datastock 0.0.47__py3-none-any.whl → 0.0.50__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
datastock/__init__.py CHANGED
@@ -1,10 +1,31 @@
1
+ # ###############
2
+ # __version__
3
+ # ###############
1
4
 
2
5
 
3
- from .version import __version__
6
+ from . import _version
7
+ __version__ = _version.version
8
+ __version_tuple__ = _version.version_tuple
9
+
10
+
11
+ # from setuptools_scm import get_version
12
+ # __version__ = get_version(root='..', relative_to=__file__)
13
+
14
+
15
+ # from importlib.metadata import version
16
+ # __version__ = version(__package__)
17
+ # cleanup
18
+ # del get_version
19
+
20
+
21
+ # ###############
22
+ # sub-packages
23
+ # ###############
24
+
4
25
 
5
26
  from . import _generic_check
6
27
  from ._generic_utils_plot import *
7
28
  from ._class import DataStock
8
29
  from ._saveload import load, get_files
9
30
  from ._direct_calls import *
10
- from . import tests
31
+ from . import tests
datastock/_class2.py CHANGED
@@ -629,7 +629,7 @@ class DataStock2(DataStock1):
629
629
  v0['handle'].parent(),
630
630
  )
631
631
  except Exception as err:
632
- error = err
632
+ error = "1\n" + str(err)
633
633
  elif hasattr(v0['handle'], 'parent'):
634
634
  try:
635
635
  v0['handle'].manager.toolbar.__init__(
@@ -637,9 +637,12 @@ class DataStock2(DataStock1):
637
637
  v0['handle'].parent(),
638
638
  )
639
639
  except Exception as err:
640
- error = True
640
+ if "can't initialize an object twice" in str(err):
641
+ pass
642
+ else:
643
+ error = "2\n" + str(err)
641
644
  else:
642
- error = True
645
+ error = "3"
643
646
 
644
647
  if error is not False:
645
648
  import platform
@@ -648,6 +651,7 @@ class DataStock2(DataStock1):
648
651
  lstr0 = [f"\t- {k1}" for k1 in dir(v0['handle'])]
649
652
  lstr1 = [f"\t- {k1}" for k1 in dir(v0['handle'].manager.toolbar)]
650
653
  msg = (
654
+ "Problem with connect()\n"
651
655
  f"platform: {platform.platform()}\n"
652
656
  f"python: {sys.version}\n"
653
657
  f"backend: {plt.get_backend()}\n"
@@ -657,7 +661,7 @@ class DataStock2(DataStock1):
657
661
  + "\n".join(lstr1)
658
662
  )
659
663
  if error is not True:
660
- msg += '\n' + str(err)
664
+ msg += '\n' + str(error)
661
665
  warnings.warn(msg)
662
666
 
663
667
  self._dobj['canvas'][k0]['cid'] = {
@@ -1393,4 +1397,4 @@ class DataStock2(DataStock1):
1393
1397
 
1394
1398
  __all__ = [
1395
1399
  sorted([k0 for k0 in locals() if k0.startswith('DataStock')])[-1]
1396
- ]
1400
+ ]
@@ -362,8 +362,6 @@ def _check_dict_valid_keys(
362
362
  var[k0] = None
363
363
  continue
364
364
 
365
- vv = var.get(k0)
366
-
367
365
  # routine to call
368
366
  if any([ss in v0.keys() for ss in lkarray]):
369
367
  var[k0] = _check_flat1darray(
@@ -610,7 +608,7 @@ def _check_all_broadcastable(
610
608
  ndim = lndim[0]
611
609
 
612
610
  else:
613
- lstr = [f"-t {k0}: {v0}" for k0, v0 in dndim.items()]
611
+ lstr = [f"\t- {k0}: {v0}" for k0, v0 in dndim.items()]
614
612
  msg = (
615
613
  "Some keyword args have non-compatible dimensions:\n"
616
614
  + "\n".join(lstr)
@@ -675,48 +673,6 @@ def _check_all_broadcastable(
675
673
  # Utilities for plotting
676
674
  # #############################################################################
677
675
 
678
- # DEPRECATED
679
- # def _check_inplace(coll=None, keys=None):
680
- # """ Check key to data and inplace """
681
-
682
- # # -----------------------------
683
- # # keys of data to be extracted
684
- # # ----------------------------
685
-
686
- # if isinstance(keys, str):
687
- # keys = [keys]
688
- # keys = _check_var_iter(
689
- # keys, 'keys',
690
- # default=None,
691
- # types=list,
692
- # types_iter=str,
693
- # allowed=list(coll.ddata.keys()),
694
- # )
695
-
696
- # # ----------------------
697
- # # extract sub-collection
698
- # # ----------------------
699
-
700
- # lk0 = list(keys)
701
- # for key in keys:
702
-
703
- # # Include all data matching any single ref
704
- # for rr in coll._ddata[key]['ref']:
705
- # for k0, v0 in coll._ddata.items():
706
- # if v0['ref'] == (rr,):
707
- # if k0 not in lk0:
708
- # lk0.append(k0)
709
-
710
- # # include all data matching all refs
711
- # for k0, v0 in coll._ddata.items():
712
- # if v0['ref'] == coll._ddata[key]['ref']:
713
- # if k0 not in lk0:
714
- # lk0.append(k0)
715
-
716
- # coll2 = coll.extract(lk0)
717
-
718
- # return keys, coll2
719
-
720
676
 
721
677
  def _check_dax(dax=None, main=None):
722
678
 
@@ -844,7 +800,7 @@ def _check_lim(lim):
844
800
  if len(dfail) > 0:
845
801
  lstr = [f"\t- lim[{ii}]: {vv}" for ii, vv in dfail.items()]
846
802
  msg = (
847
- "The following non-conformities in lim have been identified:\n"*
803
+ "The following non-conformities in lim have been identified:\n"
848
804
  + "\n".join(lstr)
849
805
  )
850
806
  raise Exception(msg)
@@ -900,7 +856,6 @@ def _apply_lim(lim=None, data=None, logic=None):
900
856
  return ind
901
857
 
902
858
 
903
-
904
859
  def _apply_dlim(dlim=None, logic_intervals=None, logic=None, ddata=None):
905
860
 
906
861
  # ------------
@@ -960,6 +915,7 @@ def _apply_dlim(dlim=None, logic_intervals=None, logic=None, ddata=None):
960
915
  lstr = [f"\t- {k0}: {v0}" for k0, v0 in dfail.items()]
961
916
  msg = (
962
917
  "The following keys have non-compatible shapes:\n"
918
+ + "\n".join(lstr)
963
919
  )
964
920
  raise Exception(msg)
965
921
 
@@ -1021,11 +977,6 @@ def _apply_dlim(dlim=None, logic_intervals=None, logic=None, ddata=None):
1021
977
 
1022
978
  def _check_cmap_vminvmax(data=None, cmap=None, vmin=None, vmax=None):
1023
979
  # cmap
1024
- c0 = (
1025
- cmap is None
1026
- or vmin is None
1027
- or vmax is None
1028
- )
1029
980
  if cmap is None or vmin is None or vmax is None:
1030
981
  nanmax = np.nanmax(data)
1031
982
  nanmin = np.nanmin(data)
datastock/_version.py ADDED
@@ -0,0 +1,21 @@
1
+ # file generated by setuptools-scm
2
+ # don't change, don't track in version control
3
+
4
+ __all__ = ["__version__", "__version_tuple__", "version", "version_tuple"]
5
+
6
+ TYPE_CHECKING = False
7
+ if TYPE_CHECKING:
8
+ from typing import Tuple
9
+ from typing import Union
10
+
11
+ VERSION_TUPLE = Tuple[Union[int, str], ...]
12
+ else:
13
+ VERSION_TUPLE = object
14
+
15
+ version: str
16
+ __version__: str
17
+ __version_tuple__: VERSION_TUPLE
18
+ version_tuple: VERSION_TUPLE
19
+
20
+ __version__ = version = '0.0.50'
21
+ __version_tuple__ = version_tuple = (0, 0, 50)
@@ -0,0 +1,3 @@
1
+ print('test import datastock')
2
+ import datastock as ds
3
+ print('import datastock ok')
datastock/version.py CHANGED
@@ -1,2 +1,2 @@
1
1
  # Do not edit, pipeline versioning governed by git tags!
2
- __version__ = '0.0.47'
2
+ __version__ = '0.0.49-1-g545b8a4'
@@ -1,34 +1,36 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: datastock
3
- Version: 0.0.47
4
- Summary: A python library for generic class and data handling
5
- Home-page: https://github.com/ToFuProject/datastock
6
- Author: Didier VEZINET
7
- Author-email: didier.vezinet@gmail.com
3
+ Version: 0.0.50
4
+ Summary: Generic handler for multiple heterogenous numpy arrays and subclasses
5
+ Author-email: Didier VEZINET <didier.vezinet@gmail.com>
6
+ Maintainer-email: Didier VEZINET <didier.vezinet@gmail.com>
8
7
  License: MIT
9
- Keywords: data analysis class container generic interactive plot
10
- Classifier: Development Status :: 4 - Beta
8
+ Project-URL: Homepage, https://github.com/ToFuProject/datastock
9
+ Project-URL: Issues, https://github.com/ToFuProject/datastock/issues
10
+ Keywords: data,analysis,interactive,heterogeneous arrays,numpy,Collection
11
+ Classifier: Development Status :: 5 - Production/Stable
11
12
  Classifier: Intended Audience :: Science/Research
12
- Classifier: Topic :: Scientific/Engineering :: Physics
13
- Classifier: License :: OSI Approved :: MIT License
13
+ Classifier: Programming Language :: Python :: 3
14
14
  Classifier: Programming Language :: Python :: 3.6
15
15
  Classifier: Programming Language :: Python :: 3.7
16
16
  Classifier: Programming Language :: Python :: 3.8
17
+ Classifier: Programming Language :: Python :: 3.9
18
+ Classifier: Programming Language :: Python :: 3.10
19
+ Classifier: Programming Language :: Python :: 3.11
17
20
  Classifier: Natural Language :: English
18
- Requires-Python: >=3.6
21
+ Requires-Python: >=3.8
19
22
  Description-Content-Type: text/markdown
20
- License-File: LICENSE
23
+ License-File: LICENSE.txt
21
24
  Requires-Dist: numpy
22
25
  Requires-Dist: scipy
23
26
  Requires-Dist: matplotlib
27
+ Requires-Dist: PyQt5; platform_system != "Windows"
24
28
  Requires-Dist: astropy
25
- Provides-Extra: dev
26
- Requires-Dist: check-manifest; extra == "dev"
27
- Requires-Dist: coverage; extra == "dev"
28
- Requires-Dist: pytest; extra == "dev"
29
- Requires-Dist: sphinx; extra == "dev"
30
- Requires-Dist: sphinx-gallery; extra == "dev"
31
- Requires-Dist: sphinx-bootstrap-theme; extra == "dev"
29
+ Provides-Extra: linting
30
+ Requires-Dist: ruff; extra == "linting"
31
+ Provides-Extra: formatting
32
+ Requires-Dist: ruff; extra == "formatting"
33
+ Dynamic: license-file
32
34
 
33
35
  [![Conda]( https://anaconda.org/conda-forge/datastock/badges/version.svg)](https://anaconda.org/conda-forge/datastock)
34
36
  [![](https://anaconda.org/conda-forge/datastock/badges/downloads.svg)](https://anaconda.org/conda-forge/datastock)
@@ -73,15 +75,15 @@ Examples:
73
75
  Straightforward array visualization:
74
76
  ------------------------------------
75
77
 
76
- ```
78
+ ``
77
79
  import datastock as ds
78
80
 
79
81
  # any 1d, 2d or 3d array
80
- aa = np.np.random.random((100, 100, 100))
82
+ aa = np.random((100, 100, 100))
81
83
 
82
84
  # plot interactive figure using shortcut to method
83
85
  dax = ds.plot_as_array(aa)
84
- ```
86
+ ``
85
87
 
86
88
  Now do **shift + left clic** on any axes, the rest of the interactive commands are automatically printed in your python console
87
89
 
@@ -107,7 +109,7 @@ Thanks to dref, the class knows the relationaships between all numpy arrays.
107
109
  In particular it knows which arrays share the same references / dimensions
108
110
 
109
111
 
110
- ```
112
+ ```python
111
113
  import numpy as np
112
114
  import datastock as ds
113
115
 
@@ -128,24 +130,24 @@ lprof = [(1 + np.cos(t)[:, None]) * x[None, :] for t in lt]
128
130
  # Populate DataStock
129
131
 
130
132
  # instanciate
131
- st = ds.DataStock()
133
+ coll = ds.DataStock()
132
134
 
133
135
  # add references (i.e.: store size of each dimension under a unique key)
134
- st.add_ref(key='nc', size=nc)
135
- st.add_ref(key='nx', size=nx)
136
+ coll.add_ref(key='nc', size=nc)
137
+ coll.add_ref(key='nx', size=nx)
136
138
  for ii, nt in enumerate(lnt):
137
- st.add_ref(key=f'nt{ii}', size=nt)
139
+ coll.add_ref(key=f'nt{ii}', size=nt)
138
140
 
139
141
  # add data dependening on these references
140
142
  # you can, optionally, specify units, physical dimensionality (ex: distance, time...), quantity (ex: radius, height, ...) and name (to your liking)
141
143
 
142
- st.add_data(key='x', data=x, dimension='distance', quant='radius', units='m', ref='nx')
144
+ coll.add_data(key='x', data=x, dimension='distance', quant='radius', units='m', ref='nx')
143
145
  for ii, nt in enumerate(lnt):
144
- st.add_data(key=f't{ii}', data=lt[ii], dimension='time', units='s', ref=f'nt{ii}')
145
- st.add_data(key=f'prof{ii}', data=lprof[ii], dimension='velocity', units='m/s', ref=(f'nt{ii}', 'x'))
146
+ coll.add_data(key=f't{ii}', data=lt[ii], dimension='time', units='s', ref=f'nt{ii}')
147
+ coll.add_data(key=f'prof{ii}', data=lprof[ii], dimension='velocity', units='m/s', ref=(f'nt{ii}', 'x'))
146
148
 
147
149
  # print in the console the content of st
148
- st
150
+ coll
149
151
  ```
150
152
 
151
153
  <p align="center">
@@ -156,22 +158,22 @@ You can see that DataStock stores the relationships between each array and each
156
158
  Specifying explicitly the references is only necessary if there is an ambiguity (i.e.: several references have the same size, like nx and nt2 in our case)
157
159
 
158
160
 
159
- ```
161
+ ``
160
162
  # plot any array interactively
161
- dax = st.plot_as_array('x')
162
- dax = st.plot_as_array('t0')
163
- dax = st.plot_as_array('prof0')
164
- dax = st.plot_as_array('prof0', keyX='t0', keyY='x', aspect='auto')
165
- ```
163
+ dax = coll.plot_as_array('x')
164
+ dax = coll.plot_as_array('t0')
165
+ dax = coll.plot_as_array('prof0')
166
+ dax = coll.plot_as_array('prof0', keyX='t0', keyY='x', aspect='auto')
167
+ ``
166
168
 
167
169
  You can then decide to store any object category
168
170
  Let's create a 'campaign' category to store the characteristics of each measurements campaign
169
171
  and let's add a 'campaign' parameter to each profile data
170
172
 
171
- ```
173
+ ``
172
174
  # add arbitrary object category as sub-dict of self.dobj
173
175
  for ii in range(nc):
174
- st.add_obj(
176
+ coll.add_obj(
175
177
  which='campaign',
176
178
  key=f'c{ii}',
177
179
  start_date=f'{ii}.04.2022',
@@ -182,16 +184,16 @@ for ii in range(nc):
182
184
  )
183
185
 
184
186
  # create new 'campaign' parameter for data arrays
185
- st.add_param('campaign', which='data')
187
+ coll.add_param('campaign', which='data')
186
188
 
187
189
  # tag each data with its campaign
188
190
  for ii in range(nc):
189
- st.set_param(which='data', key=f't{ii}', param='campaign', value=f'c{ii}')
190
- st.set_param(which='data', key=f'prof{ii}', param='campaign', value=f'c{ii}')
191
+ coll.set_param(which='data', key=f't{ii}', param='campaign', value=f'c{ii}')
192
+ coll.set_param(which='data', key=f'prof{ii}', param='campaign', value=f'c{ii}')
191
193
 
192
194
  # print in the console the content of st
193
- st
194
- ```
195
+ coll
196
+ ``
195
197
 
196
198
  <p align="center">
197
199
  <img align="middle" src="https://github.com/ToFuProject/datastock/blob/devel/README_figures/DataStock_Obj.png" width="600" alt="Direct 3d array visualization"/>
@@ -200,31 +202,31 @@ st
200
202
  DataStock also provides built-in object selection method to allow return all
201
203
  objects matching a criterion, as lits of int indices, bool indices or keys.
202
204
 
203
- ```
204
- In [9]: st.select(which='campaign', index=2, returnas=int)
205
+ ``
206
+ In [9]: coll.select(which='campaign', index=2, returnas=int)
205
207
  Out[9]: array([2])
206
208
 
207
209
  # list of 2 => return all matches inside the interval
208
- In [10]: st.select(which='campaign', index=[2, 4], returnas=int)
210
+ In [10]: coll.select(which='campaign', index=[2, 4], returnas=int)
209
211
  Out[10]: array([2, 3, 4])
210
212
 
211
213
  # tuple of 2 => return all matches outside the interval
212
- In [11]: st.select(which='campaign', index=(2, 4), returnas=int)
214
+ In [11]: coll.select(which='campaign', index=(2, 4), returnas=int)
213
215
  Out[11]: array([0, 1])
214
216
 
215
217
  # return as keys
216
- In [12]: st.select(which='campaign', index=(2, 4), returnas=str)
218
+ In [12]: coll.select(which='campaign', index=(2, 4), returnas=str)
217
219
  Out[12]: array(['c0', 'c1'], dtype='<U2')
218
220
 
219
221
  # return as bool indices
220
- In [13]: st.select(which='campaign', index=(2, 4), returnas=bool)
222
+ In [13]: coll.select(which='campaign', index=(2, 4), returnas=bool)
221
223
  Out[13]: array([ True, True, False, False, False])
222
224
 
223
225
  # You can combine as many constraints as needed
224
- In [17]: st.select(which='campaign', index=[2, 4], operator='Barnaby', returnas=str)
226
+ In [17]: coll.select(which='campaign', index=[2, 4], operator='Barnaby', returnas=str)
225
227
  Out[17]: array(['c3', 'c4'], dtype='<U2')
226
228
 
227
- ```
229
+ ``
228
230
 
229
231
  You can also decide to sub-class DataStock to implement methods and visualizations specific to your needs
230
232
 
@@ -237,6 +239,6 @@ DataStock provides built-in methods like:
237
239
  - size is the total size of all data stored in the instance in bytes
238
240
  - dsize is a dict with the detail (size for each item in each sub-dict of the instance)
239
241
  * `save()`: will save the instance
240
- * `ds.load()`: will load a saved instance
242
+ * `coll.load()`: will load a saved instance
241
243
 
242
244
 
@@ -1,6 +1,5 @@
1
- _updateversion.py,sha256=OR6OJJozaHWzu7NWjKu5ERi0IyYqR61KrWvzf7kfoto,951
2
1
  datastock/_DataCollection_utils.py,sha256=hHf6HvGKMmM-psx3fj9QcY1TEmKrAtTdkRokH7SFqoo,7143
3
- datastock/__init__.py,sha256=i_Ijl-AM07n4zN52frWfbeGN1iB6v4e5oLzTuVIh_oM,217
2
+ datastock/__init__.py,sha256=LLPm4DAkXl5xYAQT4jUfQd5ZAmYx5w2nBSBmjN2XhdE,598
4
3
  datastock/_class.py,sha256=Az9PS3aSskiPMb1ekt78Y2ynBujYVc_cDjJxW9xH9g4,47
5
4
  datastock/_class0.py,sha256=je4ckTynK8lEGBa7OSURYZZ_-3XjzAtf6SazN3b-f5k,6028
6
5
  datastock/_class1.py,sha256=2PrIT26yRfNrP6YmZMpvb0_b0v_397Y9tOjzeVOxK_I,29313
@@ -12,13 +11,13 @@ datastock/_class1_domain.py,sha256=_xUCnwWJX5wPPYrpiGGrRwrPLmiO5BMm3nmYvn_YEOg,6
12
11
  datastock/_class1_interpolate.py,sha256=3VKGMDsiWFQUguMHxMaTQTyMhcN8Ikg1PmaH6TjIeLg,38348
13
12
  datastock/_class1_show.py,sha256=hqd-FeJ1NqiOzbrHzGMrwIo8_lLsjC199Zmw68NqkDQ,11745
14
13
  datastock/_class1_uniformize.py,sha256=dEJime_0SqmW8hX8ooZpHsPI_d8CIE9U9Yz9GhqsEUY,28433
15
- datastock/_class2.py,sha256=FG-ZGPVdZEdkRc_3Z9LRzYdRm9Xat7HI06E3-hI5rCk,45422
14
+ datastock/_class2.py,sha256=Mkqwhkl-YDAT0Wx5bHkUHwMW2L6feACkxmifvvzUnYk,45626
16
15
  datastock/_class2_interactivity.py,sha256=glAqqkIyH8JBVj0AsgJPNlaltcTIXB0iCqNBq3gKSb8,17198
17
16
  datastock/_class3.py,sha256=CH1oD_lTfVlcDp29L_iwzSfP78vX6_edDmZG9aSb1Ks,10848
18
17
  datastock/_direct_calls.py,sha256=EHFwI2mGMDqGz8_Bv2BseMBX4J8dSdE_RcNX3pt0ZYY,1801
19
18
  datastock/_export_dataframe.py,sha256=fy-uJR3EhDlHvd9ls1EQna_C8fyha1jCJLu1DTKTkdo,1576
20
19
  datastock/_find_plateau.py,sha256=sqnAuy0361DXkqBb_Lo1MmIGjn35tnKFvcv6MW6hifs,2685
21
- datastock/_generic_check.py,sha256=yKnxlLSJomRCYzBayEy-i0O6FhOGt1rR98iu2XSd37U,27940
20
+ datastock/_generic_check.py,sha256=4NmG7iPa02bxOC5K-6qw63UahQ2FNDbeKu_AGBpNMtc,26717
22
21
  datastock/_generic_utils.py,sha256=_iV51SiujEmQfAlvyIEW4BvzIXdhPCD-vumV5DmUL44,23421
23
22
  datastock/_generic_utils_plot.py,sha256=xrWzeZFtdTAs-RO2DfpCRveJPqw_p4lRFtQuuAn1pD8,3709
24
23
  datastock/_plot_BvsA_as_distribution.py,sha256=fpRhlbv3Bk96buANC46Brc9hdLxkOAsoKpE5A9pohG0,15389
@@ -32,12 +31,15 @@ datastock/_plot_correlations.py,sha256=ITOypu_AEoKl0ihxocV-JVTXIHqut6p9TfG-xZmQy
32
31
  datastock/_plot_old_backup.py,sha256=XixTi2CiihKjtQP0TRycH0b25caWN1m35DgpsDeiWZE,21729
33
32
  datastock/_plot_text.py,sha256=wQPqjfpLyIioS2JeOt3E9C9HgYUJ49YEoOgRuKYvAR8,3143
34
33
  datastock/_saveload.py,sha256=1vAMp27KfqXbo5b_Pi8hJux0stsHq6dO5vy8k1d4_iA,14141
35
- datastock/version.py,sha256=mPvpgVj454Vfs5m6V8fuocNdwJDUMd-Yv6J6PlDaGVA,80
34
+ datastock/_version.py,sha256=E35Bq14aHx0dG_mA8HPiJoVRTCMU_V3unyyjRET8Kww,513
35
+ datastock/version.py,sha256=VJcnSK0zygwEhh_p6KIoC9yiMkp0bs-SJgLCbyubs9o,91
36
36
  datastock/tests/__init__.py,sha256=teOo2xP0IO7PQMuMDmum61XVHe2TuxW3BiHiL73X8jQ,35
37
+ datastock/tests/prepublish.py,sha256=3gSr3nRhEl5qsmhxJ-nEoePvbINYq0EvcZCfxfUVHBM,83
37
38
  datastock/tests/test_01_DataStock.py,sha256=aUseXH2zYnFtNDJSCuEROgPxfKKNeLCkCQSR--_Fheg,19176
38
39
  datastock/tests/output/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
39
- datastock-0.0.47.dist-info/LICENSE,sha256=V1uXqi3vxR0QhB4QdFyjkynl6jpN4wZmlB5EMYJk0NM,1068
40
- datastock-0.0.47.dist-info/METADATA,sha256=pCzvjokhOrHGFpDFABU6QbnPT7MvBZ1NQW_Mbd1vxnQ,8660
41
- datastock-0.0.47.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
42
- datastock-0.0.47.dist-info/top_level.txt,sha256=BzJsLLK_zZw13WQCoMhC74qWVKalnVCjBxdPXvJn7HQ,25
43
- datastock-0.0.47.dist-info/RECORD,,
40
+ datastock-0.0.50.dist-info/licenses/LICENSE.txt,sha256=SM-QOA3JwR1e0RVBGb1HhPmc5yD1Gsl1CRPnMSKJhH8,1068
41
+ datastock-0.0.50.dist-info/METADATA,sha256=FLc5tLiMeT7uqPs9_kNV3tZNALar_DErqHZeO0uql68,8893
42
+ datastock-0.0.50.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
43
+ datastock-0.0.50.dist-info/entry_points.txt,sha256=GqmxVVp9G2ulEDaS9gLpwSVOBLF_FEBlj8k5Z6TJKsc,42
44
+ datastock-0.0.50.dist-info/top_level.txt,sha256=0HeA0gZ4G1IKtkPhmqijZRYH9hID6LKLQskeSjAna8g,10
45
+ datastock-0.0.50.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.3.2)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -0,0 +1,2 @@
1
+ [datastock]
2
+ datastock = scripts.main:main
@@ -1,6 +1,6 @@
1
1
  MIT License
2
2
 
3
- Copyright (c) 2022 ToFuProject
3
+ Copyright (c) 2023 ToFuProject
4
4
 
5
5
  Permission is hereby granted, free of charge, to any person obtaining a copy
6
6
  of this software and associated documentation files (the "Software"), to deal
@@ -0,0 +1 @@
1
+ datastock
_updateversion.py DELETED
@@ -1,32 +0,0 @@
1
- #!/usr/bin/env/python
2
- # coding=utf-8
3
-
4
-
5
- import os
6
- import subprocess
7
-
8
-
9
- _HERE = os.path.abspath(os.path.dirname(__file__))
10
-
11
-
12
- def updateversion(path=_HERE):
13
-
14
- # Fetch version from git tags, and write to version.py
15
- # Also, when git is not available (PyPi package), use stored version.py
16
- version_py = os.path.join(path, 'datastock', 'version.py')
17
- try:
18
- version_git = subprocess.check_output(
19
- ["git", "describe"]
20
- ).rstrip().decode()
21
-
22
- except subprocess.CalledProcessError:
23
- with open(version_py, 'r') as fh:
24
- version_git = fh.read().strip().split("=")[-1].replace("'", '')
25
-
26
- version_git = version_git.lower().replace('v', '').replace(' ', '')
27
-
28
- version_msg = "# Do not edit, pipeline versioning governed by git tags!"
29
- with open(version_py, "w") as fh:
30
- msg = "{0}__version__ = '{1}'{0}".format(os.linesep, version_git)
31
- fh.write(version_msg + msg)
32
- return version_git
@@ -1,2 +0,0 @@
1
- _updateversion
2
- datastock