exception is raised rather than a copy of the series to avoid unnecessary copies being made. If that is the intention, use series.copy() instead.
1617
+
1618
+ Returns:
1619
+ list: A list of ``Series`` instances, where each element has the same value of the given keyword.
1620
+
1621
+ See Also:
1622
+ `slice`
1623
+ `islice`
1624
+
1625
+ Example:
1626
+
1627
+ Create a single-slice series with multiple flip angles and repetition times:
1628
+
1629
+ >>> coords = {
1630
+ ... 'FlipAngle': [2, 15, 30],
1631
+ ... 'RepetitionTime': [2.5, 7.5],
1632
+ ... }
1633
+ >>> zeros = db.zeros((128, 128, 3, 2), coords)
1634
+ >>> zeros.print()
1635
+ ---------- SERIES --------------
1636
+ Series 001 [New Series]
1637
+ Nr of instances: 6
1638
+ MRImage 000001
1639
+ MRImage 000002
1640
+ MRImage 000003
1641
+ MRImage 000004
1642
+ MRImage 000005
1643
+ MRImage 000006
1644
+ --------------------------------
1645
+
1646
+ Splitting this series by FlipAngle now creates 3 new series in the same study, with 2 images each. By default the fixed value of the splitting attribute is written in the series description:
1647
+
1648
+ >>> FA = zeros.split_by('FlipAngle')
1649
+ >>> zeros.study().print()
1650
+ ---------- STUDY ---------------
1651
+ Study New Study [None]
1652
+ Series 001 [New Series]
1653
+ Nr of instances: 6
1654
+ Series 002 [New Series[FlipAngle = 2.0]]
1655
+ Nr of instances: 2
1656
+ Series 003 [New Series[FlipAngle = 15.0]]
1657
+ Nr of instances: 2
1658
+ Series 004 [New Series[FlipAngle = 30.0]]
1659
+ Nr of instances: 2
1660
+ --------------------------------
1661
+
1662
+ Check the flip angle of the split series:
1663
+ >>> for series in FA:
1664
+ ... print(series.FlipAngle)
1665
+ 2.0
1666
+ 15.0
1667
+ 30.0
1668
+ """
1669
+
1670
+ vals = self.unique(tag)
1671
+ if len(vals)==1:
1672
+ msg = 'Cannot split by ' + str(tag) + '\n'
1673
+ msg += 'All frames have the same value.'
1674
+ raise ValueError(msg)
1675
+
1676
+ desc = self.instance().SeriesDescription + '[' + str(tag) + ' = '
1677
+ split_series = []
1678
+ for v in vals:
1679
+ new = self.extract(slice={tag: v})
1680
+ new.SeriesDescription = desc + str(v) + ']'
1681
+ split_series.append(new)
1682
+ return split_series
1683
+
1684
+
1685
+ def spacing(self, **kwargs)->tuple:
1686
+ """3D pixel spacing in mm
1687
+
1688
+ Returns:
1689
+ tuple: (x-spacing, y-spacing, z-spacing)
1690
+
1691
+ See also:
1692
+ `shape`
1693
+
1694
+ Examples:
1695
+ Check the spacing of a digital reference object:
1696
+
1697
+ >>> series = db.dro.T1_mapping_vFATR()
1698
+ >>> series.spacing()
1699
+ (15, 15, 20)
1700
+ """
1701
+ affine = self.affine(**kwargs)
1702
+ column_spacing = np.linalg.norm(affine[:3, 0])
1703
+ row_spacing = np.linalg.norm(affine[:3, 1])
1704
+ slice_spacing = np.linalg.norm(affine[:3, 2])
1705
+ return column_spacing, row_spacing, slice_spacing
1706
+
1707
+
1708
+
1709
+
1710
+ def unique_affines(self)->np.ndarray:
1711
+ """Return the array of unique affine matrices.
1712
+
1713
+ Raises:
1714
+ ValueError: if the DICOM file is corrupted.
1715
+
1716
+ Returns:
1717
+ np.ndarray: array of 4x4 ndarrays with the unique affine matrices of the series.
1718
+
1719
+ See also:
1720
+ `set_affine`
1721
+ `affine`
1722
+
1723
+ Example:
1724
+ Check that the default affine is the identity:
1725
+
1726
+ >>> zeros = db.zeros((128,128,10))
1727
+ >>> zeros.affine()
1728
+ [array([
1729
+ [1., 0., 0., 0.],
1730
+ [0., 1., 0., 0.],
1731
+ [0., 0., 1., 0.],
1732
+ [0., 0., 0., 1.]], dtype=float32)]
457
1733
  """
458
- images = instance_array(self, sortby='SliceLocation')
459
- if images.size == 0:
460
- msg = 'Cannot set affine matrix in an empty series \n'
461
- msg += 'Set some data with series.ndarray() and then try again.'
1734
+ image_orientation = self.ImageOrientationPatient
1735
+ if image_orientation is None:
1736
+ msg = 'ImageOrientationPatient not defined in the DICOM header \n'
1737
+ msg += 'This is a required DICOM field \n'
1738
+ msg += 'The data may be corrupted - please check'
462
1739
  raise ValueError(msg)
463
- images = images[...,0]
464
- affine_z = affine.copy()
465
-
466
- # For each slice location, the slice position needs to be updated too
467
- # Need the coordinates of the vector parallel to the z-axis of the volume.
468
- a = image_utils.dismantle_affine_matrix(affine)
469
- ez = a['SpacingBetweenSlices']*np.array(a['slice_cosine'])
1740
+ # Multiple slice groups in series - return list of affine matrices
1741
+ if self.is_multislice():
1742
+ affine_matrices = []
1743
+ for dir in image_orientation:
1744
+ slice_group = self.instances(ImageOrientationPatient=dir)
1745
+ affine = _slice_group_affine_matrix(slice_group, dir)
1746
+ affine_matrices.append(affine)
1747
+ return np.unique(affine_matrices)
1748
+ # Single slice group in series - return a list with a single affine matrix
1749
+ else:
1750
+ slice_group = self.instances()
1751
+ affine = _slice_group_affine_matrix(slice_group, image_orientation)
1752
+ return np.array([affine])
470
1753
 
471
- # Set the affine slice-by-slice
472
- nz = images.shape[0]
473
- for z in range(nz):
474
- self.progress(z+1, nz, 'Writing affine..')
475
- affine_z[:3, 3] = affine[:3, 3] + z*ez
476
- images[z].read()
477
- images[z].affine_matrix = affine_z
478
- images[z].clear()
1754
+ def is_multislice(self)->bool:
1755
+ """Check if the series is multislice
479
1756
 
1757
+ Returns:
1758
+ bool: True if the series is multislice.
1759
+ """
1760
+ return is_multislice(self)
480
1761
 
481
1762
 
482
- def ndarray(self, dims=('InstanceNumber',), coords:dict=None, slice:dict=None) -> np.ndarray:
483
- """Return a numpy.ndarray with pixel data.
1763
+ def islice(self, indices={}, **inds) -> Series:
1764
+ """Get a slice of the series by dimension indics
484
1765
 
485
1766
  Args:
486
- dims (tuple, optional): Dimensions of the result, as a tuple of valid DICOM tags of any length. Defaults to ('InstanceNumber',).
487
- coords (dict, optional): Dictionary with coordinates to retrieve a slice of the entire array. If coords is provided, the dims argument is ignored.
488
- slice (dict, optional): Dictionary with coordinates to retrieve a slice of the entire array. If slice is provided, then the dims argument is ignored. The difference with coords is that the dictionary values in slice specify the indices rather than the values of the coordinates.
1767
+ indices (dict, optional): Dictionary with tag:value pairs, where the values are either a single index or an array of indices.
1768
+ inds (dict, optional): Provide indices for the slice, either as keyword=index pairs or as a dictionary. The indices must be provided either as a scalar, a list or a numpy array.
489
1769
 
490
- Returns:
491
- np.ndarray: pixel data. The number of dimensions will be 2 plus the number of elements in dim, or the number of entries in slice or islice. The first two indices will enumerate (x,y) coordinates in the slice, the other dimensions are as specified by the dims, slice or islice argument.
492
-
493
- The function returns an empty array when no data are found at the specified slices.
1770
+ Raises:
1771
+ IndexError: when the indices in inds are out of range of the existing coordinates.
494
1772
 
495
1773
  See also:
496
- :func:`~set_ndarray`
1774
+ `slice`
1775
+ `split_by`
497
1776
 
498
1777
  Example:
499
- Create a zero-filled array, describing 8 MRI slices (10mm apart) each measured at 3 flip angles and 2 repetition times:
1778
+ Create a zero-filled array, describing 8 MRI images each measured at 3 flip angles and 2 repetition times:
500
1779
 
501
1780
  >>> coords = {
502
- ... 'SliceLocation': 10*np.arange(8),
1781
+ ... 'SliceLocation': np.arange(8),
503
1782
  ... 'FlipAngle': [2, 15, 30],
504
1783
  ... 'RepetitionTime': [2.5, 5.0],
505
1784
  ... }
506
- >>> zeros = db.zeros((128,128,8,3,2), coords)
1785
+ >>> series = db.zeros((128,128,8,3,2), coords)
507
1786
 
508
- To retrieve the array, the dimensions need to be provided:
1787
+ Slice the series at flip angle 15 (i.e. index 1):
509
1788
 
510
- >>> dims = ('SliceLocation', 'FlipAngle', 'RepetitionTime')
511
- >>> array = zeros.ndarray(dims)
512
- >>> print(array.shape)
513
- (128, 128, 8, 3, 2)
1789
+ >>> fa15 = series.islice(FlipAngle=1)
514
1790
 
515
- Note the dimensions are the keys of the coordinate dictionary, so this could also have been called as:
1791
+ Retrieve the array and check the dimensions:
516
1792
 
517
- >>> array = zeros.ndarray(dims=tuple(coords))
1793
+ >>> array = fa15.pixel_values(dims=tuple(coords))
518
1794
  >>> print(array.shape)
519
- (128, 128, 8, 3, 2)
520
-
521
- To retrieve a slice of the volume, specify the coordinates of the slice as a dictionary. For instance, to retrieve the pixel data measured with a flip angle of 15:
522
-
523
- >>> coords = {
524
- ... 'SliceLocation': 10*np.arange(8),
525
- ... 'FlipAngle': [15],
526
- ... 'RepetitionTime': [2.5, 5.0],
527
- ... }
1795
+ (128, 128, 8, 1, 2)
528
1796
 
529
- Now pass this as coordinates in the call to ndarray:
1797
+ Multiple possible indices can be specified as a list or np.ndarray:
530
1798
 
531
- >>> array = zeros.ndarray(coords=coords)
1799
+ >>> fa15 = series.slice(SliceLocation=[0,5], FlipAngle=1)
1800
+ >>> array = fa15.pixel_values(dims=tuple(coords))
532
1801
  >>> print(array.shape)
533
- (128, 128, 8, 1, 2)
1802
+ (128, 128, 2, 1, 2)
534
1803
 
535
- A slice can also be specified with indices rather than absolute values of the coordinates:
536
-
537
- >>> slice = {
538
- ... 'SliceLocation': np.arange(8),
539
- ... 'FlipAngle': [1],
540
- ... 'RepetitionTime': np.arange(2),
541
- ... }
1804
+ Values can also be provided as a dictionary, which is useful for instance for private tags that do not have a keyword string. So the following are equivalent:
542
1805
 
543
- Now pass this as index coordinates in the call to ndarray:
1806
+ >>> fa15 = series.slice(SliceLocation=[0,5], FlipAngle=1)
1807
+ >>> fa15 = series.slice({SliceLocation:[0,5], FlipAngle:1})
1808
+ >>> fa15 = series.slice({(0x0020, 0x1041):[0,5], (0x0018, 0x1314):1})
544
1809
 
545
- >>> array = zeros.ndarray(slice=slice)
546
- >>> print(array.shape)
547
- (128, 128, 8, 1, 2)
548
1810
  """
549
- if coords is not None:
550
- dims = tuple(coords)
551
- if slice is not None:
552
- dims = tuple(slice)
553
- source = instance_array(self, list(dims))
554
- if source.size == 0:
555
- return np.array([])
556
- if slice is not None:
557
- for d, dim in enumerate(slice):
558
- ind = slice[dim]
559
- source = source.take(ind, axis=d)
560
- if coords is not None:
561
- for d, dim in enumerate(coords):
562
- ind = []
563
- for i in range(source.shape[d]):
564
- si = source.take(i,axis=d).ravel()
565
- if si[0][dim] in coords[dim]:
566
- ind.append(i)
1811
+ inds = {**indices, **inds}
1812
+
1813
+ # Check whether the arguments are valid, and initialize dims.
1814
+ if inds == {}:
1815
+ return self.new_sibling()
1816
+ dims = list(inds.keys())
1817
+ source = instance_array(self, sortby=dims)
1818
+
1819
+ # Retrieve the instances of the slice.
1820
+ for d, dim in enumerate(inds):
1821
+ ind = inds[dim]
1822
+ try:
567
1823
  source = source.take(ind, axis=d)
568
- if source.size == 0:
569
- return np.array([])
570
- array = []
571
- instances = source.ravel()
572
- im = None
573
- for i, im in enumerate(instances):
574
- if im is None:
575
- array.append(np.zeros((1,1)))
576
- else:
577
- im.progress(i+1, len(instances), 'Reading pixel data..')
578
- array.append(im.get_pixel_array())
579
- if im is not None:
580
- im.status.hide()
581
- array = _stack(array)
582
- if array is None:
583
- return np.array([])
584
- array = array.reshape(source.shape + array.shape[1:])
585
- # Move pixel coordinates to front
586
- array = np.moveaxis(array, -1, 0)
587
- array = np.moveaxis(array, -1, 0)
588
- return array[...,0]
589
-
1824
+ # Insert dimensions of 1 back in
1825
+ if isinstance(ind, Number):
1826
+ source = np.expand_dims(source, axis=d)
1827
+ except IndexError as e:
1828
+ msg = str(e) + '\n'
1829
+ msg += 'The indices for ' + str(dim) + ' in the inds argument are out of bounds'
1830
+ raise IndexError(msg)
1831
+
1832
+ result = self.new_sibling()
1833
+ source = source.ravel()
1834
+ for i in range(source.size):
1835
+ source[i].copy_to(result)
1836
+ return result
1837
+
1838
+
1839
+ #
1840
+ # Following APIs are obsolete and will be removed in future versions
1841
+ #
590
1842
 
591
- def set_ndarray(self, array:np.ndarray, coords:dict=None, slice:dict=None):
1843
+
1844
+ def _old_set_pixel_values(self, array:np.ndarray, coords:dict=None, inds:dict=None):
592
1845
  """Assign new pixel data with a new numpy.ndarray.
593
1846
 
594
1847
  Args:
595
1848
  array (np.ndarray): array with new pixel data.
596
1849
  coords (dict, optional): Provide coordinates for the array, using a dictionary where the keys list the dimensions, and the values are provided as 1D or meshgrid arrays of coordinates. If data already exist at the specified coordinates, these will be overwritten. If not, the new data will be added to the series.
597
- slice (dict, optional): Provide a slice of existing data that will be overwritten with the new array. The format is the same as the dictionary of coordinates, except that the slice is identified by indices rather than values.
1850
+ inds (dict, optional): Provide a slice of existing data that will be overwritten with the new array. The format is the same as the dictionary of coordinates, except that the slice is identified by indices rather than values.
598
1851
 
599
1852
  Raises:
600
- ValueError: if neither coords or slice or provided, if both are provided, or if the dimensions in coords or slice does not match up with the dimensions of the array.
601
- IndexError: when attempting to set a slice in an empty array, or when the indices in slice are out of range of the existing coordinates.
1853
+ ValueError: if neither coords or inds or provided, if both are provided, or if the dimensions in coords or inds does not match up with the dimensions of the array.
1854
+ IndexError: when attempting to set a slice in an empty array, or when the indices in inds are out of range of the existing coordinates.
602
1855
 
603
1856
  See also:
604
- :func:`~ndarray`
1857
+ `pixel_values`
605
1858
 
606
1859
  Example:
607
- Create a zero-filled array, describing 8 MRI slices each measured at 3 flip angles and 2 repetition times:
1860
+ Create a zero-filled array, describing 8 MRI images each measured at 3 flip angles and 2 repetition times:
608
1861
 
609
1862
  >>> coords = {
610
1863
  ... 'SliceLocation': np.arange(8),
@@ -615,7 +1868,7 @@ class Series(Record):
615
1868
 
616
1869
  Retrieve the array and check that it is populated with zeros:
617
1870
 
618
- >>> array = series.ndarray(dims=tuple(coords))
1871
+ >>> array = series.pixel_values(dims=tuple(coords))
619
1872
  >>> print(np.mean(array))
620
1873
  0.0
621
1874
 
@@ -626,11 +1879,11 @@ class Series(Record):
626
1879
  ... 'SliceLocation': np.arange(8),
627
1880
  ... }
628
1881
  >>> ones = np.ones(new_shape)
629
- >>> series.set_ndarray(ones, coords=new_coords)
1882
+ >>> series.set_pixel_values(ones, coords=new_coords)
630
1883
 
631
1884
  Retrieve the new array and check shape:
632
1885
 
633
- >>> array = series.ndarray(dims=tuple(new_coords))
1886
+ >>> array = series.pixel_values(dims=tuple(new_coords))
634
1887
  >>> print(array.shape)
635
1888
  (128,128,8)
636
1889
 
@@ -639,11 +1892,6 @@ class Series(Record):
639
1892
  >>> print(np.mean(array))
640
1893
  1.0
641
1894
  """
642
-
643
- # TODO: set_pixel_array has **kwargs to allow setting other properties on the fly to save extra reading and writing. This makes sense but should be handled by a more general function, such as:
644
- # #
645
- # series.set(ndarray:np.ndarray, coords:dict, affine:np.ndarray, **kwargs)
646
- # #
647
1895
 
648
1896
  # Check whether the arguments are valid, and initialize dims.
649
1897
  cnt = 0
@@ -657,17 +1905,17 @@ class Series(Record):
657
1905
  if len(coords[dim]) != array.shape[d+2]:
658
1906
  msg = str(dim) + ' in the coords must have the same number of elements as the corresponding dimension in the array'
659
1907
  raise ValueError(msg)
660
- if slice is not None:
1908
+ if inds is not None:
661
1909
  cnt+=1
662
- dims = tuple(slice)
1910
+ dims = tuple(inds)
663
1911
  if len(dims) != array.ndim-2:
664
1912
  msg = 'One coordinate must be specified for each dimensions in the array.'
665
1913
  raise ValueError(msg)
666
1914
  if cnt == 0:
667
- msg = 'At least one of the optional arguments coords or slice must be provided'
1915
+ msg = 'At least one of the optional arguments coords or inds must be provided'
668
1916
  raise ValueError(msg)
669
1917
  if cnt == 2:
670
- msg = 'Only one of the optional arguments coords or slice must be provided'
1918
+ msg = 'Only one of the optional arguments coords or inds must be provided'
671
1919
  raise ValueError(msg)
672
1920
 
673
1921
  source = instance_array(self, sortby=list(dims))
@@ -682,16 +1930,21 @@ class Series(Record):
682
1930
  if si[0][dim] in coords[dim]:
683
1931
  ind.append(i)
684
1932
  source = source.take(ind, axis=d)
685
- elif slice is not None:
1933
+ # Insert dimensions of 1 back in
1934
+ if len(ind)==1:
1935
+ source = np.expand_dims(source, axis=d)
1936
+ elif inds is not None:
686
1937
  # Retrieve the instances of the slice, as well as their coordinates.
687
1938
  coords = {}
688
- for d, dim in enumerate(slice):
689
- ind = slice[dim]
1939
+ for d, dim in enumerate(inds):
1940
+ ind = inds[dim]
1941
+ if isinstance(ind, np.ndarray):
1942
+ ind = list(ind)
690
1943
  try:
691
1944
  source = source.take(ind, axis=d)
692
1945
  except IndexError as e:
693
1946
  msg = str(e) + '\n'
694
- msg += 'The indices for ' + str(dim) + ' in the slice argument are out of bounds'
1947
+ msg += 'The indices for ' + str(dim) + ' in the inds argument are out of bounds'
695
1948
  raise IndexError(msg)
696
1949
  coords[dim] = []
697
1950
  for i in range(source.shape[d]):
@@ -702,10 +1955,10 @@ class Series(Record):
702
1955
  if source.size == 0:
703
1956
  # If there are not yet any instances at the correct coordinates, they will be created from scratch
704
1957
  source = [self.new_instance(MRImage()) for _ in range(nr_of_slices)]
705
- set_ndarray(self, array, source=source, coords=coords, affine=np.eye(4))
1958
+ set_pixel_values(self, array, source=source, coords=coords)
706
1959
  elif array.shape[2:] == source.shape:
707
1960
  # If the new array has the same shape, use the exact headers.
708
- set_ndarray(self, array, source=source.ravel().tolist(), coords=coords)
1961
+ set_pixel_values(self, array, source=source.ravel().tolist(), coords=coords)
709
1962
  else:
710
1963
  # If the new array has a different shape, use the first header for all and delete all the others
711
1964
  # This happens when some of the new coordinates are present, but not all.
@@ -714,16 +1967,116 @@ class Series(Record):
714
1967
  for series in source[1:]:
715
1968
  series.remove()
716
1969
  source = [source[0]] + [source[0].copy_to(self) for _ in range(nr_of_slices-1)]
717
- set_ndarray(self, array, source=source, coords=coords, affine=np.eye(4))
1970
+ set_pixel_values(self, array, source=source, coords=coords)
1971
+
1972
+ def subseries(self, **kwargs)->Series:
1973
+ """Extract a subseries based on values of header elements.
718
1974
 
1975
+ Args:
1976
+ kwargs: Any number of valid DICOM (tag, value) keyword arguments.
719
1977
 
720
- #
721
- # Following APIs are obsolete and will be removed in future versions
722
- #
1978
+ Returns:
1979
+ Series: a new series as a sibling under the same parent.
1980
+
1981
+ See Also:
1982
+ :func:`~split_by`
1983
+
1984
+ Example:
1985
+
1986
+ Create a multi-slice series with multiple flip angles and repetition times:
1987
+
1988
+ >>> coords = {
1989
+ ... 'SliceLocation': np.arange(16),
1990
+ ... 'FlipAngle': [2, 15, 30],
1991
+ ... 'RepetitionTime': [2.5, 5.0, 7.5],
1992
+ ... }
1993
+ >>> zeros = db.zeros((128, 128, 16, 3, 2), coords)
1994
+
1995
+ Create a new series containing only the data with flip angle 2 and repetition time 7.5:
1996
+
1997
+ >>> volume = zeros.subseries(FlipAngle=2.0, RepetitionTime=7.5)
1998
+
1999
+ Check that the volume series now has two dimensions of size 1:
2000
+
2001
+ >>> array = volume.pixel_values(dims=tuple(coords))
2002
+ >>> print(array.shape)
2003
+ (128, 128, 16, 1, 1)
2004
+
2005
+ and only one flip angle and repetition time:
2006
+
2007
+ >>> print(volume.FlipAngle, volume.RepetitionTime)
2008
+ 2.0 7.5
2009
+
2010
+ and that the parent study now has two series:
2011
+
2012
+ >>> volume.study().print()
2013
+ ---------- STUDY ---------------
2014
+ Study New Study [None]
2015
+ Series 001 [New Series]
2016
+ Nr of instances: 96
2017
+ Series 002 [New Series]
2018
+ Nr of instances: 16
2019
+ --------------------------------
2020
+ """
2021
+ return subseries(self, move=False, **kwargs)
2022
+
2023
+ def slice_groups(self, dims=('InstanceNumber',)) -> list:
2024
+ """Return a list of slice groups in the series.
723
2025
 
2026
+ In dbdicom, a *slice group* is defined as a series of slices that have the same orientation. It is common for a single series to have images with multiple orientations, such as in localizer series in MRI. For such a series, returning all data in a single array may not be meaningful.
2027
+
2028
+ Formally, a *slice group* is a dictionary with two entries: 'ndarray' is the numpy.ndarray with the data along the dimensions provided by the dims argument, and 'affine' is the 4x4 affine matrix of the slice group. The function returns a list of such dictionaries, one for each slice group in the series.
2029
+
2030
+ Args:
2031
+ dims (tuple, optional): Dimensions for the returned arrays. Defaults to ('InstanceNumber',).
2032
+
2033
+ Returns:
2034
+ list: A list of slice groups (dictionaries), one for each slice group in the series.
2035
+
2036
+ Examples:
2037
+
2038
+ >>> series = db.ones((128,128,5,10))
2039
+ >>> sgroups = series.slice_groups(dims=('SliceLocation', 'AcquisitionTime'))
2040
+
2041
+ Since there is only one slice group in the series, ``sgroups`` is a list with one element:
2042
+
2043
+ >>> print(len(sgroups))
2044
+ 1
2045
+
2046
+ The array of the slice group is the entire volume of the series:
2047
+
2048
+ >>> print(sgroups[0]['ndarray'].shape)
2049
+ (128, 128, 5, 10)
2050
+
2051
+ And the affine of the series has not changed from the default (identity):
2052
+
2053
+ >>> print(sgroups[0]['affine'])
2054
+ [[1. 0. 0. 0.]
2055
+ [0. 1. 0. 0.]
2056
+ [0. 0. 1. 0.]
2057
+ [0. 0. 0. 1.]]
724
2058
 
725
- # def slice_groups(*args, **kwargs):
726
- # return slice_groups(*args, **kwargs)
2059
+ """
2060
+
2061
+ slice_groups = []
2062
+ image_orientation = self.ImageOrientationPatient
2063
+
2064
+ # Multiple slice groups in series - return list of cuboids
2065
+ if isinstance(image_orientation[0], list):
2066
+ for dir in image_orientation:
2067
+ slice_group = instance_array(self, ImageOrientationPatient=dir)
2068
+ affine = _slice_group_affine_matrix(list(slice_group), dir)
2069
+ array, _ = _get_pixel_array_from_instance_array(slice_group, sortby=list(dims), pixels_first=True)
2070
+ slice_groups.append({'ndarray': array[...,0], 'affine': affine})
2071
+
2072
+ # Single slice group in series - return a list with a single affine matrix
2073
+ else:
2074
+ slice_group = instance_array(self)
2075
+ affine = _slice_group_affine_matrix(list(slice_group), image_orientation)
2076
+ array, _ = _get_pixel_array_from_instance_array(slice_group, sortby=list(dims), pixels_first=True)
2077
+ slice_groups.append({'ndarray': array[...,0], 'affine': affine})
2078
+
2079
+ return slice_groups
727
2080
 
728
2081
  def affine_matrix(self):
729
2082
  return affine_matrix(self)
@@ -740,42 +2093,348 @@ class Series(Record):
740
2093
  def set_pixel_array(*args, **kwargs):
741
2094
  set_pixel_array(*args, **kwargs)
742
2095
 
2096
+ def ndarray(self, *args, **kwargs):
2097
+ return self.pixel_values(*args, **kwargs)
2098
+
2099
+ def set_ndarray(self, *args, **kwargs):
2100
+ self.set_pixel_values(*args, **kwargs)
2101
+
2102
+
2103
+
2104
+ def _filter_values(vframes, slice, coords, exclude=False):
2105
+ # vframes: list with one item per frame, each item being a list of values.
2106
+ # filters: dictionary of tag: value pairs.
2107
+ if slice=={} and coords=={}:
2108
+ fvalues = vframes
2109
+ else:
2110
+ fvalues = []
2111
+ nf = len(slice)
2112
+ nl = _coords_size(coords)
2113
+ nc = len(coords)
2114
+ for vframe in vframes:
2115
+ in_slice = True
2116
+ for i, s in enumerate(slice):
2117
+ if isinstance(slice[s], np.ndarray):
2118
+ in_slice = vframe[i-nf-nc] in slice[s]
2119
+ else:
2120
+ in_slice = vframe[i-nf-nc] == slice[s]
2121
+ if exclude:
2122
+ in_slice = not in_slice
2123
+ if not in_slice:
2124
+ break
2125
+ if nl==0:
2126
+ in_coords = True
2127
+ else:
2128
+ in_coords = False
2129
+ for l in range(nl):
2130
+ at_l = True
2131
+ for i, loc in enumerate(coords):
2132
+ at_l = at_l and (vframe[i-nc] == coords[loc][l])
2133
+ in_coords = in_coords or at_l
2134
+ if at_l:
2135
+ break
2136
+ if exclude:
2137
+ in_coords = not in_coords
2138
+ if in_slice and in_coords:
2139
+ fvalues.append(vframe[:-nf-nc])
2140
+
2141
+ if len(fvalues) == 0:
2142
+ return np.array([]).reshape((0,0))
2143
+
2144
+ # Create array of return values. Values can be of different types including lists so this must be an object array.
2145
+ nd, nf = len(fvalues[0]), len(fvalues)
2146
+ rvalues = np.empty((nd,nf), dtype=object)
2147
+ for d in range(nd):
2148
+ for f in range(nf):
2149
+ rvalues[d,f] = fvalues[f][d]
2150
+
2151
+ return rvalues
2152
+
2153
+
2154
+
2155
+ def _filter_values_ind(vframes, slice, coords, exclude=False):
2156
+ if slice=={} and coords=={}:
2157
+ return np.arange(len(vframes), dtype=int)
2158
+ finds = []
2159
+ nf = len(slice)
2160
+ nl = _coords_size(coords)
2161
+ nc = len(coords)
2162
+ for iv, vframe in enumerate(vframes):
2163
+ in_slice = True
2164
+ for i, s in enumerate(slice):
2165
+ if isinstance(slice[s], np.ndarray):
2166
+ in_slice = vframe[i-nf-nc] in slice[s]
2167
+ else:
2168
+ in_slice = vframe[i-nf-nc] == slice[s]
2169
+ if exclude:
2170
+ in_slice = not in_slice
2171
+ if not in_slice:
2172
+ break
2173
+ if nl==0:
2174
+ in_coords = True
2175
+ else:
2176
+ in_coords = False
2177
+ for l in range(nl):
2178
+ at_l = True
2179
+ for i, loc in enumerate(coords):
2180
+ at_l = at_l and (vframe[i-nc] == coords[loc][l])
2181
+ in_coords = in_coords or at_l
2182
+ if at_l:
2183
+ break
2184
+ if exclude:
2185
+ in_coords = not in_coords
2186
+ if in_slice and in_coords:
2187
+ finds.append(iv)
2188
+ return np.array(finds, dtype=int)
2189
+
2190
+
2191
+ def _coords_shape(coords):
2192
+ if coords == {}:
2193
+ return (0,)
2194
+
2195
+ # Check that all values are arrays.
2196
+ for c in coords:
2197
+ if not isinstance(coords[c], np.ndarray):
2198
+ msg = 'Coordinate values must be provided as numpy arrays.'
2199
+ msg += '\nBut the value of ' + str(c) + ' is a ' + str(type(c))
2200
+ raise ValueError(msg)
2201
+
2202
+ shapes = [coords[tag].shape for tag in coords]
2203
+ shape = shapes[0]
2204
+ for s in shapes[1:]:
2205
+ if s != shape:
2206
+ msg = 'Dimensions are ambiguous - not all coordinates have the same shape.'
2207
+ raise ValueError(msg)
2208
+ return shapes[0]
2209
+
2210
+
2211
+ def _coords_size(coords):
2212
+
2213
+ if coords == {}:
2214
+ return 0
2215
+
2216
+ for c in coords:
2217
+ if not isinstance(coords[c], np.ndarray):
2218
+ msg = 'Coordinate values must be provided as numpy arrays.'
2219
+ msg += '\nBut the value of ' + str(c) + ' is a ' + str(type(c))
2220
+ raise ValueError(msg)
2221
+
2222
+ # Coordinate values must a have the same size.
2223
+ sizes = np.unique([coords[tag].size for tag in coords])
2224
+ if len(sizes) > 1:
2225
+ msg = 'These are not proper dimensions. Each coordinate must have the same number of values.'
2226
+ raise ValueError(msg)
2227
+ return sizes[0]
2228
+
2229
+ def _coords_vals(coords):
2230
+ values = [coords[tag].ravel() for tag in coords]
2231
+ values = np.stack(values)
2232
+ return values
2233
+
2234
+ def _check_if_ivals(values):
2235
+ if None in values:
2236
+ msg = 'These are not proper dimensions. Coordinate values must be defined everywhere.'
2237
+ raise ValueError(msg)
2238
+
2239
+ # Check if the values are unique
2240
+ for f in range(values.shape[1]-1):
2241
+ for g in range(f+1, values.shape[1]):
2242
+ equal = True
2243
+ for d in range(values.shape[0]):
2244
+ if values[d,f] != values[d,g]:
2245
+ equal = False
2246
+ break
2247
+ if equal:
2248
+ msg = 'These are not proper dimensions. Coordinate values must be unique.'
2249
+ raise ValueError(msg)
2250
+ # if values.shape[1] != np.unique(values, axis=1).shape[1]:
2251
+ # msg = 'These are not proper dimensions. Coordinate values must be unique.'
2252
+ # raise ValueError(msg)
2253
+
2254
+ def _check_if_coords(coords):
2255
+
2256
+ # Check that all values are arrays.
2257
+ for c in coords:
2258
+ if not isinstance(coords[c], np.ndarray):
2259
+ msg = 'Coordinate values must be provided as numpy arrays.'
2260
+ msg += '\nBut the value of ' + str(c) + ' is a ' + str(type(coords[c]))
2261
+ raise ValueError(msg)
2262
+
2263
+ # Check if coordinates are unique
2264
+ values = _coords_vals(coords)
2265
+ _check_if_ivals(values)
2266
+ return coords
2267
+
2268
+ def _mesh_to_coords(coords):
2269
+ for c in coords:
2270
+ coords[c] = coords[c].ravel()
2271
+ return _check_if_coords(coords)
2272
+
2273
+
2274
+ def _grid_to_meshcoords(gridcoords):
2275
+
2276
+ grid = []
2277
+ for c in gridcoords:
2278
+ if not isinstance(gridcoords[c], np.ndarray):
2279
+ msg = 'Grid coordinates have to be numpy arrays.'
2280
+ raise TypeError(msg)
2281
+ if len(gridcoords[c].shape) != 1:
2282
+ msg = 'Grid coordinates have to be one-dimensionial.'
2283
+ raise ValueError(msg)
2284
+ if len(np.unique(gridcoords[c])) != len(gridcoords[c]):
2285
+ msg = 'Grid coordinates have to be unique.'
2286
+ raise ValueError(msg)
2287
+ grid.append(gridcoords[c])
2288
+
2289
+ mesh = np.meshgrid(*tuple(grid), indexing='ij')
2290
+ meshcoords = {}
2291
+ for i, c in enumerate(gridcoords):
2292
+ meshcoords[c] = mesh[i]
2293
+ _check_if_coords(meshcoords)
2294
+ return meshcoords
2295
+
2296
+
2297
+ def _meshcoords_to_grid(coords):
2298
+ dims = tuple(coords)
2299
+ gridcoords = {}
2300
+ for d, dim in enumerate(dims):
2301
+ gridcoords[dim] = []
2302
+ dvals = coords[dim]
2303
+ for i in range(dvals.shape[d]):
2304
+ dvals_i = dvals.take(i, axis=d)
2305
+ dvals_i = np.unique(dvals_i)
2306
+ if len(dvals_i) > 1:
2307
+ msg = 'These are not proper grid coordinates.'
2308
+ raise ValueError(msg)
2309
+ gridcoords[dim].append(dvals_i[0])
2310
+ gridcoords[dim] = np.array(gridcoords[dim])
2311
+ return gridcoords
2312
+
2313
+
2314
+ def _grid_to_coords(grid):
2315
+ if grid == {}:
2316
+ return {}
2317
+ coords = _grid_to_meshcoords(grid)
2318
+ for c in coords:
2319
+ coords[c] = coords[c].flatten()
2320
+ return coords
2321
+
2322
+ def _as_meshcoords(coords):
2323
+
2324
+ # First check that they are proper coordinates
2325
+ values = _coords_vals(coords)
2326
+ _check_if_ivals(values)
2327
+ values = _meshvals(values)
2328
+ meshcoords = {}
2329
+ for i, c in enumerate(coords):
2330
+ meshcoords[c] = values[i,...]
2331
+ return meshcoords
2332
+
2333
+ def _meshvals(values):
2334
+ # Input array shape: (d, f) with d = nr of dims and f = nr of frames
2335
+ # Output array shape: (d, f1,..., fd)
2336
+ if values.size == 0:
2337
+ return np.array([])
2338
+ # List the unique values of the first coordinate
2339
+ vals, cnts = np.unique(values[0,:], return_counts=True)
2340
+ # Check that there is an equal number of each value
2341
+ if len(np.unique(cnts)) > 1:
2342
+ msg = 'These are not mesh coordinates.'
2343
+ raise ValueError(msg)
2344
+ # If there is only one dimension, we are done
2345
+ if values.shape[0] == 1:
2346
+ return values
2347
+ mesh = []
2348
+ for v in vals:
2349
+ vind = np.where(values[0,:]==v)[0]
2350
+ vmesh = _meshvals(values[1:,vind])
2351
+ mesh.append(vmesh)
2352
+ mesh = np.stack(mesh, axis=1)
2353
+ a = [np.full(mesh.shape[2:], v) for v in vals]
2354
+ a = np.stack(a)
2355
+ a = np.expand_dims(a,0)
2356
+ mesh = np.concatenate((a, mesh))
2357
+ return mesh
2358
+
2359
+ def _meshdata(vals, crds, cmesh):
2360
+ mshape = (vals.shape[0],) + cmesh.shape[1:]
2361
+ if mshape[0]==0:
2362
+ return vals.reshape(mshape)
2363
+ vmesh = np.zeros(mshape, dtype=object)
2364
+ cmesh = cmesh.reshape((cmesh.shape[0],-1))
2365
+ vmesh = vmesh.reshape((vmesh.shape[0],-1))
2366
+ for i in range(vals.shape[1]):
2367
+ # find location of coordinate i in cmesh
2368
+ for j in range(cmesh.shape[1]):
2369
+ if np.array_equal(cmesh[:,j], crds[:,i]):
2370
+ break
2371
+ # Write value i at the same location in vmesh
2372
+ vmesh[:,j] = vals[:,i]
2373
+ return vmesh.reshape(mshape)
2374
+
2375
+ def _concatenate_coords(coords:tuple, mesh=False):
2376
+ concat = {}
2377
+ for c in coords[0]:
2378
+ concat[c] = coords[0][c].flatten().copy()
2379
+ for coord in coords[1:]:
2380
+ for c in coord:
2381
+ if c not in concat:
2382
+ msg = 'Cannot concatenate - all coordinates must have the same variables.'
2383
+ raise ValueError(msg)
2384
+ concat[c] = np.concatenate((concat[c], coord[c].flatten()))
2385
+ _check_if_coords(concat)
2386
+ if mesh:
2387
+ return _as_meshcoords(concat)
2388
+ else:
2389
+ return concat
2390
+
2391
+
2392
+ ### OBSOLETE BELOW HERE
743
2393
 
744
- def set_ndarray(series, array, source=None, coords=None, affine=None, **kwargs):
2394
+
2395
+ def set_pixel_values(series, array, source=None, coords=None, **kwargs):
745
2396
 
746
2397
  # If coordinates are given as 1D arrays, turn them into grids and flatten for iteration.
747
2398
  if coords is not None:
748
2399
  mesh_coords = {}
749
- v0 = list(coords.values())[0]
750
- if np.array(v0).ndim==1: # regular grid
751
- pos = tuple([coords[c] for c in coords])
752
- pos = np.meshgrid(*pos)
753
- for i, c in enumerate(coords):
754
- mesh_coords[c] = pos[i].ravel()
2400
+ v = list(coords.values())
2401
+ if v != []:
2402
+ v0 = v[0]
2403
+ if np.array(v0).ndim==1: # regular grid
2404
+ pos = tuple([coords[c] for c in coords])
2405
+ pos = np.meshgrid(*pos, indexing='ij')
2406
+ for i, c in enumerate(coords):
2407
+ mesh_coords[c] = pos[i].ravel()
755
2408
 
756
2409
  # Flatten array for iterating
757
2410
  nr_of_slices = int(np.prod(array.shape[2:]))
758
2411
  array = array.reshape((array.shape[0], array.shape[1], nr_of_slices)) # shape (x,y,i)
2412
+ attr = {**series.attributes, **kwargs}
2413
+ if 'SliceLocation' in coords:
2414
+ affine = series.affine()
759
2415
  for i, image in enumerate(source):
760
2416
  series.progress(i+1, len(source), 'Saving array..')
761
2417
  image.read()
762
2418
 
763
- # If needed, use Defaults for geometry markers
764
- if affine is not None:
765
- affine[2, 3] = i
766
- image.affine_matrix = affine
767
-
768
2419
  # Update any other header data provided
769
- for attr, vals in kwargs.items():
770
- if isinstance(vals, list):
771
- setattr(image, attr, vals[i])
772
- else:
773
- setattr(image, attr, vals)
2420
+ for a, v in attr.items():
2421
+ setattr(image, a, v)
2422
+ # if isinstance(v, list):
2423
+ # setattr(image, a, v[i])
2424
+ # else:
2425
+ # setattr(image, a, v)
2426
+
2427
+ # # If needed, use Defaults for geometry markers
2428
+ # if affine is not None:
2429
+ # affine[2, 3] = i # not sufficiently general
2430
+ # image.affine_matrix = affine
774
2431
 
775
2432
  # Set coordinates.
776
2433
  if mesh_coords is not None:
777
2434
  for c in mesh_coords:
778
2435
  image[c] = mesh_coords[c][i]
2436
+ if c == 'SliceLocation':
2437
+ image['ImagePositionPatient'] = image_utils.image_position_from_slice_location(mesh_coords[c][i], affine)
779
2438
 
780
2439
  image.set_pixel_array(array[:,:,i])
781
2440
  image.clear()
@@ -793,7 +2452,7 @@ def subseries(record, move=False, **kwargs):
793
2452
  series = record.new_sibling()
794
2453
  instances = record.instances(**kwargs)
795
2454
  for i, instance in enumerate(instances):
796
- record.status.progress(i+1, len(instances), 'Extracting subseries..')
2455
+ record.progress(i+1, len(instances), 'Extracting subseries..')
797
2456
  if move:
798
2457
  instance.move_to(series)
799
2458
  else:
@@ -815,31 +2474,34 @@ def read_npy(record):
815
2474
 
816
2475
 
817
2476
 
818
- def array(record, **kwargs):
2477
+ def array(record, sortby=None, pixels_first=False, first_volume=False):
819
2478
  if isinstance(record, list): # array of instances
820
2479
  arr = np.empty(len(record), dtype=object)
821
2480
  for i, rec in enumerate(record):
822
2481
  arr[i] = rec
823
- return _get_pixel_array_from_instance_array(arr, **kwargs)
2482
+ return _get_pixel_array_from_instance_array(arr, sortby=sortby, pixels_first=pixels_first, first_volume=first_volume)
824
2483
  elif isinstance(record, np.ndarray): # array of instances
825
- return _get_pixel_array_from_instance_array(record, **kwargs)
2484
+ return _get_pixel_array_from_instance_array(record, sortby=sortby, pixels_first=pixels_first, first_volume=first_volume)
826
2485
  else:
827
- return get_pixel_array(record, **kwargs)
2486
+ return get_pixel_array(record, sortby=sortby, pixels_first=pixels_first, first_volume=first_volume)
828
2487
 
829
2488
 
830
- def get_pixel_array(record, sortby=None, first_volume=False, **kwargs):
831
-
2489
+ def get_pixel_array(record, sortby=None, first_volume=False, pixels_first=False):
832
2490
  source = instance_array(record, sortby)
833
- array, headers = _get_pixel_array_from_sorted_instance_array(source, **kwargs)
2491
+ array, headers = _get_pixel_array_from_sorted_instance_array(source, pixels_first=pixels_first)
834
2492
  if first_volume:
835
2493
  return array[...,0], headers[...,0]
836
2494
  else:
837
2495
  return array, headers
838
2496
 
839
2497
 
840
- def _get_pixel_array_from_instance_array(instance_array, sortby=None, **kwargs):
2498
+ def _get_pixel_array_from_instance_array(instance_array, sortby=None, pixels_first=False, first_volume=False):
841
2499
  source = sort_instance_array(instance_array, sortby)
842
- return _get_pixel_array_from_sorted_instance_array(source, **kwargs)
2500
+ array, headers = _get_pixel_array_from_sorted_instance_array(source, pixels_first=pixels_first)
2501
+ if first_volume:
2502
+ return array[...,0], headers[...,0]
2503
+ else:
2504
+ return array, headers
843
2505
 
844
2506
 
845
2507
  def _get_pixel_array_from_sorted_instance_array(source, pixels_first=False):
@@ -924,8 +2586,52 @@ def set_pixel_array(series, array, source=None, pixels_first=False, **kwargs):
924
2586
  image.set_pixel_array(array[i,...])
925
2587
  image.clear()
926
2588
 
927
-
928
-
2589
+ # TODO: make this obsolete - only used ion affine_matrix
2590
+ def is_multislice(series):
2591
+ orientation = series.ImageOrientationPatient
2592
+ # Series is multislice if there are multiple unique orientations
2593
+ if isinstance(orientation[0], list):
2594
+ return True
2595
+ #
2596
+ # NOTE: 08/01/25: Added below conditions to correctly deal with situations
2597
+ # where individual slices have been shifted but not rotated.
2598
+ # From here: a series is multislice as soon as slices are not part of a
2599
+ # uniformly spaced 3D volume.
2600
+ #
2601
+ pos = series.ImagePositionPatient
2602
+ # If there is only one slice location, the series is not multislice
2603
+ if not isinstance(pos[0], list):
2604
+ return False
2605
+ #
2606
+ # If there are multiple positions, check that they are all on the slice
2607
+ # vector. If at least one if them is not, the series is multislice.
2608
+ #
2609
+ # Get slice vector
2610
+ row_vec = np.array(orientation[:3])
2611
+ column_vec = np.array(orientation[3:])
2612
+ slice_vec = np.cross(row_vec, column_vec)
2613
+ for p in pos[1:]:
2614
+ # Position relative to first slice position
2615
+ prel = np.array(p)-np.array(pos[0])
2616
+ # Parallel means cross product has length zero
2617
+ norm = np.linalg.norm(np.cross(slice_vec, prel))
2618
+ # Round to micrometers to avoid numerical error
2619
+ if np.round(norm, 3) != 0:
2620
+ return True
2621
+ #
2622
+ # If they are all on the slice vector, check that they have the same
2623
+ # spacing. If more than one spacing is found, the series is multislice.
2624
+ #
2625
+ # Get slice locations
2626
+ loc = [np.dot(p, slice_vec) for p in pos]
2627
+ # Sort slice locations
2628
+ loc = np.sort(loc)
2629
+ # Get unique slice spacing (to micrometer precision)
2630
+ spacing = np.unique(np.around(loc[1:]-loc[:-1], 3))
2631
+ # If there is more than 1 slice spacing, the series is multislice
2632
+ return spacing.size != 1
2633
+
2634
+ # TODO: make this obsolete -replace by affines
929
2635
  def affine_matrix(series):
930
2636
  """Returns the affine matrix of a series.
931
2637
 
@@ -939,14 +2645,30 @@ def affine_matrix(series):
939
2645
  msg = 'This is a required DICOM field \n'
940
2646
  msg += 'The data may be corrupted - please check'
941
2647
  raise ValueError(msg)
2648
+
942
2649
  # Multiple slice groups in series - return list of affine matrices
943
- if isinstance(image_orientation[0], list):
2650
+ if is_multislice(series):
2651
+ #
2652
+ # NOTE: 08/01/2025: Changed definition of slice groups from "frames with
2653
+ # the same orientation" to "frames with the same orientation and position"
2654
+ #
2655
+ # Get unique image positions
2656
+ image_position = series.ImagePositionPatient
2657
+ # Make sure orientations and positions are losts
2658
+ if not isinstance(image_orientation[0], list):
2659
+ image_orientation = [image_orientation]
2660
+ if not isinstance(image_position[0], list):
2661
+ image_position = [image_position]
2662
+ # Return one affine per slice group
944
2663
  affine_matrices = []
945
2664
  for dir in image_orientation:
946
- slice_group = series.instances(ImageOrientationPatient=dir)
947
- affine = _slice_group_affine_matrix(slice_group, dir)
948
- affine_matrices.append((affine, slice_group))
2665
+ for pos in image_position:
2666
+ slice_group = series.instances(ImageOrientationPatient=dir, ImagePositionPatient=pos)
2667
+ if len(slice_group) > 0:
2668
+ affine = _slice_group_affine_matrix(slice_group, dir)
2669
+ affine_matrices.append((affine, slice_group))
949
2670
  return affine_matrices
2671
+
950
2672
  # Single slice group in series - return a single affine matrix
951
2673
  else:
952
2674
  slice_group = series.instances()
@@ -977,7 +2699,7 @@ def _slice_group_affine_matrix(slice_group, image_orientation):
977
2699
  slice_group[0].PixelSpacing) # assume all the same pixel spacing
978
2700
 
979
2701
 
980
- def sort_instance_array(instance_array, sortby=None, status=True):
2702
+ def sort_instance_array(instance_array, sortby=None):
981
2703
  if sortby is None:
982
2704
  return instance_array
983
2705
  else:
@@ -985,10 +2707,55 @@ def sort_instance_array(instance_array, sortby=None, status=True):
985
2707
  sortby = [sortby]
986
2708
  df = read_dataframe_from_instance_array(instance_array, sortby + ['SOPInstanceUID'])
987
2709
  df.sort_values(sortby, inplace=True)
988
- return df_to_sorted_instance_array(instance_array[0], df, sortby, status=status)
989
-
2710
+ return df_to_sorted_instance_array(instance_array[0], df, sortby)
2711
+
2712
+
2713
+ def _instances(series, dims:tuple=None, inds:dict=None, select={}, **filters):
2714
+
2715
+ # Use default dimensions if needed.
2716
+ if dims is None:
2717
+ dims = ('InstanceNumber',)
990
2718
 
991
- def instance_array(record, sortby=None, status=True, **filters):
2719
+ # If indices are provided, check that they are compatible with dims.
2720
+ if inds is not None:
2721
+ for dim in inds:
2722
+ if dim not in dims:
2723
+ msg = 'Indices must be in the dimensions provided.'
2724
+ raise ValueError(msg)
2725
+
2726
+ # Get the frames and sort by dim
2727
+ frames = instance_array(series, list(dims), report_none=True, select=select, **filters)
2728
+ if frames.size == 0:
2729
+ return frames.reshape(tuple([0]*len(dims)))
2730
+ if frames.shape[-1] > 1:
2731
+ d = ''.join(['('] + [str(v)+', ' for v in dims] + [')'])
2732
+ msg = 'series shape is ambiguous in dimensions ' + d
2733
+ msg += '\n--> Multiple frames exist at some or all locations.'
2734
+ msg += '\n--> Hint: use Series.unique() to list the values at all locations.'
2735
+ raise ValueError(msg)
2736
+ if None in frames:
2737
+ d = ''.join(['('] + [str(v)+', ' for v in dims] + [')'])
2738
+ msg = 'series shape is not well defined in dimensions ' + d
2739
+ msg += '\n--> There are no frames at some locations.'
2740
+ msg += '\n--> Hint: use Series.value() to find the values at all locations.'
2741
+ raise ValueError(msg)
2742
+ frames = frames[...,0]
2743
+
2744
+ # Extract indices and coordinates if provided
2745
+ if inds is not None:
2746
+ for dim in inds:
2747
+ ind = inds[dim]
2748
+ d = dims.index(dim)
2749
+ frames = frames.take(ind, axis=d)
2750
+ if not isinstance(ind, np.ndarray):
2751
+ frames = np.expand_dims(frames, axis=d)
2752
+ if frames.size == 0:
2753
+ return frames.reshape(tuple([0]*len(dims)))
2754
+ else:
2755
+ return frames
2756
+
2757
+
2758
+ def instance_array(record, sortby=None, report_none=False, select={}, **filters):
992
2759
  """Sort instances by a list of attributes.
993
2760
 
994
2761
  Args:
@@ -998,7 +2765,7 @@ def instance_array(record, sortby=None, status=True, **filters):
998
2765
  An ndarray holding the instances sorted by sortby.
999
2766
  """
1000
2767
  if sortby is None:
1001
- instances = record.instances(**filters)
2768
+ instances = record.instances(**filters) # Note filter values here cant be arrays
1002
2769
  array = np.empty(len(instances), dtype=object)
1003
2770
  for i, instance in enumerate(instances):
1004
2771
  array[i] = instance
@@ -1006,26 +2773,30 @@ def instance_array(record, sortby=None, status=True, **filters):
1006
2773
  else:
1007
2774
  if not isinstance(sortby, list):
1008
2775
  sortby = [sortby]
1009
- df = record.read_dataframe(sortby + ['SOPInstanceUID']) # needs a **filters option
2776
+ df = record.read_dataframe(sortby + ['SOPInstanceUID'], select=select, **filters)
1010
2777
  df = df[df.SOPInstanceUID.values != None]
1011
2778
  if df.empty:
1012
2779
  return np.array([])
2780
+ if report_none:
2781
+ if None in df.values:
2782
+ d = ''.join(['('] + [str(v)+', ' for v in sortby] + [')'])
2783
+ msg = 'series shape is not well defined in dimensions ' + d
2784
+ msg += '\n--> Some of the dimensions are not defined in the header.'
2785
+ msg += '\n--> Hint: use Series.value() to find the undefined values.'
2786
+ raise ValueError(msg)
1013
2787
  df.sort_values(sortby, inplace=True)
1014
- return df_to_sorted_instance_array(record, df, sortby, status=status)
2788
+ return df_to_sorted_instance_array(record, df, sortby)
1015
2789
 
1016
2790
 
1017
- def df_to_sorted_instance_array(record, df, sortby, status=True):
1018
- # note record here only passed for access to the function instance() and progress()
1019
- # This really should be db.instance()
2791
+ def df_to_sorted_instance_array(record, df, sortby):
1020
2792
 
1021
2793
  data = []
1022
2794
  vals = df[sortby[0]].unique()
1023
- for i, c in enumerate(vals):
1024
- if status:
1025
- record.progress(i, len(vals), message='Sorting pixel data..')
2795
+ for i, c in enumerate(vals):
2796
+ record.progress(i, len(vals), message='Sorting pixel data..')
1026
2797
  # if a type is not supported by np.isnan()
1027
2798
  # assume it is not a nan
1028
- if c is None: # this happens when undefined keywrod is used
2799
+ if c is None: # this happens when undefined keyword is used
1029
2800
  dfc = df[df[sortby[0]].isnull()]
1030
2801
  else:
1031
2802
  try:
@@ -1039,7 +2810,7 @@ def df_to_sorted_instance_array(record, df, sortby, status=True):
1039
2810
  if len(sortby) == 1:
1040
2811
  datac = df_to_instance_array(record, dfc)
1041
2812
  else:
1042
- datac = df_to_sorted_instance_array(record, dfc, sortby[1:], status=False)
2813
+ datac = df_to_sorted_instance_array(record, dfc, sortby[1:])
1043
2814
  data.append(datac)
1044
2815
  return _stack(data, align_left=True)
1045
2816