datarobot-moderations 11.2.9__py3-none-any.whl → 11.2.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- datarobot_dome/__init__.py +1 -1
- datarobot_dome/async_http_client.py +1 -1
- datarobot_dome/chat_helper.py +1 -1
- datarobot_dome/constants.py +26 -2
- datarobot_dome/drum_integration.py +2 -3
- datarobot_dome/guard_executor.py +67 -16
- datarobot_dome/guard_factory.py +126 -0
- datarobot_dome/guard_helpers.py +16 -1
- datarobot_dome/guards/__init__.py +16 -1
- datarobot_dome/guards/base.py +259 -0
- datarobot_dome/guards/guard_llm_mixin.py +3 -1
- datarobot_dome/guards/model_guard.py +84 -0
- datarobot_dome/guards/nemo_evaluator.py +73 -0
- datarobot_dome/guards/nemo_guard.py +146 -0
- datarobot_dome/guards/ootb_guard.py +209 -0
- datarobot_dome/guards/validation.py +201 -0
- datarobot_dome/llm.py +1 -1
- datarobot_dome/metrics/__init__.py +1 -1
- datarobot_dome/metrics/citation_metrics.py +1 -1
- datarobot_dome/metrics/factory.py +3 -4
- datarobot_dome/metrics/metric_scorer.py +1 -1
- datarobot_dome/pipeline/__init__.py +1 -1
- datarobot_dome/pipeline/llm_pipeline.py +3 -3
- datarobot_dome/pipeline/pipeline.py +20 -17
- datarobot_dome/pipeline/vdb_pipeline.py +2 -3
- datarobot_dome/runtime.py +1 -1
- datarobot_dome/streaming.py +2 -2
- {datarobot_moderations-11.2.9.dist-info → datarobot_moderations-11.2.11.dist-info}/METADATA +3 -1
- datarobot_moderations-11.2.11.dist-info/RECORD +30 -0
- {datarobot_moderations-11.2.9.dist-info → datarobot_moderations-11.2.11.dist-info}/WHEEL +1 -1
- datarobot_dome/guard.py +0 -845
- datarobot_moderations-11.2.9.dist-info/RECORD +0 -24
|
@@ -0,0 +1,259 @@
|
|
|
1
|
+
# ---------------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) 2026 DataRobot, Inc. and its affiliates. All rights reserved.
|
|
3
|
+
# Last updated 2025.
|
|
4
|
+
#
|
|
5
|
+
# DataRobot, Inc. Confidential.
|
|
6
|
+
# This is proprietary source code of DataRobot, Inc. and its affiliates.
|
|
7
|
+
#
|
|
8
|
+
# This file and its contents are subject to DataRobot Tool and Utility Agreement.
|
|
9
|
+
# For details, see
|
|
10
|
+
# https://www.datarobot.com/wp-content/uploads/2021/07/DataRobot-Tool-and-Utility-Agreement.pdf.
|
|
11
|
+
# ---------------------------------------------------------------------------------
|
|
12
|
+
from abc import ABC
|
|
13
|
+
|
|
14
|
+
from datarobot.enums import CustomMetricAggregationType
|
|
15
|
+
from datarobot.enums import CustomMetricDirectionality
|
|
16
|
+
|
|
17
|
+
from datarobot_dome.constants import AGENT_GOAL_ACCURACY_COLUMN_NAME
|
|
18
|
+
from datarobot_dome.constants import COST_COLUMN_NAME
|
|
19
|
+
from datarobot_dome.constants import CUSTOM_METRIC_DESCRIPTION_SUFFIX
|
|
20
|
+
from datarobot_dome.constants import DEFAULT_PROMPT_COLUMN_NAME
|
|
21
|
+
from datarobot_dome.constants import DEFAULT_RESPONSE_COLUMN_NAME
|
|
22
|
+
from datarobot_dome.constants import FAITHFULLNESS_COLUMN_NAME
|
|
23
|
+
from datarobot_dome.constants import GUIDELINE_ADHERENCE_COLUMN_NAME
|
|
24
|
+
from datarobot_dome.constants import NEMO_GUARD_COLUMN_NAME
|
|
25
|
+
from datarobot_dome.constants import ROUGE_1_COLUMN_NAME
|
|
26
|
+
from datarobot_dome.constants import SPAN_PREFIX
|
|
27
|
+
from datarobot_dome.constants import TASK_ADHERENCE_SCORE_COLUMN_NAME
|
|
28
|
+
from datarobot_dome.constants import TOKEN_COUNT_COLUMN_NAME
|
|
29
|
+
from datarobot_dome.constants import GuardAction
|
|
30
|
+
from datarobot_dome.constants import GuardStage
|
|
31
|
+
from datarobot_dome.constants import GuardType
|
|
32
|
+
from datarobot_dome.constants import NemoEvaluatorType
|
|
33
|
+
from datarobot_dome.constants import OOTBType
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def get_metric_column_name(
|
|
37
|
+
guard_type: GuardType,
|
|
38
|
+
ootb_type: OOTBType | None,
|
|
39
|
+
stage: GuardStage,
|
|
40
|
+
model_guard_target_name: str | None = None,
|
|
41
|
+
metric_name: str | None = None,
|
|
42
|
+
nemo_evaluator_type: str | None = None,
|
|
43
|
+
) -> str:
|
|
44
|
+
"""Gets the metric column name. Note that this function gets used in buzok code. If you update
|
|
45
|
+
it, please also update the moderation library in the buzok worker image.
|
|
46
|
+
"""
|
|
47
|
+
if guard_type == GuardType.MODEL:
|
|
48
|
+
if model_guard_target_name is None:
|
|
49
|
+
raise ValueError(
|
|
50
|
+
"For the model guard type, a valid model_guard_target_name has to be provided."
|
|
51
|
+
)
|
|
52
|
+
metric_result_key = Guard.get_stage_str(stage) + "_" + model_guard_target_name
|
|
53
|
+
elif guard_type == GuardType.OOTB:
|
|
54
|
+
if ootb_type is None:
|
|
55
|
+
raise ValueError("For the OOTB type, a valid OOTB guard type has to be provided.")
|
|
56
|
+
elif ootb_type == OOTBType.TOKEN_COUNT:
|
|
57
|
+
metric_result_key = Guard.get_stage_str(stage) + "_" + TOKEN_COUNT_COLUMN_NAME
|
|
58
|
+
elif ootb_type == OOTBType.ROUGE_1:
|
|
59
|
+
metric_result_key = Guard.get_stage_str(stage) + "_" + ROUGE_1_COLUMN_NAME
|
|
60
|
+
elif ootb_type == OOTBType.FAITHFULNESS:
|
|
61
|
+
metric_result_key = Guard.get_stage_str(stage) + "_" + FAITHFULLNESS_COLUMN_NAME
|
|
62
|
+
elif ootb_type == OOTBType.AGENT_GOAL_ACCURACY:
|
|
63
|
+
metric_result_key = AGENT_GOAL_ACCURACY_COLUMN_NAME
|
|
64
|
+
elif ootb_type == OOTBType.CUSTOM_METRIC:
|
|
65
|
+
if metric_name is None:
|
|
66
|
+
raise ValueError(
|
|
67
|
+
"For the custom metric type, a valid metric_name has to be provided."
|
|
68
|
+
)
|
|
69
|
+
metric_result_key = Guard.get_stage_str(stage) + "_" + metric_name
|
|
70
|
+
elif ootb_type == OOTBType.COST:
|
|
71
|
+
metric_result_key = COST_COLUMN_NAME
|
|
72
|
+
elif ootb_type == OOTBType.TASK_ADHERENCE:
|
|
73
|
+
metric_result_key = TASK_ADHERENCE_SCORE_COLUMN_NAME
|
|
74
|
+
elif ootb_type == OOTBType.GUIDELINE_ADHERENCE:
|
|
75
|
+
metric_result_key = GUIDELINE_ADHERENCE_COLUMN_NAME
|
|
76
|
+
else:
|
|
77
|
+
raise ValueError("The provided OOTB type is not implemented.")
|
|
78
|
+
elif guard_type == GuardType.NEMO_GUARDRAILS:
|
|
79
|
+
metric_result_key = Guard.get_stage_str(stage) + "_" + NEMO_GUARD_COLUMN_NAME
|
|
80
|
+
elif guard_type == GuardType.NEMO_EVALUATOR:
|
|
81
|
+
if nemo_evaluator_type == NemoEvaluatorType.LLM_JUDGE:
|
|
82
|
+
metric_result_key = f"{Guard.get_stage_str(stage)}_nemo_{nemo_evaluator_type}"
|
|
83
|
+
elif nemo_evaluator_type in NemoEvaluatorType.ALL:
|
|
84
|
+
metric_result_key = f"nemo_{nemo_evaluator_type}"
|
|
85
|
+
else:
|
|
86
|
+
raise ValueError("The provided NeMo Evaluator type is not implemented.")
|
|
87
|
+
else:
|
|
88
|
+
raise ValueError("The provided guard type is not implemented.")
|
|
89
|
+
return metric_result_key
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
class GuardIntervention:
|
|
93
|
+
def __init__(self, intervention_config: dict) -> None:
|
|
94
|
+
self.action = intervention_config["action"]
|
|
95
|
+
self.message = intervention_config.get("message")
|
|
96
|
+
self.threshold = None
|
|
97
|
+
self.comparator = None
|
|
98
|
+
if (
|
|
99
|
+
"conditions" in intervention_config
|
|
100
|
+
and intervention_config["conditions"] is not None
|
|
101
|
+
and len(intervention_config["conditions"]) > 0
|
|
102
|
+
):
|
|
103
|
+
self.threshold = intervention_config["conditions"][0].get("comparand")
|
|
104
|
+
self.comparator = intervention_config["conditions"][0].get("comparator")
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
class Guard(ABC):
|
|
108
|
+
def __init__(self, config: dict, stage=None):
|
|
109
|
+
self._name = config["name"]
|
|
110
|
+
self._description = config.get("description")
|
|
111
|
+
self._type = config["type"]
|
|
112
|
+
self._stage = stage if stage else config["stage"]
|
|
113
|
+
self._pipeline = None
|
|
114
|
+
self.intervention = None
|
|
115
|
+
self._deployment_id = config.get("deployment_id")
|
|
116
|
+
self._dr_cm = None
|
|
117
|
+
self._faas_url = config.get("faas_url")
|
|
118
|
+
self._copy_citations = config["copy_citations"]
|
|
119
|
+
self.is_agentic = config.get("is_agentic", False)
|
|
120
|
+
self.metric_column_name = get_metric_column_name(
|
|
121
|
+
config["type"],
|
|
122
|
+
config.get("ootb_type"),
|
|
123
|
+
self._stage,
|
|
124
|
+
config.get("model_info", {}).get("target_name"),
|
|
125
|
+
config["name"],
|
|
126
|
+
config.get("nemo_evaluator_type"),
|
|
127
|
+
)
|
|
128
|
+
if config.get("intervention"):
|
|
129
|
+
self.intervention = GuardIntervention(config["intervention"])
|
|
130
|
+
|
|
131
|
+
@property
|
|
132
|
+
def name(self) -> str:
|
|
133
|
+
return self._name
|
|
134
|
+
|
|
135
|
+
@property
|
|
136
|
+
def description(self) -> str:
|
|
137
|
+
return self._description
|
|
138
|
+
|
|
139
|
+
@property
|
|
140
|
+
def type(self) -> GuardType:
|
|
141
|
+
return self._type
|
|
142
|
+
|
|
143
|
+
@property
|
|
144
|
+
def stage(self) -> GuardStage:
|
|
145
|
+
return self._stage
|
|
146
|
+
|
|
147
|
+
@property
|
|
148
|
+
def faas_url(self) -> str:
|
|
149
|
+
return self._faas_url
|
|
150
|
+
|
|
151
|
+
@property
|
|
152
|
+
def copy_citations(self) -> str:
|
|
153
|
+
return self._copy_citations
|
|
154
|
+
|
|
155
|
+
def set_pipeline(self, pipeline):
|
|
156
|
+
self._pipeline = pipeline
|
|
157
|
+
|
|
158
|
+
@property
|
|
159
|
+
def llm_type(self):
|
|
160
|
+
return self._llm_type
|
|
161
|
+
|
|
162
|
+
@staticmethod
|
|
163
|
+
def get_stage_str(stage):
|
|
164
|
+
return "Prompts" if stage == GuardStage.PROMPT else "Responses"
|
|
165
|
+
|
|
166
|
+
def get_input_column_name(self, stage) -> str:
|
|
167
|
+
match stage:
|
|
168
|
+
case GuardStage.PROMPT:
|
|
169
|
+
return DEFAULT_PROMPT_COLUMN_NAME
|
|
170
|
+
case GuardStage.RESPONSE:
|
|
171
|
+
return DEFAULT_RESPONSE_COLUMN_NAME
|
|
172
|
+
case _:
|
|
173
|
+
raise ValueError(f"Stage ({stage}) is not supported.")
|
|
174
|
+
|
|
175
|
+
def has_latency_custom_metric(self) -> bool:
|
|
176
|
+
"""Determines if latency metric is tracked for this guard type. Default is True."""
|
|
177
|
+
return True
|
|
178
|
+
|
|
179
|
+
def get_latency_custom_metric_name(self):
|
|
180
|
+
return f"{self.name} Guard Latency"
|
|
181
|
+
|
|
182
|
+
def get_latency_custom_metric(self):
|
|
183
|
+
return {
|
|
184
|
+
"name": self.get_latency_custom_metric_name(),
|
|
185
|
+
"directionality": CustomMetricDirectionality.LOWER_IS_BETTER,
|
|
186
|
+
"units": "seconds",
|
|
187
|
+
"type": CustomMetricAggregationType.AVERAGE,
|
|
188
|
+
"baselineValue": 0,
|
|
189
|
+
"isModelSpecific": True,
|
|
190
|
+
"timeStep": "hour",
|
|
191
|
+
"description": (
|
|
192
|
+
f"{self.get_latency_custom_metric_name()}. {CUSTOM_METRIC_DESCRIPTION_SUFFIX}"
|
|
193
|
+
),
|
|
194
|
+
}
|
|
195
|
+
|
|
196
|
+
def has_average_score_custom_metric(self) -> bool:
|
|
197
|
+
"""Determines if an average score metric is tracked for this guard type. Default is True."""
|
|
198
|
+
return True
|
|
199
|
+
|
|
200
|
+
def get_average_score_custom_metric_name(self, stage):
|
|
201
|
+
return f"{self.name} Guard Average Score for {self.get_stage_str(stage)}"
|
|
202
|
+
|
|
203
|
+
def get_average_score_metric(self, stage):
|
|
204
|
+
return {
|
|
205
|
+
"name": self.get_average_score_custom_metric_name(stage),
|
|
206
|
+
"directionality": CustomMetricDirectionality.LOWER_IS_BETTER,
|
|
207
|
+
"units": "probability",
|
|
208
|
+
"type": CustomMetricAggregationType.AVERAGE,
|
|
209
|
+
"baselineValue": 0,
|
|
210
|
+
"isModelSpecific": True,
|
|
211
|
+
"timeStep": "hour",
|
|
212
|
+
"description": (
|
|
213
|
+
f"{self.get_average_score_custom_metric_name(stage)}. "
|
|
214
|
+
f" {CUSTOM_METRIC_DESCRIPTION_SUFFIX}"
|
|
215
|
+
),
|
|
216
|
+
}
|
|
217
|
+
|
|
218
|
+
def get_guard_enforced_custom_metric_name(self, stage, moderation_method):
|
|
219
|
+
if moderation_method == GuardAction.REPLACE:
|
|
220
|
+
return f"{self.name} Guard replaced {self.get_stage_str(stage)}"
|
|
221
|
+
return f"{self.name} Guard {moderation_method}ed {self.get_stage_str(stage)}"
|
|
222
|
+
|
|
223
|
+
def get_enforced_custom_metric(self, stage, moderation_method):
|
|
224
|
+
return {
|
|
225
|
+
"name": self.get_guard_enforced_custom_metric_name(stage, moderation_method),
|
|
226
|
+
"directionality": CustomMetricDirectionality.LOWER_IS_BETTER,
|
|
227
|
+
"units": "count",
|
|
228
|
+
"type": CustomMetricAggregationType.SUM,
|
|
229
|
+
"baselineValue": 0,
|
|
230
|
+
"isModelSpecific": True,
|
|
231
|
+
"timeStep": "hour",
|
|
232
|
+
"description": (
|
|
233
|
+
f"Number of {self.get_stage_str(stage)} {moderation_method}ed by the "
|
|
234
|
+
f"{self.name} guard. {CUSTOM_METRIC_DESCRIPTION_SUFFIX}"
|
|
235
|
+
),
|
|
236
|
+
}
|
|
237
|
+
|
|
238
|
+
def get_intervention_action(self):
|
|
239
|
+
if not self.intervention:
|
|
240
|
+
return GuardAction.NONE
|
|
241
|
+
return self.intervention.action
|
|
242
|
+
|
|
243
|
+
def get_comparand(self):
|
|
244
|
+
return self.intervention.threshold
|
|
245
|
+
|
|
246
|
+
def get_enforced_span_attribute_name(self, stage):
|
|
247
|
+
intervention_action = self.get_intervention_action()
|
|
248
|
+
if intervention_action in [GuardAction.BLOCK, GuardAction.REPORT]:
|
|
249
|
+
return f"{SPAN_PREFIX}.{stage.lower()}.{intervention_action}ed"
|
|
250
|
+
elif intervention_action == GuardAction.REPLACE:
|
|
251
|
+
return f"{SPAN_PREFIX}.{stage.lower()}.replaced"
|
|
252
|
+
else:
|
|
253
|
+
raise NotImplementedError
|
|
254
|
+
|
|
255
|
+
def get_span_column_name(self, _):
|
|
256
|
+
raise NotImplementedError
|
|
257
|
+
|
|
258
|
+
def get_span_attribute_name(self, _):
|
|
259
|
+
raise NotImplementedError
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
# ---------------------------------------------------------------------------------
|
|
2
|
-
# Copyright (c)
|
|
2
|
+
# Copyright (c) 2026 DataRobot, Inc. and its affiliates. All rights reserved.
|
|
3
3
|
# Last updated 2025.
|
|
4
4
|
#
|
|
5
5
|
# DataRobot, Inc. Confidential.
|
|
@@ -94,6 +94,8 @@ class GuardLLMMixin:
|
|
|
94
94
|
return f"{secret_env_var_name_prefix}{OOTBType.AGENT_GOAL_ACCURACY}_{llm_type_str}"
|
|
95
95
|
elif config["ootb_type"] == OOTBType.TASK_ADHERENCE:
|
|
96
96
|
return f"{secret_env_var_name_prefix}{OOTBType.TASK_ADHERENCE}_{llm_type_str}"
|
|
97
|
+
elif config["ootb_type"] == OOTBType.GUIDELINE_ADHERENCE:
|
|
98
|
+
return f"{secret_env_var_name_prefix}{OOTBType.GUIDELINE_ADHERENCE}_{llm_type_str}"
|
|
97
99
|
else:
|
|
98
100
|
raise Exception("Invalid guard config for building env var name")
|
|
99
101
|
else:
|
|
@@ -0,0 +1,84 @@
|
|
|
1
|
+
# ---------------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) 2026 DataRobot, Inc. and its affiliates. All rights reserved.
|
|
3
|
+
# Last updated 2025.
|
|
4
|
+
#
|
|
5
|
+
# DataRobot, Inc. Confidential.
|
|
6
|
+
# This is proprietary source code of DataRobot, Inc. and its affiliates.
|
|
7
|
+
#
|
|
8
|
+
# This file and its contents are subject to DataRobot Tool and Utility Agreement.
|
|
9
|
+
# For details, see
|
|
10
|
+
# https://www.datarobot.com/wp-content/uploads/2021/07/DataRobot-Tool-and-Utility-Agreement.pdf.
|
|
11
|
+
# ---------------------------------------------------------------------------------
|
|
12
|
+
import datarobot as dr
|
|
13
|
+
|
|
14
|
+
from datarobot_dome.constants import SPAN_PREFIX
|
|
15
|
+
|
|
16
|
+
from .base import Guard
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class GuardModelInfo:
|
|
20
|
+
def __init__(self, model_config: dict):
|
|
21
|
+
self._model_id = model_config.get("model_id")
|
|
22
|
+
self._target_name = model_config["target_name"]
|
|
23
|
+
self._target_type = model_config["target_type"]
|
|
24
|
+
self._class_names = model_config.get("class_names", [])
|
|
25
|
+
self._input_column_name = model_config["input_column_name"]
|
|
26
|
+
self._replacement_text_column_name = model_config.get("replacement_text_column_name")
|
|
27
|
+
|
|
28
|
+
@property
|
|
29
|
+
def model_id(self) -> str:
|
|
30
|
+
return self._model_id
|
|
31
|
+
|
|
32
|
+
@property
|
|
33
|
+
def target_name(self) -> str:
|
|
34
|
+
return self._target_name
|
|
35
|
+
|
|
36
|
+
@property
|
|
37
|
+
def target_type(self) -> str:
|
|
38
|
+
return self._target_type
|
|
39
|
+
|
|
40
|
+
@property
|
|
41
|
+
def class_names(self) -> list[str]:
|
|
42
|
+
return self._class_names
|
|
43
|
+
|
|
44
|
+
@property
|
|
45
|
+
def input_column_name(self) -> str:
|
|
46
|
+
return self._input_column_name
|
|
47
|
+
|
|
48
|
+
@property
|
|
49
|
+
def replacement_text_column_name(self) -> str:
|
|
50
|
+
return self._replacement_text_column_name
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
class ModelGuard(Guard):
|
|
54
|
+
def __init__(self, config: dict, stage=None):
|
|
55
|
+
super().__init__(config, stage)
|
|
56
|
+
self._deployment_id = config["deployment_id"]
|
|
57
|
+
self._model_info = GuardModelInfo(config["model_info"])
|
|
58
|
+
# dr.Client is set in the Pipeline init, Lets query the deployment
|
|
59
|
+
# to get the prediction server information
|
|
60
|
+
self.deployment = dr.Deployment.get(self._deployment_id)
|
|
61
|
+
|
|
62
|
+
@property
|
|
63
|
+
def deployment_id(self) -> str:
|
|
64
|
+
return self._deployment_id
|
|
65
|
+
|
|
66
|
+
@property
|
|
67
|
+
def model_info(self):
|
|
68
|
+
return self._model_info
|
|
69
|
+
|
|
70
|
+
def get_input_column_name(self, stage) -> str:
|
|
71
|
+
return self._model_info.input_column_name
|
|
72
|
+
|
|
73
|
+
def get_span_column_name(self, _):
|
|
74
|
+
if self.model_info is None:
|
|
75
|
+
raise NotImplementedError("Missing model_info for model guard")
|
|
76
|
+
# Typically 0th index is the target name
|
|
77
|
+
return self._model_info.target_name.split("_")[0]
|
|
78
|
+
|
|
79
|
+
def get_span_attribute_name(self, stage):
|
|
80
|
+
return f"{SPAN_PREFIX}.{stage.lower()}.{self.get_span_column_name(stage)}"
|
|
81
|
+
|
|
82
|
+
def has_average_score_custom_metric(self) -> bool:
|
|
83
|
+
"""A couple ModelGuard types do not have an average score metric"""
|
|
84
|
+
return self.model_info.target_type not in ["Multiclass", "TextGeneration"]
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
# ---------------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) 2026 DataRobot, Inc. and its affiliates. All rights reserved.
|
|
3
|
+
# Last updated 2025.
|
|
4
|
+
#
|
|
5
|
+
# DataRobot, Inc. Confidential.
|
|
6
|
+
# This is proprietary source code of DataRobot, Inc. and its affiliates.
|
|
7
|
+
#
|
|
8
|
+
# This file and its contents are subject to DataRobot Tool and Utility Agreement.
|
|
9
|
+
# For details, see
|
|
10
|
+
# https://www.datarobot.com/wp-content/uploads/2021/07/DataRobot-Tool-and-Utility-Agreement.pdf.
|
|
11
|
+
# ---------------------------------------------------------------------------------
|
|
12
|
+
from functools import cached_property
|
|
13
|
+
|
|
14
|
+
from nemo_microservices import AsyncNeMoMicroservices
|
|
15
|
+
|
|
16
|
+
from .base import Guard
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class NeMoEvaluatorGuard(Guard):
|
|
20
|
+
def __init__(self, config: dict, stage=None):
|
|
21
|
+
super().__init__(config, stage)
|
|
22
|
+
self.nemo_evaluator_type = config["nemo_evaluator_type"]
|
|
23
|
+
self._llm_type = config["llm_type"]
|
|
24
|
+
self.llm_deployment_id = config.get("deployment_id")
|
|
25
|
+
|
|
26
|
+
@cached_property
|
|
27
|
+
def _client(self) -> AsyncNeMoMicroservices:
|
|
28
|
+
"""
|
|
29
|
+
Using localhost for development purpose only.
|
|
30
|
+
It will be replaced with url to a deployed NeMo evaluator instance later in the PBMP.
|
|
31
|
+
"""
|
|
32
|
+
return AsyncNeMoMicroservices(base_url="http://localhost:8080")
|
|
33
|
+
|
|
34
|
+
def has_average_score_custom_metric(self) -> bool:
|
|
35
|
+
return False
|
|
36
|
+
|
|
37
|
+
async def evaluate(self, prompt: str, response: str) -> float:
|
|
38
|
+
raise NotImplementedError
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
class NeMoLLMJudgeGuard(NeMoEvaluatorGuard):
|
|
42
|
+
def __init__(self, config: dict, stage=None):
|
|
43
|
+
super().__init__(config, stage)
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class NeMoContextRelevanceGuard(NeMoEvaluatorGuard):
|
|
47
|
+
def __init__(self, config: dict, stage=None):
|
|
48
|
+
super().__init__(config, stage)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class NeMoResponseGroundednessGuard(NeMoEvaluatorGuard):
|
|
52
|
+
def __init__(self, config: dict, stage=None):
|
|
53
|
+
super().__init__(config, stage)
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
class NeMoTopicAdherenceGuard(NeMoEvaluatorGuard):
|
|
57
|
+
def __init__(self, config: dict, stage=None):
|
|
58
|
+
super().__init__(config, stage)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
class NeMoAgentGoalAccuracyGuard(NeMoEvaluatorGuard):
|
|
62
|
+
def __init__(self, config: dict, stage=None):
|
|
63
|
+
super().__init__(config, stage)
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
class NeMoResponseRelevancyGuard(NeMoEvaluatorGuard):
|
|
67
|
+
def __init__(self, config: dict, stage=None):
|
|
68
|
+
super().__init__(config, stage)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
class NeMoFaithfulnessGuard(NeMoEvaluatorGuard):
|
|
72
|
+
def __init__(self, config: dict, stage=None):
|
|
73
|
+
super().__init__(config, stage)
|
|
@@ -0,0 +1,146 @@
|
|
|
1
|
+
# ---------------------------------------------------------------------------------
|
|
2
|
+
# Copyright (c) 2026 DataRobot, Inc. and its affiliates. All rights reserved.
|
|
3
|
+
# Last updated 2025.
|
|
4
|
+
#
|
|
5
|
+
# DataRobot, Inc. Confidential.
|
|
6
|
+
# This is proprietary source code of DataRobot, Inc. and its affiliates.
|
|
7
|
+
#
|
|
8
|
+
# This file and its contents are subject to DataRobot Tool and Utility Agreement.
|
|
9
|
+
# For details, see
|
|
10
|
+
# https://www.datarobot.com/wp-content/uploads/2021/07/DataRobot-Tool-and-Utility-Agreement.pdf.
|
|
11
|
+
# ---------------------------------------------------------------------------------
|
|
12
|
+
import logging
|
|
13
|
+
import os
|
|
14
|
+
|
|
15
|
+
import datarobot as dr
|
|
16
|
+
from nemoguardrails import LLMRails
|
|
17
|
+
from nemoguardrails import RailsConfig
|
|
18
|
+
|
|
19
|
+
from datarobot_dome.constants import NEMO_GUARDRAILS_DIR
|
|
20
|
+
from datarobot_dome.constants import GuardLLMType
|
|
21
|
+
from datarobot_dome.constants import GuardOperatorType
|
|
22
|
+
from datarobot_dome.guard_helpers import DEFAULT_OPEN_AI_API_VERSION
|
|
23
|
+
from datarobot_dome.guard_helpers import get_azure_openai_client
|
|
24
|
+
from datarobot_dome.guard_helpers import get_chat_nvidia_llm
|
|
25
|
+
from datarobot_dome.guard_helpers import get_datarobot_endpoint_and_token
|
|
26
|
+
from datarobot_dome.guard_helpers import get_llm_gateway_client
|
|
27
|
+
from datarobot_dome.guard_helpers import use_llm_gateway_inference
|
|
28
|
+
from datarobot_dome.guards.base import Guard
|
|
29
|
+
from datarobot_dome.guards.guard_llm_mixin import GuardLLMMixin
|
|
30
|
+
|
|
31
|
+
NEMO_THRESHOLD = "TRUE"
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class NeMoGuard(Guard, GuardLLMMixin):
|
|
35
|
+
def __init__(self, config: dict, stage=None, model_dir: str = os.getcwd()):
|
|
36
|
+
super().__init__(config, stage)
|
|
37
|
+
# NeMo guard only takes a boolean as threshold and equal to as comparator.
|
|
38
|
+
# Threshold bool == TRUE is defined in the colang file as the output of
|
|
39
|
+
# `bot should intervene`
|
|
40
|
+
if self.intervention:
|
|
41
|
+
if not self.intervention.threshold:
|
|
42
|
+
self.intervention.threshold = NEMO_THRESHOLD
|
|
43
|
+
if not self.intervention.comparator:
|
|
44
|
+
self.intervention.comparator = GuardOperatorType.EQUALS
|
|
45
|
+
|
|
46
|
+
# Default LLM Type for NeMo is set to OpenAI
|
|
47
|
+
self._llm_type = config.get("llm_type", GuardLLMType.OPENAI)
|
|
48
|
+
self.openai_api_base = config.get("openai_api_base")
|
|
49
|
+
self.openai_deployment_id = config.get("openai_deployment_id")
|
|
50
|
+
llm_id = None
|
|
51
|
+
credentials = None
|
|
52
|
+
use_llm_gateway = use_llm_gateway_inference(self._llm_type)
|
|
53
|
+
try:
|
|
54
|
+
self.openai_api_key = self.get_openai_api_key(config, self._llm_type)
|
|
55
|
+
if self._llm_type != GuardLLMType.NIM and self.openai_api_key is None:
|
|
56
|
+
raise ValueError("OpenAI API key is required for NeMo Guardrails")
|
|
57
|
+
|
|
58
|
+
if self.llm_type == GuardLLMType.OPENAI:
|
|
59
|
+
credentials = {
|
|
60
|
+
"credential_type": "openai",
|
|
61
|
+
"api_key": self.openai_api_key,
|
|
62
|
+
}
|
|
63
|
+
os.environ["OPENAI_API_KEY"] = self.openai_api_key
|
|
64
|
+
llm = None
|
|
65
|
+
elif self.llm_type == GuardLLMType.AZURE_OPENAI:
|
|
66
|
+
if self.openai_api_base is None:
|
|
67
|
+
raise ValueError("Azure OpenAI API base url is required for LLM Guard")
|
|
68
|
+
if self.openai_deployment_id is None:
|
|
69
|
+
raise ValueError("Azure OpenAI deployment ID is required for LLM Guard")
|
|
70
|
+
credentials = {
|
|
71
|
+
"credential_type": "azure_openai",
|
|
72
|
+
"api_base": self.openai_api_base,
|
|
73
|
+
"api_version": DEFAULT_OPEN_AI_API_VERSION,
|
|
74
|
+
"api_key": self.openai_api_key,
|
|
75
|
+
}
|
|
76
|
+
azure_openai_client = get_azure_openai_client(
|
|
77
|
+
openai_api_key=self.openai_api_key,
|
|
78
|
+
openai_api_base=self.openai_api_base,
|
|
79
|
+
openai_deployment_id=self.openai_deployment_id,
|
|
80
|
+
)
|
|
81
|
+
llm = azure_openai_client
|
|
82
|
+
elif self.llm_type == GuardLLMType.GOOGLE:
|
|
83
|
+
# llm_id = config["google_model"]
|
|
84
|
+
raise NotImplementedError
|
|
85
|
+
elif self.llm_type == GuardLLMType.AMAZON:
|
|
86
|
+
# llm_id = config["aws_model"]
|
|
87
|
+
raise NotImplementedError
|
|
88
|
+
elif self.llm_type == GuardLLMType.DATAROBOT:
|
|
89
|
+
raise NotImplementedError
|
|
90
|
+
elif self.llm_type == GuardLLMType.NIM:
|
|
91
|
+
if config.get("deployment_id") is None:
|
|
92
|
+
if self.openai_api_base is None:
|
|
93
|
+
raise ValueError("NIM DataRobot deployment id is required for NIM LLM Type")
|
|
94
|
+
else:
|
|
95
|
+
logging.warning(
|
|
96
|
+
"Using 'openai_api_base' is being deprecated and will be removed "
|
|
97
|
+
"in the next release. Please configure NIM DataRobot deployment "
|
|
98
|
+
"using deployment_id"
|
|
99
|
+
)
|
|
100
|
+
if self.openai_api_key is None:
|
|
101
|
+
raise ValueError("OpenAI API key is required for NeMo Guardrails")
|
|
102
|
+
else:
|
|
103
|
+
self.deployment = dr.Deployment.get(self._deployment_id)
|
|
104
|
+
datarobot_endpoint, self.openai_api_key = get_datarobot_endpoint_and_token()
|
|
105
|
+
self.openai_api_base = (
|
|
106
|
+
f"{datarobot_endpoint}/deployments/{str(self._deployment_id)}"
|
|
107
|
+
)
|
|
108
|
+
llm = get_chat_nvidia_llm(
|
|
109
|
+
api_key=self.openai_api_key,
|
|
110
|
+
base_url=self.openai_api_base,
|
|
111
|
+
)
|
|
112
|
+
else:
|
|
113
|
+
raise ValueError(f"Invalid LLMType: {self.llm_type}")
|
|
114
|
+
|
|
115
|
+
except Exception as e:
|
|
116
|
+
# no valid user credentials provided, raise if not using LLM Gateway
|
|
117
|
+
credentials = None
|
|
118
|
+
if not use_llm_gateway:
|
|
119
|
+
raise e
|
|
120
|
+
|
|
121
|
+
if use_llm_gateway:
|
|
122
|
+
# Currently only OPENAI and AZURE_OPENAI are supported by NeMoGuard
|
|
123
|
+
# For Bedrock and Vertex the model in the config is actually the LLM ID
|
|
124
|
+
# For OpenAI we use the default model defined in get_llm_gateway_client
|
|
125
|
+
# For Azure we use the deployment ID
|
|
126
|
+
llm = get_llm_gateway_client(
|
|
127
|
+
llm_id=llm_id,
|
|
128
|
+
openai_deployment_id=self.openai_deployment_id,
|
|
129
|
+
credentials=credentials,
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
# Use guard stage to determine whether to read from prompt/response subdirectory
|
|
133
|
+
# for nemo configurations. "nemo_guardrails" folder is at same level of custom.py
|
|
134
|
+
# So, the config path becomes model_dir + "nemo_guardrails"
|
|
135
|
+
nemo_config_path = os.path.join(model_dir, NEMO_GUARDRAILS_DIR)
|
|
136
|
+
self.nemo_rails_config_path = os.path.join(nemo_config_path, self.stage)
|
|
137
|
+
nemo_rails_config = RailsConfig.from_path(config_path=self.nemo_rails_config_path)
|
|
138
|
+
self._nemo_llm_rails = LLMRails(nemo_rails_config, llm=llm)
|
|
139
|
+
|
|
140
|
+
def has_average_score_custom_metric(self) -> bool:
|
|
141
|
+
"""No average score metrics for NemoGuard's"""
|
|
142
|
+
return False
|
|
143
|
+
|
|
144
|
+
@property
|
|
145
|
+
def nemo_llm_rails(self):
|
|
146
|
+
return self._nemo_llm_rails
|