datapizza-ai-clients-mistral 0.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- datapizza/clients/mistral/__init__.py +3 -0
- datapizza/clients/mistral/memory_adapter.py +103 -0
- datapizza/clients/mistral/mistral_client.py +466 -0
- datapizza_ai_clients_mistral-0.0.2.dist-info/METADATA +13 -0
- datapizza_ai_clients_mistral-0.0.2.dist-info/RECORD +6 -0
- datapizza_ai_clients_mistral-0.0.2.dist-info/WHEEL +4 -0
@@ -0,0 +1,103 @@
|
|
1
|
+
import base64
|
2
|
+
import json
|
3
|
+
|
4
|
+
from datapizza.memory.memory import Turn
|
5
|
+
from datapizza.memory.memory_adapter import MemoryAdapter
|
6
|
+
from datapizza.type import (
|
7
|
+
ROLE,
|
8
|
+
FunctionCallBlock,
|
9
|
+
FunctionCallResultBlock,
|
10
|
+
MediaBlock,
|
11
|
+
StructuredBlock,
|
12
|
+
TextBlock,
|
13
|
+
)
|
14
|
+
|
15
|
+
|
16
|
+
class MistralMemoryAdapter(MemoryAdapter):
|
17
|
+
def _turn_to_message(self, turn: Turn) -> dict:
|
18
|
+
content = []
|
19
|
+
tool_calls = []
|
20
|
+
tool_call_id = None
|
21
|
+
|
22
|
+
for block in turn:
|
23
|
+
block_dict = {}
|
24
|
+
|
25
|
+
match block:
|
26
|
+
case TextBlock():
|
27
|
+
block_dict = {"type": "text", "text": block.content}
|
28
|
+
case FunctionCallBlock():
|
29
|
+
tool_calls.append(
|
30
|
+
{
|
31
|
+
"id": block.id,
|
32
|
+
"function": {
|
33
|
+
"name": block.name,
|
34
|
+
"arguments": json.dumps(block.arguments),
|
35
|
+
},
|
36
|
+
"type": "function",
|
37
|
+
}
|
38
|
+
)
|
39
|
+
case FunctionCallResultBlock():
|
40
|
+
tool_call_id = block.id
|
41
|
+
block_dict = {"type": "text", "text": block.result}
|
42
|
+
case StructuredBlock():
|
43
|
+
block_dict = {"type": "text", "text": str(block.content)}
|
44
|
+
case MediaBlock():
|
45
|
+
match block.media.media_type:
|
46
|
+
case "image":
|
47
|
+
block_dict = self._process_image_block(block)
|
48
|
+
# case "pdf":
|
49
|
+
# block_dict = self._process_pdf_block(block)
|
50
|
+
|
51
|
+
case _:
|
52
|
+
raise NotImplementedError(
|
53
|
+
f"Unsupported media type: {block.media.media_type}, only image are supported"
|
54
|
+
)
|
55
|
+
|
56
|
+
if block_dict:
|
57
|
+
content.append(block_dict)
|
58
|
+
|
59
|
+
messages: dict = {
|
60
|
+
"role": turn.role.value,
|
61
|
+
}
|
62
|
+
|
63
|
+
if content:
|
64
|
+
messages["content"] = content
|
65
|
+
|
66
|
+
if tool_calls:
|
67
|
+
messages["tool_calls"] = tool_calls
|
68
|
+
|
69
|
+
if tool_call_id:
|
70
|
+
messages["tool_call_id"] = tool_call_id
|
71
|
+
|
72
|
+
return messages
|
73
|
+
|
74
|
+
def _text_to_message(self, text: str, role: ROLE) -> dict:
|
75
|
+
return {"role": role.value, "content": text}
|
76
|
+
|
77
|
+
def _process_image_block(self, block: MediaBlock) -> dict:
|
78
|
+
match block.media.source_type:
|
79
|
+
case "url":
|
80
|
+
return {
|
81
|
+
"type": "image_url",
|
82
|
+
"image_url": {"url": block.media.source},
|
83
|
+
}
|
84
|
+
case "base64":
|
85
|
+
return {
|
86
|
+
"type": "image_url",
|
87
|
+
"image_url": {
|
88
|
+
"url": f"data:image/{block.media.extension};base64,{block.media.source}"
|
89
|
+
},
|
90
|
+
}
|
91
|
+
case "path":
|
92
|
+
with open(block.media.source, "rb") as image_file:
|
93
|
+
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
|
94
|
+
return {
|
95
|
+
"type": "image_url",
|
96
|
+
"image_url": {
|
97
|
+
"url": f"data:image/{block.media.extension};base64,{base64_image}"
|
98
|
+
},
|
99
|
+
}
|
100
|
+
case _:
|
101
|
+
raise NotImplementedError(
|
102
|
+
f"Unsupported media source type: {block.media.source_type}, only url, base64, path are supported"
|
103
|
+
)
|
@@ -0,0 +1,466 @@
|
|
1
|
+
import json
|
2
|
+
import logging
|
3
|
+
import os
|
4
|
+
from collections.abc import AsyncIterator, Iterator
|
5
|
+
from typing import Literal
|
6
|
+
|
7
|
+
import requests
|
8
|
+
from datapizza.core.cache import Cache
|
9
|
+
from datapizza.core.clients import Client, ClientResponse
|
10
|
+
from datapizza.memory import Memory
|
11
|
+
from datapizza.tools import Tool
|
12
|
+
from datapizza.tools.tool_converter import ToolConverter
|
13
|
+
from datapizza.type import (
|
14
|
+
FunctionCallBlock,
|
15
|
+
Media,
|
16
|
+
MediaBlock,
|
17
|
+
Model,
|
18
|
+
StructuredBlock,
|
19
|
+
TextBlock,
|
20
|
+
)
|
21
|
+
from mistralai import Mistral
|
22
|
+
from mistralai.models.ocrresponse import OCRResponse
|
23
|
+
|
24
|
+
from datapizza.clients.mistral.memory_adapter import MistralMemoryAdapter
|
25
|
+
|
26
|
+
log = logging.getLogger(__name__)
|
27
|
+
|
28
|
+
|
29
|
+
class MistralClient(Client):
|
30
|
+
"""A client for interacting with the Mistral API.
|
31
|
+
|
32
|
+
This class provides methods for invoking the Mistral API to generate responses
|
33
|
+
based on given input data. It extends the Client class.
|
34
|
+
"""
|
35
|
+
|
36
|
+
def __init__(
|
37
|
+
self,
|
38
|
+
api_key: str,
|
39
|
+
model: str = "mistral-large-latest",
|
40
|
+
system_prompt: str = "",
|
41
|
+
temperature: float | None = None,
|
42
|
+
cache: Cache | None = None,
|
43
|
+
):
|
44
|
+
"""
|
45
|
+
Args:
|
46
|
+
api_key: The API key for the Mistral API.
|
47
|
+
model: The model to use for the Mistral API.
|
48
|
+
system_prompt: The system prompt to use for the Mistral API.
|
49
|
+
temperature: The temperature to use for the Mistral API.
|
50
|
+
cache: The cache to use for the Mistral API.
|
51
|
+
"""
|
52
|
+
if temperature and not 0 <= temperature <= 2:
|
53
|
+
raise ValueError("Temperature must be between 0 and 2")
|
54
|
+
|
55
|
+
super().__init__(
|
56
|
+
model_name=model,
|
57
|
+
system_prompt=system_prompt,
|
58
|
+
temperature=temperature,
|
59
|
+
cache=cache,
|
60
|
+
)
|
61
|
+
|
62
|
+
self.api_key = api_key
|
63
|
+
self.memory_adapter = MistralMemoryAdapter()
|
64
|
+
self._set_client()
|
65
|
+
|
66
|
+
def _set_client(self):
|
67
|
+
self.client = Mistral(api_key=self.api_key)
|
68
|
+
|
69
|
+
def _response_to_client_response(
|
70
|
+
self, response, tool_map: dict[str, Tool] | None = None
|
71
|
+
) -> ClientResponse:
|
72
|
+
blocks = []
|
73
|
+
for choice in response.choices:
|
74
|
+
if choice.message.content:
|
75
|
+
blocks.append(TextBlock(content=choice.message.content))
|
76
|
+
|
77
|
+
if choice.message.tool_calls:
|
78
|
+
for tool_call in choice.message.tool_calls:
|
79
|
+
tool = tool_map.get(tool_call.function.name) if tool_map else None
|
80
|
+
|
81
|
+
if tool is None:
|
82
|
+
raise ValueError(f"Tool {tool_call.function.name} not found")
|
83
|
+
|
84
|
+
blocks.append(
|
85
|
+
FunctionCallBlock(
|
86
|
+
id=tool_call.id,
|
87
|
+
name=tool_call.function.name,
|
88
|
+
arguments=json.loads(tool_call.function.arguments),
|
89
|
+
tool=tool,
|
90
|
+
)
|
91
|
+
)
|
92
|
+
|
93
|
+
# Handle media content if present
|
94
|
+
if hasattr(choice.message, "media") and choice.message.media:
|
95
|
+
for media_item in choice.message.media:
|
96
|
+
media = Media(
|
97
|
+
media_type=media_item.type,
|
98
|
+
source_type="url" if media_item.source_url else "base64",
|
99
|
+
source=media_item.source_url or media_item.data,
|
100
|
+
detail=getattr(media_item, "detail", "high"),
|
101
|
+
)
|
102
|
+
blocks.append(MediaBlock(media=media))
|
103
|
+
|
104
|
+
log.debug(f"{self.__class__.__name__} response = {response}")
|
105
|
+
return ClientResponse(
|
106
|
+
content=blocks,
|
107
|
+
stop_reason=response.choices[0].finish_reason,
|
108
|
+
prompt_tokens_used=response.usage.prompt_tokens,
|
109
|
+
completion_tokens_used=response.usage.completion_tokens,
|
110
|
+
cached_tokens_used=0,
|
111
|
+
)
|
112
|
+
|
113
|
+
def _convert_tools(self, tools: Tool) -> dict:
|
114
|
+
"""Convert tools to Mistral function format"""
|
115
|
+
return ToolConverter.to_mistral_format(tools)
|
116
|
+
|
117
|
+
def _convert_tool_choice(
|
118
|
+
self, tool_choice: Literal["auto", "required", "none"] | list[str]
|
119
|
+
) -> dict | Literal["auto", "required", "none"]:
|
120
|
+
if isinstance(tool_choice, list) and len(tool_choice) > 1:
|
121
|
+
raise NotImplementedError(
|
122
|
+
"multiple function names is not supported by Mistral"
|
123
|
+
)
|
124
|
+
elif isinstance(tool_choice, list):
|
125
|
+
return {
|
126
|
+
"type": "function",
|
127
|
+
"function": {"name": tool_choice[0]},
|
128
|
+
}
|
129
|
+
else:
|
130
|
+
return tool_choice
|
131
|
+
|
132
|
+
def _invoke(
|
133
|
+
self,
|
134
|
+
*,
|
135
|
+
input: str,
|
136
|
+
tools: list[Tool] | None,
|
137
|
+
memory: Memory | None,
|
138
|
+
tool_choice: Literal["auto", "required", "none"] | list[str],
|
139
|
+
temperature: float | None,
|
140
|
+
max_tokens: int,
|
141
|
+
system_prompt: str | None,
|
142
|
+
**kwargs,
|
143
|
+
) -> ClientResponse:
|
144
|
+
if tools is None:
|
145
|
+
tools = []
|
146
|
+
log.debug(f"{self.__class__.__name__} input = {input}")
|
147
|
+
messages = self._memory_to_contents(system_prompt, input, memory)
|
148
|
+
|
149
|
+
tool_map = {tool.name: tool for tool in tools}
|
150
|
+
|
151
|
+
request_params = {
|
152
|
+
"model": self.model_name,
|
153
|
+
"messages": messages,
|
154
|
+
"stream": False,
|
155
|
+
"max_tokens": max_tokens,
|
156
|
+
**kwargs,
|
157
|
+
}
|
158
|
+
|
159
|
+
if temperature:
|
160
|
+
request_params["temperature"] = temperature
|
161
|
+
|
162
|
+
if tools:
|
163
|
+
request_params["tools"] = [self._convert_tools(tool) for tool in tools]
|
164
|
+
request_params["tool_choice"] = self._convert_tool_choice(tool_choice)
|
165
|
+
|
166
|
+
response = self.client.chat.complete(**request_params)
|
167
|
+
return self._response_to_client_response(response, tool_map)
|
168
|
+
|
169
|
+
async def _a_invoke(
|
170
|
+
self,
|
171
|
+
*,
|
172
|
+
input: str,
|
173
|
+
tools: list[Tool] | None,
|
174
|
+
memory: Memory | None,
|
175
|
+
tool_choice: Literal["auto", "required", "none"] | list[str],
|
176
|
+
temperature: float | None,
|
177
|
+
max_tokens: int,
|
178
|
+
system_prompt: str | None,
|
179
|
+
**kwargs,
|
180
|
+
) -> ClientResponse:
|
181
|
+
if tools is None:
|
182
|
+
tools = []
|
183
|
+
log.debug(f"{self.__class__.__name__} input = {input}")
|
184
|
+
messages = self._memory_to_contents(system_prompt, input, memory)
|
185
|
+
|
186
|
+
tool_map = {tool.name: tool for tool in tools}
|
187
|
+
|
188
|
+
request_params = {
|
189
|
+
"model": self.model_name,
|
190
|
+
"messages": messages,
|
191
|
+
"stream": False,
|
192
|
+
"max_tokens": max_tokens,
|
193
|
+
**kwargs,
|
194
|
+
}
|
195
|
+
|
196
|
+
if temperature:
|
197
|
+
request_params["temperature"] = temperature
|
198
|
+
|
199
|
+
if tools:
|
200
|
+
request_params["tools"] = [self._convert_tools(tool) for tool in tools]
|
201
|
+
request_params["tool_choice"] = self._convert_tool_choice(tool_choice)
|
202
|
+
|
203
|
+
response = await self.client.chat.complete_async(**request_params)
|
204
|
+
return self._response_to_client_response(response, tool_map)
|
205
|
+
|
206
|
+
def _stream_invoke(
|
207
|
+
self,
|
208
|
+
input: str,
|
209
|
+
tools: list[Tool] | None,
|
210
|
+
memory: Memory | None,
|
211
|
+
tool_choice: Literal["auto", "required", "none"] | list[str],
|
212
|
+
temperature: float | None,
|
213
|
+
max_tokens: int,
|
214
|
+
system_prompt: str | None,
|
215
|
+
**kwargs,
|
216
|
+
) -> Iterator[ClientResponse]:
|
217
|
+
if tools is None:
|
218
|
+
tools = []
|
219
|
+
messages = self._memory_to_contents(system_prompt, input, memory)
|
220
|
+
request_params = {
|
221
|
+
"model": self.model_name,
|
222
|
+
"messages": messages,
|
223
|
+
"max_tokens": max_tokens,
|
224
|
+
**kwargs,
|
225
|
+
}
|
226
|
+
|
227
|
+
if temperature:
|
228
|
+
request_params["temperature"] = temperature
|
229
|
+
|
230
|
+
if tools:
|
231
|
+
request_params["tools"] = [self._convert_tools(tool) for tool in tools]
|
232
|
+
request_params["tool_choice"] = self._convert_tool_choice(tool_choice)
|
233
|
+
|
234
|
+
response = self.client.chat.stream(**request_params)
|
235
|
+
text = ""
|
236
|
+
for chunk in response:
|
237
|
+
delta = chunk.data.choices[0].delta.content or ""
|
238
|
+
text += delta
|
239
|
+
yield ClientResponse(
|
240
|
+
content=[],
|
241
|
+
delta=str(delta),
|
242
|
+
stop_reason=chunk.data.choices[0].finish_reason,
|
243
|
+
prompt_tokens_used=chunk.data.usage.prompt_tokens
|
244
|
+
if chunk.data.usage
|
245
|
+
else 0,
|
246
|
+
completion_tokens_used=chunk.data.usage.completion_tokens
|
247
|
+
if chunk.data.usage
|
248
|
+
else 0,
|
249
|
+
cached_tokens_used=0,
|
250
|
+
)
|
251
|
+
|
252
|
+
async def _a_stream_invoke(
|
253
|
+
self,
|
254
|
+
input: str,
|
255
|
+
tools: list[Tool] | None = None,
|
256
|
+
memory: Memory | None = None,
|
257
|
+
tool_choice: Literal["auto", "required", "none"] | list[str] = "auto",
|
258
|
+
temperature: float | None = None,
|
259
|
+
max_tokens: int | None = None,
|
260
|
+
system_prompt: str | None = None,
|
261
|
+
**kwargs,
|
262
|
+
) -> AsyncIterator[ClientResponse]:
|
263
|
+
if tools is None:
|
264
|
+
tools = []
|
265
|
+
messages = self._memory_to_contents(system_prompt, input, memory)
|
266
|
+
request_params = {
|
267
|
+
"model": self.model_name,
|
268
|
+
"messages": messages,
|
269
|
+
"max_tokens": max_tokens or 1024,
|
270
|
+
**kwargs,
|
271
|
+
}
|
272
|
+
|
273
|
+
if temperature:
|
274
|
+
request_params["temperature"] = temperature
|
275
|
+
|
276
|
+
if tools:
|
277
|
+
request_params["tools"] = [self._convert_tools(tool) for tool in tools]
|
278
|
+
request_params["tool_choice"] = self._convert_tool_choice(tool_choice)
|
279
|
+
|
280
|
+
response = await self.client.chat.stream_async(**request_params)
|
281
|
+
text = ""
|
282
|
+
async for chunk in response:
|
283
|
+
delta = chunk.data.choices[0].delta.content or ""
|
284
|
+
text += delta
|
285
|
+
yield ClientResponse(
|
286
|
+
content=[],
|
287
|
+
delta=str(delta),
|
288
|
+
stop_reason=chunk.data.choices[0].finish_reason,
|
289
|
+
prompt_tokens_used=chunk.data.usage.prompt_tokens
|
290
|
+
if chunk.data.usage
|
291
|
+
else 0,
|
292
|
+
completion_tokens_used=chunk.data.usage.completion_tokens
|
293
|
+
if chunk.data.usage
|
294
|
+
else 0,
|
295
|
+
cached_tokens_used=0,
|
296
|
+
)
|
297
|
+
|
298
|
+
def _structured_response(
|
299
|
+
self,
|
300
|
+
input: str,
|
301
|
+
output_cls: type[Model],
|
302
|
+
memory: Memory | None,
|
303
|
+
temperature: float | None,
|
304
|
+
max_tokens: int,
|
305
|
+
system_prompt: str | None,
|
306
|
+
tools: list[Tool] | None,
|
307
|
+
tool_choice: Literal["auto", "required", "none"] | list[str] = "auto",
|
308
|
+
**kwargs,
|
309
|
+
) -> ClientResponse:
|
310
|
+
# Add system message to enforce JSON output
|
311
|
+
messages = self._memory_to_contents(system_prompt, input, memory)
|
312
|
+
|
313
|
+
if not tools:
|
314
|
+
tools = []
|
315
|
+
|
316
|
+
if tools:
|
317
|
+
kwargs["tools"] = [self._convert_tools(tool) for tool in tools]
|
318
|
+
kwargs["tool_choice"] = self._convert_tool_choice(tool_choice)
|
319
|
+
|
320
|
+
response = self.client.chat.parse(
|
321
|
+
model=self.model_name,
|
322
|
+
messages=messages,
|
323
|
+
response_format=output_cls,
|
324
|
+
temperature=temperature,
|
325
|
+
max_tokens=max_tokens,
|
326
|
+
**kwargs,
|
327
|
+
)
|
328
|
+
|
329
|
+
if not response.choices:
|
330
|
+
raise ValueError("No response from Mistral")
|
331
|
+
|
332
|
+
log.debug(f"{self.__class__.__name__} structured response: {response}")
|
333
|
+
stop_reason = response.choices[0].finish_reason if response.choices else None
|
334
|
+
if hasattr(output_cls, "model_validate_json"):
|
335
|
+
structured_data = output_cls.model_validate_json(
|
336
|
+
str(response.choices[0].message.content) # type: ignore
|
337
|
+
)
|
338
|
+
else:
|
339
|
+
structured_data = json.loads(str(response.choices[0].message.content)) # type: ignore
|
340
|
+
return ClientResponse(
|
341
|
+
content=[StructuredBlock(content=structured_data)],
|
342
|
+
stop_reason=stop_reason,
|
343
|
+
prompt_tokens_used=response.usage.prompt_tokens,
|
344
|
+
completion_tokens_used=response.usage.completion_tokens,
|
345
|
+
cached_tokens_used=0,
|
346
|
+
)
|
347
|
+
|
348
|
+
async def _a_structured_response(
|
349
|
+
self,
|
350
|
+
input: str,
|
351
|
+
output_cls: type[Model],
|
352
|
+
memory: Memory | None,
|
353
|
+
temperature: float | None,
|
354
|
+
max_tokens: int,
|
355
|
+
system_prompt: str | None,
|
356
|
+
tools: list[Tool] | None,
|
357
|
+
tool_choice: Literal["auto", "required", "none"] | list[str] = "auto",
|
358
|
+
**kwargs,
|
359
|
+
) -> ClientResponse:
|
360
|
+
# Add system message to enforce JSON output
|
361
|
+
messages = self._memory_to_contents(system_prompt, input, memory)
|
362
|
+
|
363
|
+
if not tools:
|
364
|
+
tools = []
|
365
|
+
|
366
|
+
if tools:
|
367
|
+
kwargs["tools"] = [self._convert_tools(tool) for tool in tools]
|
368
|
+
kwargs["tool_choice"] = self._convert_tool_choice(tool_choice)
|
369
|
+
|
370
|
+
response = await self.client.chat.parse_async(
|
371
|
+
model=self.model_name,
|
372
|
+
messages=messages,
|
373
|
+
response_format=output_cls,
|
374
|
+
temperature=temperature,
|
375
|
+
max_tokens=max_tokens,
|
376
|
+
**kwargs,
|
377
|
+
)
|
378
|
+
|
379
|
+
if not response.choices:
|
380
|
+
raise ValueError("No response from Mistral")
|
381
|
+
|
382
|
+
log.debug(f"{self.__class__.__name__} structured response: {response}")
|
383
|
+
stop_reason = response.choices[0].finish_reason if response.choices else None
|
384
|
+
if hasattr(output_cls, "model_validate_json"):
|
385
|
+
structured_data = output_cls.model_validate_json(
|
386
|
+
str(response.choices[0].message.content) # type: ignore
|
387
|
+
)
|
388
|
+
else:
|
389
|
+
structured_data = json.loads(str(response.choices[0].message.content)) # type: ignore
|
390
|
+
return ClientResponse(
|
391
|
+
content=[StructuredBlock(content=structured_data)],
|
392
|
+
stop_reason=stop_reason,
|
393
|
+
prompt_tokens_used=response.usage.prompt_tokens,
|
394
|
+
completion_tokens_used=response.usage.completion_tokens,
|
395
|
+
cached_tokens_used=0,
|
396
|
+
)
|
397
|
+
|
398
|
+
def _embed(
|
399
|
+
self, text: str | list[str], model_name: str | None, **kwargs
|
400
|
+
) -> list[float] | list[list[float]]:
|
401
|
+
"""Embed a text using the model"""
|
402
|
+
response = self.client.embeddings.create(
|
403
|
+
inputs=text, model=model_name or self.model_name, **kwargs
|
404
|
+
)
|
405
|
+
|
406
|
+
embeddings = [item.embedding for item in response.data]
|
407
|
+
|
408
|
+
if not embeddings:
|
409
|
+
return []
|
410
|
+
|
411
|
+
if isinstance(text, str) and embeddings[0]:
|
412
|
+
return embeddings[0]
|
413
|
+
|
414
|
+
return embeddings
|
415
|
+
|
416
|
+
async def _a_embed(
|
417
|
+
self, text: str | list[str], model_name: str | None, **kwargs
|
418
|
+
) -> list[float] | list[list[float]]:
|
419
|
+
"""Embed a text using the model"""
|
420
|
+
response = await self.client.embeddings.create_async(
|
421
|
+
inputs=text, model=model_name or self.model_name, **kwargs
|
422
|
+
)
|
423
|
+
|
424
|
+
embeddings = [item.embedding for item in response.data]
|
425
|
+
|
426
|
+
if not embeddings:
|
427
|
+
return []
|
428
|
+
|
429
|
+
if isinstance(text, str) and embeddings[0]:
|
430
|
+
return embeddings[0]
|
431
|
+
|
432
|
+
return embeddings or []
|
433
|
+
|
434
|
+
def parse_document(
|
435
|
+
self,
|
436
|
+
document_path: str,
|
437
|
+
autodelete: bool = True,
|
438
|
+
include_image_base64: bool = True,
|
439
|
+
) -> OCRResponse:
|
440
|
+
filename = os.path.basename(document_path)
|
441
|
+
with open(document_path, "rb") as f:
|
442
|
+
uploaded_pdf = self.client.files.upload(
|
443
|
+
file={"file_name": filename, "content": f}, purpose="ocr"
|
444
|
+
)
|
445
|
+
|
446
|
+
signed_url = self.client.files.get_signed_url(file_id=uploaded_pdf.id)
|
447
|
+
|
448
|
+
response = self.client.ocr.process(
|
449
|
+
model="mistral-ocr-latest",
|
450
|
+
document={
|
451
|
+
"type": "document_url",
|
452
|
+
"document_url": signed_url.url,
|
453
|
+
},
|
454
|
+
include_image_base64=include_image_base64,
|
455
|
+
)
|
456
|
+
|
457
|
+
if autodelete:
|
458
|
+
url = f"https://api.mistral.ai/v1/files/{uploaded_pdf.id}"
|
459
|
+
headers = {
|
460
|
+
"Content-Type": "application/json",
|
461
|
+
"Authorization": f"Bearer {self.api_key}",
|
462
|
+
}
|
463
|
+
|
464
|
+
requests.delete(url, headers=headers, timeout=30)
|
465
|
+
|
466
|
+
return response
|
@@ -0,0 +1,13 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: datapizza-ai-clients-mistral
|
3
|
+
Version: 0.0.2
|
4
|
+
Summary: Mistral AI client for the datapizza-ai framework
|
5
|
+
Author-email: Datapizza <datapizza@datapizza.tech>
|
6
|
+
License: MIT
|
7
|
+
Classifier: License :: OSI Approved :: MIT License
|
8
|
+
Classifier: Operating System :: OS Independent
|
9
|
+
Classifier: Programming Language :: Python :: 3
|
10
|
+
Requires-Python: <4,>=3.10.0
|
11
|
+
Requires-Dist: datapizza-ai-core>=0.0.0
|
12
|
+
Requires-Dist: mistralai<2.0.0,>=1.2.0
|
13
|
+
Requires-Dist: requests<3.0.0,>=2.25.0
|
@@ -0,0 +1,6 @@
|
|
1
|
+
datapizza/clients/mistral/__init__.py,sha256=P3udscOuAOWZ8ltqzNv03IfNiLvZwHqv096v-Cf-YPg,96
|
2
|
+
datapizza/clients/mistral/memory_adapter.py,sha256=DfXPFZ9yR4l2tai3tJTn6JiMNlXqf2uxv8bk-jnWoqo,3545
|
3
|
+
datapizza/clients/mistral/mistral_client.py,sha256=YcR74FGgIU8ityCMJECR3fqjIwkKKjHcFyBFlIi_R6Y,16108
|
4
|
+
datapizza_ai_clients_mistral-0.0.2.dist-info/METADATA,sha256=lpBSEVgJX2toEV1Oij-I0fPIpYViT9Fyojx6Bc81N0E,487
|
5
|
+
datapizza_ai_clients_mistral-0.0.2.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
6
|
+
datapizza_ai_clients_mistral-0.0.2.dist-info/RECORD,,
|