datatailr 0.1.11__py3-none-any.whl → 0.1.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of datatailr might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: datatailr
3
- Version: 0.1.11
3
+ Version: 0.1.13
4
4
  Summary: Ready-to-Use Platform That Drives Business Insights
5
5
  Author-email: Datatailr <info@datatailr.com>
6
6
  License-Expression: MIT
@@ -86,12 +86,12 @@ The following example shows how to create a simple data pipeline using the Datat
86
86
  ```python
87
87
  from datatailr.scheduler import batch, Batch
88
88
 
89
- @batch()
89
+ @batch_job_job()
90
90
  def func_no_args() -> str:
91
91
  return "no_args"
92
92
 
93
93
 
94
- @batch()
94
+ @batch_job()
95
95
  def func_with_args(a: int, b: float) -> str:
96
96
  return f"args: {a}, {b}"
97
97
 
@@ -102,13 +102,13 @@ with Batch(name="MY test DAG", local_run=True) as dag:
102
102
  ```
103
103
 
104
104
  Running this code will create a graph of jobs and execute it.
105
- Each node on the graph represents a job, which in turn is a call to a function decorated with `@batch()`.
105
+ Each node on the graph represents a job, which in turn is a call to a function decorated with `@batch_job()`.
106
106
 
107
107
  Since this is a local run then the execution of each node will happen sequentially in the same process.
108
108
 
109
109
  To take advantage of the datatailr platform and execute the graph at scale, you can run it using the job scheduler as presented in the next section.
110
110
 
111
- ### Execution at Scale
111
+ ## Execution at Scale
112
112
  To execute the graph at scale, you can use the Datatailr job scheduler. This allows you to run your jobs in parallel, taking advantage of the underlying infrastructure.
113
113
 
114
114
  You will first need to separate your function definitions from the DAG definition. This means you should define your functions as a separate module, which can be imported into the DAG definition.
@@ -119,12 +119,12 @@ You will first need to separate your function definitions from the DAG definitio
119
119
 
120
120
  from datatailr.scheduler import batch, Batch
121
121
 
122
- @batch()
122
+ @batch_job()
123
123
  def func_no_args() -> str:
124
124
  return "no_args"
125
125
 
126
126
 
127
- @batch()
127
+ @batch_job()
128
128
  def func_with_args(a: int, b: float) -> str:
129
129
  return f"args: {a}, {b}"
130
130
  ```
@@ -133,9 +133,9 @@ To use these functions in a batch job, you just need to import them and run in a
133
133
 
134
134
  ```python
135
135
  from my_module import func_no_args, func_with_args
136
- from datatailr.scheduler import Schedule
136
+ from datatailr.scheduler import Batch, Schedule
137
137
 
138
- schedule = Schedule(at_hour=0)
138
+ schedule = Schedule(at_hours=0)
139
139
 
140
140
  with Batch(name="MY test DAG", schedule=schedule) as dag:
141
141
  for n in range(2):
@@ -24,9 +24,9 @@ datatailr/scheduler/batch_decorator.py,sha256=LqL1bsupWLn-YEQUvFJYae7R3ogrL5-Vod
24
24
  datatailr/scheduler/constants.py,sha256=5WWTsfwZ_BA8gVDOTa2AQX9DJ0NzfaWgtY3vrODS2-8,606
25
25
  datatailr/scheduler/schedule.py,sha256=vzXaBBKMVJeCGD0VxsRPeW80sYReJ83XxWzDHVgLibY,3734
26
26
  datatailr/scheduler/utils.py,sha256=up6oR2iwe6G52LkvgfO394xchXgCYNjOMGRQW3e8PQk,1082
27
- datatailr-0.1.11.dist-info/licenses/LICENSE,sha256=ikKP4_O-UD_b8FuNdKmbzTb6odd0JX085ZW_FAPN3VI,1066
28
- datatailr-0.1.11.dist-info/METADATA,sha256=U6YY4cGUx61N2WKJzh97CQqWUlHAvuzpb4czK2Z1jGE,5118
29
- datatailr-0.1.11.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
30
- datatailr-0.1.11.dist-info/entry_points.txt,sha256=YqXfk2At-olW4PUSRkqvy_O3Mbv7uTKCCPuAAiz3Qbg,312
31
- datatailr-0.1.11.dist-info/top_level.txt,sha256=75gntW0X_SKpqxLL6hAPipvpk28GAhJBvoyqN_HohWU,10
32
- datatailr-0.1.11.dist-info/RECORD,,
27
+ datatailr-0.1.13.dist-info/licenses/LICENSE,sha256=ikKP4_O-UD_b8FuNdKmbzTb6odd0JX085ZW_FAPN3VI,1066
28
+ datatailr-0.1.13.dist-info/METADATA,sha256=D7IW1Ffb8-bb7Z1qIWXitzYXKuK1AqpDQNv6uvKbjRg,5149
29
+ datatailr-0.1.13.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
30
+ datatailr-0.1.13.dist-info/entry_points.txt,sha256=YqXfk2At-olW4PUSRkqvy_O3Mbv7uTKCCPuAAiz3Qbg,312
31
+ datatailr-0.1.13.dist-info/top_level.txt,sha256=75gntW0X_SKpqxLL6hAPipvpk28GAhJBvoyqN_HohWU,10
32
+ datatailr-0.1.13.dist-info/RECORD,,