datastock 0.0.45__py3-none-any.whl → 0.0.46__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
datastock/_class1.py CHANGED
@@ -21,6 +21,7 @@ from . import _class1_domain
21
21
  from . import _class1_binning
22
22
  from . import _class1_interpolate
23
23
  from . import _class1_uniformize
24
+ from . import _class1_color_touch as _color_touch
24
25
  from . import _export_dataframe
25
26
  from . import _find_plateau
26
27
 
@@ -923,6 +924,32 @@ class DataStock1(DataStock0):
923
924
  inplace=inplace,
924
925
  )
925
926
 
927
+ # ---------------------
928
+ # color touch array
929
+ # ---------------------
930
+
931
+ def get_color_touch(
932
+ self,
933
+ data=None,
934
+ dcolor=None,
935
+ # options
936
+ color_default=None,
937
+ vmin=None,
938
+ vmax=None,
939
+ log=None,
940
+ ):
941
+
942
+ return _color_touch.main(
943
+ coll=self,
944
+ data=data,
945
+ dcolor=dcolor,
946
+ # options
947
+ color_default=color_default,
948
+ vmin=vmin,
949
+ vmax=vmax,
950
+ log=log,
951
+ )
952
+
926
953
  # ---------------------
927
954
  # Methods computing correlations
928
955
  # ---------------------
@@ -0,0 +1,269 @@
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ Created on Fri Feb 28 08:53:00 2025
4
+
5
+ @author: dvezinet
6
+ """
7
+
8
+
9
+ import numpy as np
10
+ import matplotlib.pyplot as plt
11
+ import matplotlib.colors as mcolors
12
+ import datastock as ds
13
+
14
+
15
+ # ###############################################################
16
+ # ###############################################################
17
+ # Main
18
+ # ###############################################################
19
+
20
+
21
+ def main(
22
+ coll=None,
23
+ data=None,
24
+ dcolor=None,
25
+ # options
26
+ color_default=None,
27
+ vmin=None,
28
+ vmax=None,
29
+ log=None,
30
+ ):
31
+
32
+ # ------------------
33
+ # check inputs
34
+ # ------------------
35
+
36
+ data, dcolor, color_default, vmin, vmax, log = _check(
37
+ coll=coll,
38
+ data=data,
39
+ dcolor=dcolor,
40
+ color_default=color_default,
41
+ vmin=vmin,
42
+ vmax=vmax,
43
+ log=log,
44
+ )
45
+
46
+ # ------------------
47
+ # initialize
48
+ # ------------------
49
+
50
+ shape = data.shape + (4,)
51
+ color = np.zeros(shape, dtype=float)
52
+
53
+ # ------------------
54
+ # compute - alpha
55
+ # ------------------
56
+
57
+ if log is True:
58
+ vmin = np.log10(vmin)
59
+ vmax = np.log10(vmax)
60
+
61
+ alpha = (np.log10(data) - vmin) / (vmax - vmin)
62
+
63
+ else:
64
+ alpha = (data - vmin) / (vmax - vmin)
65
+
66
+ # ------------------
67
+ # compute - colors
68
+ # ------------------
69
+
70
+ for k0, v0 in dcolor.items():
71
+
72
+ sli = (v0['ind'], slice(0, 3))
73
+ color[sli] = v0['color']
74
+
75
+ sli = tuple([slice(None) for ii in range(data.ndim)] + [-1])
76
+ color[sli] = alpha
77
+
78
+ # ------------------
79
+ # output
80
+ # ------------------
81
+
82
+ lcol = set([v0['color'] for v0 in dcolor.values()])
83
+ dcolor = {
84
+ 'color': color,
85
+ 'meaning': {
86
+ kc: [k0 for k0, v0 in dcolor.items() if v0['color'] == kc]
87
+ for kc in lcol
88
+ },
89
+ }
90
+
91
+ return dcolor
92
+
93
+
94
+ # ###############################################################
95
+ # ###############################################################
96
+ # check
97
+ # ###############################################################
98
+
99
+
100
+ def _check(
101
+ coll=None,
102
+ data=None,
103
+ dcolor=None,
104
+ # options
105
+ color_default=None,
106
+ vmin=None,
107
+ vmax=None,
108
+ log=None,
109
+ ):
110
+
111
+ # ------------------
112
+ # data
113
+ # ------------------
114
+
115
+ lc = [
116
+ isinstance(data, np.ndarray),
117
+ isinstance(data, str) and data in coll.ddata.keys(),
118
+ ]
119
+ if lc[0]:
120
+ pass
121
+ elif lc[1]:
122
+ data = coll.ddata[data]['data']
123
+ else:
124
+ msg = (
125
+ "Arg data must be a np.ndarray or a key to an existing data!\n"
126
+ f"Provided: {data}\n"
127
+ )
128
+ raise Exception(msg)
129
+
130
+
131
+ # ------------------
132
+ # dcolor
133
+ # ------------------
134
+
135
+ # --------------------
136
+ # dcolor format check
137
+
138
+ c0 = (
139
+ isinstance(dcolor, dict)
140
+ and all([
141
+ isinstance(k0, str)
142
+ and isinstance(v0, dict)
143
+ and sorted(v0.keys()) == ['color', 'ind']
144
+ for k0, v0 in dcolor.items()
145
+ ])
146
+ )
147
+ if not c0:
148
+ msg = (
149
+ "Arg dcolor must be a dict of sub-dicts of shape:\n"
150
+ "\t- 'key0': {'ind': ..., 'color': ...}\n"
151
+ "\t- ...\n"
152
+ "\t- 'keyN': {'ind': ..., 'color': ...}\n"
153
+ f"Provided:\n{dcolor}\n"
154
+ )
155
+ raise Exception(msg)
156
+
157
+ # --------------------
158
+ # ind and color checks
159
+
160
+ dfail = {}
161
+ shape = data.shape
162
+ for k0, v0 in dcolor.items():
163
+
164
+ c0 = (
165
+ isinstance(v0['ind'], np.ndarray)
166
+ and v0['ind'].shape == data.shape
167
+ and v0['ind'].dtype == bool
168
+ )
169
+ if not c0:
170
+ msg = f"'ind' must be a {shape} bool array, not {v0['ind']}"
171
+ dfail[k0] = (msg,)
172
+
173
+ if not mcolors.is_color_like(v0['color']):
174
+ msg = f"'color' must be color-like, not {v0['color']}"
175
+ if k0 in dfail:
176
+ dfail[k0] = dfail[k0] + (msg,)
177
+ else:
178
+ dfail[k0] = (msg,)
179
+
180
+ # raise exception
181
+ if len(dfail) > 0:
182
+ lmax = np.max([len(f"\t- {k0}: ") for k0 in dfail.keys()])
183
+ lstr = [
184
+ f"\t- {k0}:\n".ljust(lmax) + '\n'.join([
185
+ "".ljust(lmax+4) + f"\t- {v1}".rjust(lmax)
186
+ for ii, v1 in enumerate(v0)
187
+ ])
188
+ for k0, v0 in dfail.items()
189
+ ]
190
+ msg = (
191
+ "Arg dcolor, the following keys have incorrect keys / values:\n"
192
+ + "\n".join(lstr)
193
+ )
194
+ raise Exception(msg)
195
+
196
+ # ----------------------
197
+ # format colors to rgb
198
+
199
+ dcol = {}
200
+ for k0, v0 in dcolor.items():
201
+ if np.any(v0['ind']):
202
+ dcol[k0] = {
203
+ 'ind': v0['ind'],
204
+ 'color': mcolors.to_rgb(v0['color']),
205
+ }
206
+
207
+ # ------------------
208
+ # color_default
209
+ # ------------------
210
+
211
+ if color_default is None:
212
+ color_default = 'k'
213
+ if not mcolors.is_color_like(color_default):
214
+ msg = (
215
+ "Arg color_default must be color-like!\n"
216
+ f"Provided: {color_default}\n"
217
+ )
218
+ raise Exception(msg)
219
+
220
+ color_default = mcolors.to_rgb(color_default)
221
+
222
+ # ------------------
223
+ # vmin, vmax
224
+ # ------------------
225
+
226
+ vmin0 = np.nanmin(data)
227
+ vmax0 = np.nanmax(data)
228
+
229
+ # vmin
230
+ if vmin is None:
231
+ vmin = vmin0
232
+ c0 = (np.isscalar(vmin) and np.isfinite(vmin) and vmin < vmax0)
233
+ if not c0:
234
+ msg = (
235
+ f"Arg vmin must be a finite scalar below max ({vmax0})\n"
236
+ f"Provided: {vmin}\n"
237
+ )
238
+ raise Exception(msg)
239
+
240
+ # vmax
241
+ if vmax is None:
242
+ vmax = vmax0
243
+ c0 = (np.isscalar(vmax) and np.isfinite(vmax) and vmax > vmin0)
244
+ if not c0:
245
+ msg = (
246
+ f"Arg vmax must be a finite scalar above min ({vmin0})\n"
247
+ f"Provided: {vmax}\n"
248
+ )
249
+ raise Exception(msg)
250
+
251
+ # ordering
252
+ if vmin >= vmax:
253
+ msg = (
254
+ "Arg vmin must be below vmax!\n"
255
+ f"Provided:\n\t- vmin = {vmin}\n\t- vmax = {vmax}\n"
256
+ )
257
+ raise Exception(msg)
258
+
259
+ # ------------------
260
+ # log
261
+ # ------------------
262
+
263
+ log = ds._generic_check._check_var(
264
+ log, 'log',
265
+ types=bool,
266
+ default=False,
267
+ )
268
+
269
+ return data, dcol, color_default, vmin, vmax, log
@@ -1233,4 +1233,4 @@ def _extract_select(
1233
1233
  # lkey=[idq2dR],
1234
1234
  # return_all=True,
1235
1235
  # )
1236
- # return out
1236
+ # return out
@@ -1574,7 +1574,8 @@ def _xunique(dout=None, domain=None):
1574
1574
  }
1575
1575
 
1576
1576
  # Number of Nones expected
1577
- nNone = 1 + len(domain)
1577
+ ndom = 0 if domain is None else len(domain)
1578
+ nNone = 1 + ndom
1578
1579
 
1579
1580
  # check
1580
1581
  dwrong = {k0: v0 for k0, v0 in dind.items() if len(v0) != nNone}
@@ -1583,7 +1584,7 @@ def _xunique(dout=None, domain=None):
1583
1584
  f"\t- {k0}: {dout[k0]['ref']} => {v0}" for k0, v0 in dwrong.items()
1584
1585
  ]
1585
1586
  msg = (
1586
- "Interpolate unique pt => ref should have nNone = 1 + {len(domain)}:\n"
1587
+ "Interpolate unique pt => ref should have nNone = 1 + {ndom}:\n"
1587
1588
  + "\n".join(lstr)
1588
1589
  )
1589
1590
  raise Exception(msg)
@@ -1626,7 +1627,12 @@ def _store(
1626
1627
  ldata = list(set(itt.chain.from_iterable([
1627
1628
  v0['ref'] for v0 in dout.values()
1628
1629
  ])))
1629
- coll2 = coll.extract(keys=ldata, vectors=True)
1630
+
1631
+ coll2 = coll.extract(
1632
+ keys=ldata,
1633
+ inc_vectors=True,
1634
+ return_keys=False,
1635
+ )
1630
1636
 
1631
1637
  # -------------
1632
1638
  # store_keys
@@ -1644,7 +1650,13 @@ def _store(
1644
1650
  excluded=lout,
1645
1651
  )
1646
1652
 
1647
- assert len(store_keys) == len(dout)
1653
+ if len(store_keys) != len(dout):
1654
+ msg = (
1655
+ "Nb of store_keys != nb of keys in dout!\n"
1656
+ f"\t- store_keys:\n{store_keys}\n "
1657
+ f"\t- dout.keys():\n{sorted(dout.keys())}\n "
1658
+ )
1659
+ raise Exception(msg)
1648
1660
 
1649
1661
  # ---------
1650
1662
  # add data
@@ -1658,4 +1670,4 @@ def _store(
1658
1670
  units=v0['units'],
1659
1671
  )
1660
1672
 
1661
- return coll2
1673
+ return coll2
@@ -306,11 +306,26 @@ class Test02_Manipulate():
306
306
  self.st.show_data()
307
307
  self.st.show_obj()
308
308
 
309
+ # ------------------------
310
+ # dcolor
311
+ # ------------------------
312
+
313
+ def test06_get_dcolor_touch(self):
314
+ xx = np.arange(50)
315
+ aa = np.exp(-(xx[:, None]-25)**2/10**2 - (xx[None, :]-25)**2/10**2)
316
+ ind = (aa>0.3) & (np.arange(50)[None, :] > 25)
317
+ dcolor = self.st.get_color_touch(
318
+ aa,
319
+ dcolor={'foo': {'ind': ind, 'color': 'r'}}
320
+ )
321
+ assert dcolor['color'].shape == aa.shape + (4,)
322
+ assert dcolor['meaning'][(1.0, 0.0, 0.0)] == ['foo']
323
+
309
324
  # ------------------------
310
325
  # Interpolate
311
326
  # ------------------------
312
327
 
313
- def test06_get_ref_vector(self):
328
+ def test07_get_ref_vector(self):
314
329
  (
315
330
  hasref, hasvector,
316
331
  ref, key_vector,
@@ -325,13 +340,13 @@ class Test02_Manipulate():
325
340
  assert values.size == dind['ind'].size == 4
326
341
  assert dind['indr'].shape == (2, 4)
327
342
 
328
- def test07_get_ref_vector_common(self):
343
+ def test08_get_ref_vector_common(self):
329
344
  hasref, ref, key, val, dout = self.st.get_ref_vector_common(
330
345
  keys=['t0', 'prof0', 'prof1', 't3'],
331
346
  dim='time',
332
347
  )
333
348
 
334
- def test08_domain_ref(self):
349
+ def test09_domain_ref(self):
335
350
 
336
351
  domain = {
337
352
  'nx': [1.5, 2],
@@ -347,7 +362,7 @@ class Test02_Manipulate():
347
362
  lk = list(domain.keys())
348
363
  assert all([isinstance(dout[k0]['ind'], np.ndarray) for k0 in lk])
349
364
 
350
- def test09_binning(self):
365
+ def test10_binning(self):
351
366
 
352
367
  bins = np.linspace(1, 5, 8)
353
368
  lk = [
@@ -399,7 +414,7 @@ class Test02_Manipulate():
399
414
  )
400
415
  raise Exception(msg)
401
416
 
402
- def test10_interpolate(self):
417
+ def test11_interpolate(self):
403
418
 
404
419
  lk = ['y', 'y', 'prof0', 'prof0', 'prof0', '3d']
405
420
  lref = [None, 'nx', 't0', ['nt0', 'nx'], ['t0', 'x'], ['t0', 'x']]
@@ -443,7 +458,7 @@ class Test02_Manipulate():
443
458
  msg = str(dout[kk]['data'].shape, shape, kk, rr)
444
459
  raise Exception(msg)
445
460
 
446
- def test11_interpolate_common_refs(self):
461
+ def test12_interpolate_common_refs(self):
447
462
  lk = ['3d', '3d', '3d']
448
463
  lref = ['t0', ['nt0', 'nx'], ['nx']]
449
464
  lrefc = ['nc', 'nc', 'nt0']
@@ -519,17 +534,17 @@ class Test02_Manipulate():
519
534
  # Plotting
520
535
  # ------------------------
521
536
 
522
- def test12_plot_as_array_1d(self):
537
+ def test13_plot_as_array_1d(self):
523
538
  dax = self.st.plot_as_array(key='t0')
524
539
  plt.close('all')
525
540
  del dax
526
541
 
527
- def test13_plot_as_array_2d(self):
542
+ def test14_plot_as_array_2d(self):
528
543
  dax = self.st.plot_as_array(key='prof0')
529
544
  plt.close('all')
530
545
  del dax
531
546
 
532
- def test14_plot_as_array_2d_log(self):
547
+ def test15_plot_as_array_2d_log(self):
533
548
  dax = self.st.plot_as_array(
534
549
  key='pec', keyX='ne', keyY='Te',
535
550
  dscale={'data': 'log'},
@@ -537,17 +552,17 @@ class Test02_Manipulate():
537
552
  plt.close('all')
538
553
  del dax
539
554
 
540
- def test15_plot_as_array_3d(self):
555
+ def test16_plot_as_array_3d(self):
541
556
  dax = self.st.plot_as_array(key='3d', dvminmax={'keyX': {'min': 0}})
542
557
  plt.close('all')
543
558
  del dax
544
559
 
545
- def test16_plot_as_array_3d_ZNonMonot(self):
560
+ def test17_plot_as_array_3d_ZNonMonot(self):
546
561
  dax = self.st.plot_as_array(key='3d', keyZ='y')
547
562
  plt.close('all')
548
563
  del dax
549
564
 
550
- def test17_plot_as_array_4d(self):
565
+ def test18_plot_as_array_4d(self):
551
566
  dax = self.st.plot_as_array(key='4d', dscale={'keyU': 'linear'})
552
567
  plt.close('all')
553
568
  del dax
@@ -557,7 +572,7 @@ class Test02_Manipulate():
557
572
  # plt.close('all')
558
573
  # del dax
559
574
 
560
- def test19_plot_as_profile1d(self):
575
+ def test20_plot_as_profile1d(self):
561
576
  dax = self.st.plot_as_profile1d(
562
577
  key='prof0',
563
578
  key_time='t0',
@@ -591,7 +606,7 @@ class Test02_Manipulate():
591
606
  # File handling
592
607
  # ------------------------
593
608
 
594
- def test21_copy_equal(self):
609
+ def test22_copy_equal(self):
595
610
  st2 = self.st.copy()
596
611
  assert st2 is not self.st
597
612
 
@@ -599,15 +614,15 @@ class Test02_Manipulate():
599
614
  if msg is not True:
600
615
  raise Exception(msg)
601
616
 
602
- def test22_get_nbytes(self):
617
+ def test23_get_nbytes(self):
603
618
  nb, dnb = self.st.get_nbytes()
604
619
 
605
- def test23_save_pfe(self, verb=False):
620
+ def test24_save_pfe(self, verb=False):
606
621
  pfe = os.path.join(_PATH_OUTPUT, 'testsave.npz')
607
622
  self.st.save(pfe=pfe, return_pfe=False)
608
623
  os.remove(pfe)
609
624
 
610
- def test24_saveload(self, verb=False):
625
+ def test25_saveload(self, verb=False):
611
626
  pfe = self.st.save(path=_PATH_OUTPUT, verb=verb, return_pfe=True)
612
627
  st2 = load(pfe, verb=verb)
613
628
  # Just to check the loaded version works fine
@@ -616,7 +631,7 @@ class Test02_Manipulate():
616
631
  raise Exception(msg)
617
632
  os.remove(pfe)
618
633
 
619
- def test25_saveload_coll(self, verb=False):
634
+ def test26_saveload_coll(self, verb=False):
620
635
  pfe = self.st.save(path=_PATH_OUTPUT, verb=verb, return_pfe=True)
621
636
  st = DataStock()
622
637
  st2 = load(pfe, coll=st, verb=verb)
datastock/version.py CHANGED
@@ -1,2 +1,2 @@
1
1
  # Do not edit, pipeline versioning governed by git tags!
2
- __version__ = '0.0.45'
2
+ __version__ = '0.0.46'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: datastock
3
- Version: 0.0.45
3
+ Version: 0.0.46
4
4
  Summary: A python library for generic class and data handling
5
5
  Home-page: https://github.com/ToFuProject/datastock
6
6
  Author: Didier VEZINET
@@ -3,12 +3,13 @@ datastock/_DataCollection_utils.py,sha256=hHf6HvGKMmM-psx3fj9QcY1TEmKrAtTdkRokH7
3
3
  datastock/__init__.py,sha256=i_Ijl-AM07n4zN52frWfbeGN1iB6v4e5oLzTuVIh_oM,217
4
4
  datastock/_class.py,sha256=Az9PS3aSskiPMb1ekt78Y2ynBujYVc_cDjJxW9xH9g4,47
5
5
  datastock/_class0.py,sha256=je4ckTynK8lEGBa7OSURYZZ_-3XjzAtf6SazN3b-f5k,6028
6
- datastock/_class1.py,sha256=WlI666OOG8x-qtfNRcwP7aoCs7TDfvk3yKzVsHShO7c,28745
6
+ datastock/_class1.py,sha256=2PrIT26yRfNrP6YmZMpvb0_b0v_397Y9tOjzeVOxK_I,29313
7
7
  datastock/_class1_binning.py,sha256=LWHv2LIfgZfSFWYwqdcN0DKpNe6q7Go3sxfcJqmzTrI,28085
8
8
  datastock/_class1_check.py,sha256=0azV7ftoAWsqTMEYbGQ_luJi95Px-pBif_vOug3W8Zg,50978
9
- datastock/_class1_compute.py,sha256=yHdG0afYc_YtjpR6RvMh7SeRtWEyuHZ5y9VOPRIYVDo,31671
9
+ datastock/_class1_color_touch.py,sha256=KoIFCVkJJnGrEChbvDSkgs-KZeRpFyCIA-fE7mrYrLs,6294
10
+ datastock/_class1_compute.py,sha256=yZfj-Fy4wlEyWotWqNwtNtpjF6mak5nMu2ut2OBpzTY,31672
10
11
  datastock/_class1_domain.py,sha256=_xUCnwWJX5wPPYrpiGGrRwrPLmiO5BMm3nmYvn_YEOg,6716
11
- datastock/_class1_interpolate.py,sha256=49JSRdom3cEH7jQQXJ18pf4sQ1NQBU3DSyBepVPVWtw,38028
12
+ datastock/_class1_interpolate.py,sha256=3VKGMDsiWFQUguMHxMaTQTyMhcN8Ikg1PmaH6TjIeLg,38348
12
13
  datastock/_class1_show.py,sha256=hqd-FeJ1NqiOzbrHzGMrwIo8_lLsjC199Zmw68NqkDQ,11745
13
14
  datastock/_class1_uniformize.py,sha256=dEJime_0SqmW8hX8ooZpHsPI_d8CIE9U9Yz9GhqsEUY,28433
14
15
  datastock/_class2.py,sha256=FG-ZGPVdZEdkRc_3Z9LRzYdRm9Xat7HI06E3-hI5rCk,45422
@@ -31,12 +32,12 @@ datastock/_plot_correlations.py,sha256=ITOypu_AEoKl0ihxocV-JVTXIHqut6p9TfG-xZmQy
31
32
  datastock/_plot_old_backup.py,sha256=XixTi2CiihKjtQP0TRycH0b25caWN1m35DgpsDeiWZE,21729
32
33
  datastock/_plot_text.py,sha256=wQPqjfpLyIioS2JeOt3E9C9HgYUJ49YEoOgRuKYvAR8,3143
33
34
  datastock/_saveload.py,sha256=1vAMp27KfqXbo5b_Pi8hJux0stsHq6dO5vy8k1d4_iA,14141
34
- datastock/version.py,sha256=kFVUGdfI8gp010v4OqfowFK6uWe0JLdeqfU_YF8Ep04,80
35
+ datastock/version.py,sha256=TTZXyi6fkfPDWOJIxiEa00X66SrcWUHC11j32Bjcyh0,80
35
36
  datastock/tests/__init__.py,sha256=teOo2xP0IO7PQMuMDmum61XVHe2TuxW3BiHiL73X8jQ,35
36
- datastock/tests/test_01_DataStock.py,sha256=tGVJiCVjWT5oR4DlFopbcKMxi2cpCbBvdBDRc0WV1KU,17532
37
+ datastock/tests/test_01_DataStock.py,sha256=Ngz0nbb7Qj3Sr0c4TV2OlK_v4R6aMBrQYXr8BWaYAnw,18048
37
38
  datastock/tests/output/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
- datastock-0.0.45.dist-info/LICENSE,sha256=V1uXqi3vxR0QhB4QdFyjkynl6jpN4wZmlB5EMYJk0NM,1068
39
- datastock-0.0.45.dist-info/METADATA,sha256=x0qb2ycSYwITQ5BXQrI0eJT6TdgHkOfRhInoTZ_XyJU,8660
40
- datastock-0.0.45.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
41
- datastock-0.0.45.dist-info/top_level.txt,sha256=BzJsLLK_zZw13WQCoMhC74qWVKalnVCjBxdPXvJn7HQ,25
42
- datastock-0.0.45.dist-info/RECORD,,
39
+ datastock-0.0.46.dist-info/LICENSE,sha256=V1uXqi3vxR0QhB4QdFyjkynl6jpN4wZmlB5EMYJk0NM,1068
40
+ datastock-0.0.46.dist-info/METADATA,sha256=rs7ozSmlV2xJ4_yOJIwDrDj3brqxOHxqZRlG7W2hLqA,8660
41
+ datastock-0.0.46.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
42
+ datastock-0.0.46.dist-info/top_level.txt,sha256=BzJsLLK_zZw13WQCoMhC74qWVKalnVCjBxdPXvJn7HQ,25
43
+ datastock-0.0.46.dist-info/RECORD,,