datapizza-ai-parsers-azure 0.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,3 @@
1
+ from .azure_parser import AzureParser
2
+
3
+ __all__ = ["AzureParser"]
@@ -0,0 +1,391 @@
1
+ import json
2
+ from typing import Any
3
+
4
+ import aiofiles
5
+ from datapizza.core.modules.parser import Parser
6
+ from datapizza.core.utils import extract_media
7
+ from datapizza.type import Media, MediaNode, Node, NodeType
8
+
9
+ from azure.ai.documentintelligence import DocumentIntelligenceClient
10
+ from azure.ai.documentintelligence.aio import (
11
+ DocumentIntelligenceClient as AsyncDocumentIntelligenceClient,
12
+ )
13
+ from azure.ai.documentintelligence.models import AnalyzeDocumentRequest, AnalyzeResult
14
+ from azure.core.credentials import AzureKeyCredential
15
+
16
+
17
+ class AzureParser(Parser):
18
+ """
19
+ Parser that creates a hierarchical tree structure from Azure AI Document Intelligence response.
20
+ The hierarchy goes from document -> pages -> paragraphs/tables -> lines/cells -> words.
21
+
22
+ params:
23
+ api_key: str
24
+ endpoint: str
25
+ result_type: str = "markdown", "text"
26
+ """
27
+
28
+ def __init__(self, api_key: str, endpoint: str, result_type: str = "text"):
29
+ self.api_key = api_key
30
+ self.endpoint = endpoint
31
+ self.result_type = result_type
32
+ self.parser = None # self._create_parser()
33
+ self.a_parser = None # self._create_a_parser()
34
+
35
+ def _create_parser(self):
36
+ document_intelligence_client = DocumentIntelligenceClient(
37
+ endpoint=self.endpoint, credential=AzureKeyCredential(self.api_key)
38
+ )
39
+ return document_intelligence_client
40
+
41
+ def _create_a_parser(self):
42
+ parser = AsyncDocumentIntelligenceClient(
43
+ endpoint=self.endpoint, credential=AzureKeyCredential(self.api_key)
44
+ )
45
+ return parser
46
+
47
+ def _get_parser(self):
48
+ if not self.parser:
49
+ self.parser = self._create_parser()
50
+ return self.parser
51
+
52
+ def _get_a_parser(self):
53
+ if not self.a_parser:
54
+ self.a_parser = self._create_a_parser()
55
+ return self.a_parser
56
+
57
+ def _parse_file(self, file_path: str) -> Node:
58
+ """Parse an Azure Document Intelligence JSON file into a Node structure."""
59
+ with open(file_path) as file:
60
+ json_data = json.load(file)
61
+
62
+ return self._parse_json(json_data, file_path=file_path)
63
+
64
+ def _get_missing_paragraphs(self, json_data: dict) -> list[str]:
65
+ """Get missing paragraphs from the Azure Document Intelligence JSON data."""
66
+
67
+ sections = json_data.get("sections", [])
68
+ figures = json_data.get("figures", [])
69
+ tables = json_data.get("tables", [])
70
+
71
+ all_paragraphs = [
72
+ "/paragraphs/" + str(x) for x in range(len(json_data.get("paragraphs", [])))
73
+ ]
74
+
75
+ elements = []
76
+
77
+ def _process_section(section):
78
+ for element in section.get("elements", []):
79
+ if "paragraph" in element:
80
+ elements.append(element)
81
+ elif "section" in element:
82
+ section_idx = element.split("/")[2]
83
+ next_section = sections[int(section_idx)]
84
+ _process_section(next_section)
85
+
86
+ for section in sections:
87
+ _process_section(section)
88
+
89
+ def _process_figure(figure):
90
+ for element in figure.get("elements", []):
91
+ if "paragraph" in element:
92
+ elements.append(element)
93
+ elif "section" in element:
94
+ section_idx = element.split("/")[2]
95
+ next_section = sections[int(section_idx)]
96
+ _process_section(next_section)
97
+
98
+ for figure in figures:
99
+ _process_figure(figure)
100
+
101
+ def _process_table(table):
102
+ for element in table.get("elements", []):
103
+ if "paragraph" in element:
104
+ elements.append(element)
105
+ elif "section" in element:
106
+ section_idx = element.split("/")[2]
107
+ next_section = sections[int(section_idx)]
108
+ _process_section(next_section)
109
+
110
+ for table in tables:
111
+ _process_table(table)
112
+
113
+ missing = [x for x in all_paragraphs if x not in elements]
114
+
115
+ return missing
116
+
117
+ def _insert_missing_paragraphs(self, json_data: dict) -> dict:
118
+ """Insert missing paragraphs into the Azure Document Intelligence JSON data."""
119
+
120
+ missing = self._get_missing_paragraphs(json_data)
121
+
122
+ def _insert_paragraph_recursive(section, p_idx, p):
123
+ for i, element in enumerate(section.get("elements", [])):
124
+ if "paragraph" in element:
125
+ if int(element.split("/")[2]) > int(p_idx):
126
+ section["elements"].insert(i, p)
127
+ return True
128
+ elif "section" in element:
129
+ section_idx = element.split("/")[2]
130
+ next_section = json_data["sections"][int(section_idx)]
131
+ if _insert_paragraph_recursive(next_section, p_idx, p):
132
+ return True
133
+ return False
134
+
135
+ for p in missing:
136
+ idx = int(p.split("/")[2])
137
+
138
+ for section in json_data.get("sections", []):
139
+ if _insert_paragraph_recursive(section, idx, p):
140
+ break
141
+ return json_data
142
+
143
+ def _parse_json(self, json_data: dict, file_path: str) -> Node:
144
+ """
145
+ Parse Azure Document Intelligence JSON into a hierarchical Node structure.
146
+
147
+ Args:
148
+ json_data: The Azure Document Intelligence JSON response
149
+
150
+ Returns:
151
+ A Node representing the document with hierarchical structure
152
+ """
153
+ # Create root document node
154
+
155
+ json_data = self._insert_missing_paragraphs(json_data)
156
+
157
+ document_node = Node(
158
+ children=[],
159
+ metadata=self._extract_document_metadata(json_data),
160
+ node_type=NodeType.DOCUMENT,
161
+ )
162
+
163
+ # Process each page in the document
164
+ analyze_result = json_data # .get('analyzeResult', {})
165
+ sections = analyze_result.get("sections", [])
166
+
167
+ document_node.children = self._process_children_elements(
168
+ sections[0], analyze_result, file_path=file_path
169
+ )
170
+
171
+ return document_node
172
+
173
+ def _process_children_elements(
174
+ self,
175
+ parent_object: dict[str, Any],
176
+ analyze_result: dict[str, Any],
177
+ file_path: str,
178
+ ) -> list[Node]:
179
+ """Process children elements of a section."""
180
+ children_nodes = []
181
+ elements = parent_object.get("elements", [])
182
+ for _element_idx, element in enumerate(elements):
183
+ if "paragraph" in element:
184
+ paragrap_index = element.split("/")[2]
185
+
186
+ paragraph = analyze_result.get("paragraphs", [])[int(paragrap_index)]
187
+ paragraph_node = self._create_paragraph_node(paragraph)
188
+ paragraph_node.children = self._process_children_elements(
189
+ paragraph, analyze_result, file_path=file_path
190
+ )
191
+ children_nodes.append(paragraph_node)
192
+
193
+ elif "table" in element:
194
+ table_index = element.split("/")[2]
195
+ table = analyze_result.get("tables", [])[int(table_index)]
196
+ table_node = self._create_media_node(
197
+ media=table,
198
+ node_type=NodeType.TABLE,
199
+ content_result=analyze_result.get("content", ""),
200
+ file_path=file_path,
201
+ )
202
+ table_node.children = self._process_children_elements(
203
+ table, analyze_result, file_path=file_path
204
+ )
205
+ children_nodes.append(table_node)
206
+
207
+ elif "figures" in element:
208
+ image_index = element.split("/")[2]
209
+ image = analyze_result.get("figures", [])[int(image_index)]
210
+ image_node = self._create_media_node(
211
+ media=image,
212
+ node_type=NodeType.FIGURE,
213
+ content_result=analyze_result.get("content", ""),
214
+ file_path=file_path,
215
+ )
216
+ image_node.children = self._process_children_elements(
217
+ image, analyze_result, file_path=file_path
218
+ )
219
+ children_nodes.append(image_node)
220
+
221
+ elif "section" in element:
222
+ section_index = element.split("/")[2]
223
+ section = analyze_result.get("sections", [])[int(section_index)]
224
+ section_node = Node(children=[], node_type=NodeType.SECTION)
225
+ section_node.children = self._process_children_elements(
226
+ section, analyze_result, file_path=file_path
227
+ )
228
+ children_nodes.append(section_node)
229
+
230
+ return children_nodes
231
+
232
+ def _transform_cells_to_markdown(
233
+ self, table_data: dict[str, Any], content_result: str
234
+ ) -> str:
235
+ """Transforms table cells from Azure response to a markdown table string."""
236
+ cells = table_data.get("cells", [])
237
+ if not cells:
238
+ return ""
239
+
240
+ offset = table_data.get("spans", [{}])[0].get("offset")
241
+ length = table_data.get("spans", [{}])[0].get("length")
242
+ if offset is None or length is None:
243
+ return ""
244
+
245
+ markdown_table = content_result[offset : offset + length]
246
+
247
+ return markdown_table
248
+
249
+ def _create_media_node(
250
+ self,
251
+ media: dict[str, Any],
252
+ node_type: NodeType,
253
+ content_result: str,
254
+ file_path: str,
255
+ ) -> Node:
256
+ """Create a node for an media with its child elements."""
257
+ # Get bounding regions
258
+ bounding_regions = media.get("boundingRegions", [])
259
+
260
+ if file_path and bounding_regions:
261
+ base64_image = extract_media(
262
+ coordinates=bounding_regions[0]["polygon"],
263
+ file_path=file_path,
264
+ page_number=bounding_regions[0]["pageNumber"],
265
+ )
266
+
267
+ media_obj = Media(
268
+ media_type="image",
269
+ source=base64_image,
270
+ source_type="base64",
271
+ extension="png",
272
+ )
273
+ else:
274
+ raise ValueError("No bounding regions found for media")
275
+
276
+ content = None
277
+ metadata = {
278
+ "boundingRegions": bounding_regions,
279
+ }
280
+ if node_type == NodeType.TABLE:
281
+ content = self._transform_cells_to_markdown(media, content_result)
282
+ metadata["rowCount"] = media.get("rowCount")
283
+ metadata["columnCount"] = media.get("columnCount")
284
+
285
+ # Create MediaNode with bounding regions metadata
286
+ image_node = MediaNode(
287
+ media=media_obj,
288
+ children=[],
289
+ node_type=node_type,
290
+ metadata=metadata,
291
+ content=content,
292
+ )
293
+ return image_node
294
+
295
+ def _extract_document_metadata(self, json_data: dict[str, Any]) -> dict[str, Any]:
296
+ """Extract document-level metadata from the Azure response."""
297
+ metadata = {}
298
+ analyze_result = json_data.get("analyzeResult", {})
299
+
300
+ # Add document-level metadata
301
+ if "documentResults" in analyze_result:
302
+ doc_results = analyze_result["documentResults"]
303
+ if doc_results and len(doc_results) > 0:
304
+ metadata.update(doc_results[0].get("fields", {}))
305
+
306
+ # Add model information if available
307
+ metadata["modelId"] = analyze_result.get("modelId")
308
+ metadata["apiVersion"] = analyze_result.get("apiVersion")
309
+
310
+ return metadata
311
+
312
+ # def _create_table_node(self, table: Dict[str, Any]) -> Node:
313
+ # """Create a node for a table with its child lines and words."""
314
+ # table_node = Node(
315
+ # children=[],
316
+ # node_type=NodeType.TABLE,
317
+ # content=table.get("content", ""),
318
+ # metadata={
319
+ # "boundingRegions": table.get("boundingRegions", []),
320
+ # },
321
+ # )
322
+ # return table_node
323
+
324
+ def _create_paragraph_node(self, paragraph: dict[str, Any]) -> Node:
325
+ """Create a node for a paragraph with its child lines and words."""
326
+ para_node = Node(
327
+ children=[],
328
+ node_type=NodeType.PARAGRAPH,
329
+ content=paragraph.get("content", ""),
330
+ metadata={
331
+ "boundingRegions": paragraph.get("boundingRegions", {}),
332
+ },
333
+ )
334
+ return para_node
335
+
336
+ def parse_with_azure_ai(self, file_path: str) -> dict:
337
+ """
338
+ Parse a Document with Azure AI Document Intelligence into a json dictionary.
339
+
340
+ Args:
341
+ file_path: Path to the document
342
+
343
+ Returns:
344
+ A dictionary with the Azure AI Document Intelligence response
345
+ """
346
+
347
+ with open(file_path, "rb") as file:
348
+ file_content = file.read()
349
+
350
+ parser = self._get_parser()
351
+ poller = parser.begin_analyze_document(
352
+ "prebuilt-layout",
353
+ AnalyzeDocumentRequest(bytes_source=file_content),
354
+ output_content_format=self.result_type,
355
+ )
356
+ result: AnalyzeResult = poller.result()
357
+ return result.as_dict()
358
+
359
+ async def a_parse_with_azure_ai(self, file_path: str) -> dict:
360
+ async with aiofiles.open(file_path, "rb") as file:
361
+ file_content = await file.read()
362
+
363
+ parser = self._get_a_parser()
364
+ async with parser:
365
+ poller = await parser.begin_analyze_document(
366
+ "prebuilt-layout",
367
+ AnalyzeDocumentRequest(bytes_source=file_content),
368
+ output_content_format=self.result_type,
369
+ )
370
+ result: AnalyzeResult = await poller.result()
371
+ return result.as_dict()
372
+
373
+ def parse(self, file_path: str) -> Node:
374
+ """
375
+ Parse a Document with Azure AI Document Intelligence into a Node structure.
376
+
377
+ Args:
378
+ file_path: Path to the document
379
+
380
+ Returns:
381
+ A Node representing the document with hierarchical structure
382
+ """
383
+ result_dict = self.parse_with_azure_ai(file_path)
384
+ return self._parse_json(result_dict, file_path=file_path)
385
+
386
+ def __call__(self, file_path: str) -> Node:
387
+ return self.parse(file_path)
388
+
389
+ async def a_parse(self, file_path: str) -> Node:
390
+ result_dict = await self.a_parse_with_azure_ai(file_path)
391
+ return self._parse_json(result_dict, file_path=file_path)
@@ -0,0 +1,15 @@
1
+ Metadata-Version: 2.4
2
+ Name: datapizza-ai-parsers-azure
3
+ Version: 0.0.2
4
+ Summary: Azure Document Intelligence parser for the datapizza-ai framework
5
+ Author-email: Datapizza <datapizza@datapizza.tech>
6
+ License: MIT
7
+ Classifier: License :: OSI Approved :: MIT License
8
+ Classifier: Operating System :: OS Independent
9
+ Classifier: Programming Language :: Python :: 3
10
+ Requires-Python: <4,>=3.10.0
11
+ Requires-Dist: aiofiles>=24.1.0
12
+ Requires-Dist: azure-ai-documentintelligence<2.0.0,>=1.0.1
13
+ Requires-Dist: datapizza-ai-core==0.0.1
14
+ Requires-Dist: pillow>=11.3.0
15
+ Requires-Dist: pymupdf<2.0.0,>=1.25.4
@@ -0,0 +1,5 @@
1
+ datapizza/modules/parsers/azure/__init__.py,sha256=78Cmh6Swk3zlqhpXwy8RtGw97Yjw8E-_FARfUzzBgho,65
2
+ datapizza/modules/parsers/azure/azure_parser.py,sha256=ZcdH2VJ0t2xox8sCz9n3X_0jsV4UfjZl2qVj-gZLGr4,14335
3
+ datapizza_ai_parsers_azure-0.0.2.dist-info/METADATA,sha256=BcLLFTpsSkuis9UNRv8_TybXJOtMZAlQQSKeUW2htEY,583
4
+ datapizza_ai_parsers_azure-0.0.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
5
+ datapizza_ai_parsers_azure-0.0.2.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.27.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any