datamint 2.1.2__py3-none-any.whl → 2.1.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of datamint might be problematic. Click here for more details.

@@ -119,7 +119,7 @@ class DatamintDataset(DatamintBaseDataset):
119
119
  raise ValueError("semantic_seg_merge_strategy can only be used if return_as_semantic_segmentation is True")
120
120
 
121
121
  def _load_segmentations(self,
122
- annotations: list[Annotation],
122
+ annotations: Sequence[Annotation],
123
123
  img_shape) -> tuple[dict[str, list], dict[str, list]]:
124
124
  """
125
125
  Load segmentations from annotations.
@@ -168,7 +168,7 @@ class DatamintDataset(DatamintBaseDataset):
168
168
  # seg = np.array(seg)
169
169
 
170
170
  seg = torch.from_numpy(seg)
171
- seg = seg == 255 # binary mask
171
+ seg = seg != 0 # binary mask
172
172
  # map the segmentation label to the code
173
173
  if self.return_frame_by_frame:
174
174
  frame_index = 0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: datamint
3
- Version: 2.1.2
3
+ Version: 2.1.4
4
4
  Summary: A library for interacting with the Datamint API, designed for efficient data management, processing and Deep Learning workflows.
5
5
  Requires-Python: >=3.10
6
6
  Classifier: Programming Language :: Python :: 3
@@ -21,7 +21,7 @@ Requires-Dist: humanize (>=4.0.0,<5.0.0)
21
21
  Requires-Dist: lazy-loader (>=0.3.0)
22
22
  Requires-Dist: lightning
23
23
  Requires-Dist: matplotlib
24
- Requires-Dist: medimgkit (>=0.6.4)
24
+ Requires-Dist: medimgkit (>=0.6.6)
25
25
  Requires-Dist: nest-asyncio (>=1.0.0,<2.0.0)
26
26
  Requires-Dist: nibabel (>=4.0.0)
27
27
  Requires-Dist: numpy
@@ -25,7 +25,7 @@ datamint/configs.py,sha256=Bdp6NydYwyCJ2dk19_gf_o3M2ZyQOmMHpLi8wEWNHUk,1426
25
25
  datamint/dataset/__init__.py,sha256=4PlUKSvVhdfQvvuq8jQXrkdqnot-iTTizM3aM1vgSwg,47
26
26
  datamint/dataset/annotation.py,sha256=qN1IMjdfLD2ceQ6va3l76jOXA8Vb_c-eBk1oWQu6hW0,7994
27
27
  datamint/dataset/base_dataset.py,sha256=xdWnYNZ6yKi__YGkrJ3hssiljRV3InGlJn8zDcgJnp8,49547
28
- datamint/dataset/dataset.py,sha256=huUOyBRGVtcx0tcpX2FrsWn7Vsqy5i5e_J52gxR_29A,28637
28
+ datamint/dataset/dataset.py,sha256=w5M0K0V-fUEt22_OzhpKc7DxDVYRIGW6Ado0q8iErC4,28639
29
29
  datamint/entities/__init__.py,sha256=tbHE7rZb0R9Hm-Dc8VWEq3PlRl7BYOzffumrV0ZdsMs,444
30
30
  datamint/entities/annotation.py,sha256=ochAEh_JqxAe_FyYTNUfPT47KiIAG7CkBTim52bu7M8,6636
31
31
  datamint/entities/base_entity.py,sha256=DniakCgJ-gV7Hz8VKQA_dRYTp4DU5rcjLBVOuD1aZuA,1902
@@ -44,7 +44,7 @@ datamint/logging.yaml,sha256=tOMxtc2UmwlIMTK6ljtnBwTco1PNrPeq3mx2iMuSbiw,482
44
44
  datamint/utils/logging_utils.py,sha256=9pRoaPrWu2jOdDCiAoUsjEdP5ZwaealWL3hjUqFvx9g,4022
45
45
  datamint/utils/torchmetrics.py,sha256=lwU0nOtsSWfebyp7dvjlAggaqXtj5ohSEUXOg3L0hJE,2837
46
46
  datamint/utils/visualization.py,sha256=yaUVAOHar59VrGUjpAWv5eVvQSfztFG0eP9p5Vt3l-M,4470
47
- datamint-2.1.2.dist-info/METADATA,sha256=K-uz7hcmvpOky8LA-r1hkOBMsXyRW1us9qT8F63mn6s,4203
48
- datamint-2.1.2.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
49
- datamint-2.1.2.dist-info/entry_points.txt,sha256=mn5H6jPjO-rY0W0CAZ6Z_KKWhMLvyVaSpoqk77jlTI4,145
50
- datamint-2.1.2.dist-info/RECORD,,
47
+ datamint-2.1.4.dist-info/METADATA,sha256=381mZxgQL220XnND_EUK6UPblHT4gAMze3yRzUUfF34,4203
48
+ datamint-2.1.4.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
49
+ datamint-2.1.4.dist-info/entry_points.txt,sha256=mn5H6jPjO-rY0W0CAZ6Z_KKWhMLvyVaSpoqk77jlTI4,145
50
+ datamint-2.1.4.dist-info/RECORD,,