datupapi 1.114.0__py3-none-any.whl → 1.115.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -64,8 +64,15 @@ class DefinePeriods(Extract):
64
64
  df_ = df_.drop_duplicates()
65
65
  df_extract_forecast = Extract().extract_forecast(df_, self.df_inv, column_forecast=self.column_forecast, location=self.location,frequency_= self.frequency_,
66
66
  date_cols = 'Date', months_= 1, weeks_= 1, join_=self.join_).fillna(0)
67
- df_final = df_extract_forecast.groupby(self.columns_group, as_index=False).agg({self.column_forecast:"sum"})
68
- df_final[self.column_forecast] = df_final[self.column_forecast] * (1 - self.DayOfWeek/self.DaysOfWeek)
67
+ df_extract_forecast = df_extract_forecast.groupby(self.columns_group, as_index=False).agg({self.column_forecast:"sum"})
68
+
69
+ cols_per = ['Coverage']
70
+ lista_1 = self.meta_cols+cols_per
71
+ lista_2 = self.columns_group + self.meta_cols[self.num :] + [self.column_forecast]
72
+ df_b = df_[lista_1].drop_duplicates()
73
+ df_final = pd.merge(df_extract_forecast, df_b,on=col, how='left')
74
+ df_final[self.column_forecast] = df_final[self.column_forecast] * (df_final['Coverage']/self.DaysOfWeek)
75
+ df_final = df_final[lista_2]
69
76
 
70
77
  return df_final
71
78
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: datupapi
3
- Version: 1.114.0
3
+ Version: 1.115.1
4
4
  Summary: Utility library to support Datup AI MLOps processes
5
5
  Author: Datup AI
6
6
  Author-email: ramiro@datup.ai
@@ -12,6 +12,7 @@ datupapi/evaluate/errors.py,sha256=Nd4bCKOQsRzAvTmovuJjMbs_4Y8ojc9xWxzbQ5Cf7YQ,1
12
12
  datupapi/extract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  datupapi/extract/io.py,sha256=fYPXf-SmYyw4ywbN3SjQsdl6qBQvQz1K3i9kbpiEkkA,84343
14
14
  datupapi/extract/io_citrix.py,sha256=txq6VklpZcMgRcd0AFb6iMgX_rRW_eapqvPyXr9tyHY,9345
15
+ datupapi/extract/io_opt.py,sha256=SmzM47ji9TZ7hbqlVXlfCWwT8c9t7dY7Rno4cchVz3A,100930
15
16
  datupapi/feateng/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
16
17
  datupapi/feateng/relation.py,sha256=qL71swWQXDWqLM94D26Yu2_eCA5Eod9Vznh3F-IfGp0,7922
17
18
  datupapi/feateng/scale.py,sha256=A6pKxsO2uZa8bzw0bFy7dXgndJ96sj4esReHVKgVAs8,4425
@@ -26,7 +27,7 @@ datupapi/inventory/src/FutureInventory/future_reorder.py,sha256=qlCgUDLxxsZLFtRa
26
27
  datupapi/inventory/src/InventoryFunctions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
28
  datupapi/inventory/src/InventoryFunctions/functions_inventory.py,sha256=RgKlF_YTuIUs03CLGpekPqmTaRvbsvwIn-62ClWqNGg,13319
28
29
  datupapi/inventory/src/ProcessForecast/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
- datupapi/inventory/src/ProcessForecast/define_periods.py,sha256=jJZoktQ_cvG3awSupS5swcpeDWg2THu1Kk6FVS7VNYM,10546
30
+ datupapi/inventory/src/ProcessForecast/define_periods.py,sha256=rld6_iOQuENJWFsufiUF63a0ynUt_x_qKHhBC4VLNWw,10935
30
31
  datupapi/inventory/src/ProcessForecast/extract_forecast.py,sha256=FhOmJf82_bjFJHrd8SHdjtAk5Cv0qK8M-JN4kBijESM,7428
31
32
  datupapi/inventory/src/SuggestedForecast/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
32
33
  datupapi/inventory/src/SuggestedForecast/suggested_forecast.py,sha256=6mHf8AqJLzGOLbCujB0NDUm48lY9s8oGpCs0s33ni4Y,15129
@@ -49,7 +50,7 @@ datupapi/transform/forecasting.py,sha256=OboiVyErzWXJAv6R4fCXiPNaoVp5dNAP9F53EDq
49
50
  datupapi/transform/ranking.py,sha256=XOI0XqMx9Cy52Xjc4LCzJCNUsJZNjgrPky7nrpELr-U,7943
50
51
  datupapi/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
52
  datupapi/utils/utils.py,sha256=pU3mXPupm-1gvODI-kPlIpOdMHa2F9lEXvqBn6t3ajc,4637
52
- datupapi-1.114.0.dist-info/METADATA,sha256=gudex0xIUJevCkb-UjuYbgu5-5Hd4Su4MBOTFpP0xt0,1516
53
- datupapi-1.114.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
54
- datupapi-1.114.0.dist-info/top_level.txt,sha256=oERwtRZu8xq2u1TDGwJwuWK0iJbH4p7x9kYECAL5So0,9
55
- datupapi-1.114.0.dist-info/RECORD,,
53
+ datupapi-1.115.1.dist-info/METADATA,sha256=i0uQ1Fn2LudmvKxgNbdg-5Db3cjBnkNQaLDT7TtH2iI,1516
54
+ datupapi-1.115.1.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
55
+ datupapi-1.115.1.dist-info/top_level.txt,sha256=oERwtRZu8xq2u1TDGwJwuWK0iJbH4p7x9kYECAL5So0,9
56
+ datupapi-1.115.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5