dataframe-textual 1.0.0__py3-none-any.whl → 1.1.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -2,7 +2,7 @@
2
2
 
3
3
  from .data_frame_help_panel import DataFrameHelpPanel
4
4
  from .data_frame_table import DataFrameTable, History
5
- from .data_frame_viewer import DataFrameViewer, _load_dataframe
5
+ from .data_frame_viewer import DataFrameViewer
6
6
  from .table_screen import FrequencyScreen, RowDetailScreen, TableScreen
7
7
  from .yes_no_screen import (
8
8
  ConfirmScreen,
@@ -31,5 +31,4 @@ __all__ = [
31
31
  "FilterScreen",
32
32
  "FreezeScreen",
33
33
  "OpenFileScreen",
34
- "_load_dataframe",
35
34
  ]
@@ -4,6 +4,7 @@ import argparse
4
4
  import sys
5
5
  from pathlib import Path
6
6
 
7
+ from .common import load_dataframe
7
8
  from .data_frame_viewer import DataFrameViewer
8
9
 
9
10
  SUPPORTED_FORMATS = ["csv", "excel", "tsv", "parquet", "json", "ndjson"]
@@ -22,13 +23,14 @@ def main() -> None:
22
23
  SystemExit: If invalid arguments are provided or required files are missing.
23
24
  """
24
25
  parser = argparse.ArgumentParser(
26
+ prog="dv",
25
27
  description="Interactive terminal based viewer/editor for tabular data (e.g., CSV/Excel).",
26
28
  formatter_class=argparse.RawDescriptionHelpFormatter,
27
29
  epilog="Examples:\n"
28
- " dataframe-textual data.csv\n"
29
- " dataframe-textual file1.csv file2.csv file3.csv\n"
30
- " dataframe-textual data.xlsx (opens all sheets in tabs)\n"
31
- " cat data.csv | dataframe-textual --format csv\n",
30
+ " %(prog)s data.csv\n"
31
+ " %(prog)s file1.csv file2.csv file3.csv\n"
32
+ " %(prog)s data.xlsx (opens each sheet in separate tab)\n"
33
+ " cat data.csv | %(prog)s --format csv\n",
32
34
  )
33
35
  parser.add_argument("files", nargs="*", help="Files to view (or read from stdin)")
34
36
  parser.add_argument(
@@ -57,7 +59,8 @@ def main() -> None:
57
59
  parser.print_help()
58
60
  sys.exit(1)
59
61
 
60
- app = DataFrameViewer(*filenames, file_format=args.format, has_header=not args.no_header)
62
+ sources = load_dataframe(filenames, file_format=args.format, has_header=not args.no_header)
63
+ app = DataFrameViewer(*sources)
61
64
  app.run()
62
65
 
63
66
 
@@ -1,7 +1,9 @@
1
1
  """Common utilities and constants for dataframe_viewer."""
2
2
 
3
3
  import re
4
+ import sys
4
5
  from dataclasses import dataclass
6
+ from pathlib import Path
5
7
  from typing import Any
6
8
 
7
9
  import polars as pl
@@ -111,6 +113,26 @@ def DtypeConfig(dtype: pl.DataType) -> DtypeClass:
111
113
  return STYLES[pl.Unknown]
112
114
 
113
115
 
116
+ def format_float(value: float, thousand_separator: bool = False, precision: int = 2) -> str:
117
+ """Format a float value, keeping integers without decimal point.
118
+
119
+ Args:
120
+ val: The float value to format.
121
+ thousand_separator: Whether to include thousand separators. Defaults to False.
122
+
123
+ Returns:
124
+ The formatted float as a string.
125
+ """
126
+
127
+ if (val := int(value)) == value:
128
+ return f"{val:,}" if thousand_separator else str(val)
129
+ else:
130
+ if precision > 0:
131
+ return f"{value:,.{precision}f}" if thousand_separator else f"{value:.{precision}f}"
132
+ else:
133
+ return f"{value:,f}" if thousand_separator else str(value)
134
+
135
+
114
136
  def format_row(vals, dtypes, apply_justify=True, thousand_separator=False) -> list[Text]:
115
137
  """Format a single row with proper styling and justification.
116
138
 
@@ -135,8 +157,8 @@ def format_row(vals, dtypes, apply_justify=True, thousand_separator=False) -> li
135
157
  text_val = NULL_DISPLAY
136
158
  elif dc.gtype == "integer" and thousand_separator:
137
159
  text_val = f"{val:,}"
138
- elif dc.gtype == "float" and thousand_separator:
139
- text_val = f"{val:,}"
160
+ elif dc.gtype == "float":
161
+ text_val = format_float(val, thousand_separator)
140
162
  else:
141
163
  text_val = str(val)
142
164
 
@@ -318,3 +340,122 @@ def validate_expr(term: str, df: pl.DataFrame, current_col_idx: int) -> pl.Expr
318
340
  raise ValueError(f"Failed to evaluate expression `{expr_str}`: {e}") from e
319
341
  except Exception as ve:
320
342
  raise ValueError(f"Failed to validate expression `{term}`: {ve}") from ve
343
+
344
+
345
+ def load_dataframe(
346
+ filenames: list[str], file_format: str | None = None, has_header: bool = True
347
+ ) -> list[tuple[pl.LazyFrame, str, str]]:
348
+ """Load DataFrames from file specifications.
349
+
350
+ Handles loading from multiple files, single files, or stdin. For Excel files,
351
+ loads all sheets as separate entries. For other formats, loads as single file.
352
+
353
+ Args:
354
+ filenames: List of filenames to load. If single filename is "-", read from stdin.
355
+ file_format: Optional format specifier for input files (e.g., 'csv', 'excel').
356
+ has_header: Whether the input files have a header row. Defaults to True.
357
+
358
+ Returns:
359
+ List of tuples of (LazyFrame, filename, tabname) ready for display.
360
+ """
361
+ sources = []
362
+
363
+ prefix_sheet = len(filenames) > 1
364
+
365
+ for filename in filenames:
366
+ sources.extend(load_file(filename, prefix_sheet=prefix_sheet, file_format=file_format, has_header=has_header))
367
+ return sources
368
+
369
+
370
+ def load_file(
371
+ filename: str,
372
+ first_sheet: bool = False,
373
+ prefix_sheet: bool = False,
374
+ file_format: str | None = None,
375
+ has_header: bool = True,
376
+ ) -> list[tuple[pl.LazyFrame, str, str]]:
377
+ """Load a single file and return list of sources.
378
+
379
+ For Excel files, when `first_sheet` is True, returns only the first sheet. Otherwise, returns one entry per sheet.
380
+ For other files or multiple files, returns one entry per file.
381
+
382
+ Args:
383
+ filename: Path to file to load.
384
+ first_sheet: If True, only load first sheet for Excel files. Defaults to False.
385
+ prefix_sheet: If True, prefix filename to sheet name as the tab name for Excel files. Defaults to False.
386
+ file_format: Optional format specifier (i.e., 'csv', 'excel', 'tsv', 'parquet', 'json', 'ndjson') for input files.
387
+ By default, infers from file extension.
388
+ has_header: Whether the input files have a header row. Defaults to True.
389
+
390
+ Returns:
391
+ List of tuples of (LazyFrame, filename, tabname).
392
+ """
393
+ sources = []
394
+
395
+ if filename == "-":
396
+ import os
397
+ from io import StringIO
398
+
399
+ # Read from stdin into memory first (stdin is not seekable)
400
+ stdin_data = sys.stdin.read()
401
+ lf = pl.scan_csv(StringIO(stdin_data), has_header=has_header, separator="," if file_format == "csv" else "\t")
402
+
403
+ # Reopen stdin to /dev/tty for proper terminal interaction
404
+ try:
405
+ tty = open("/dev/tty")
406
+ os.dup2(tty.fileno(), sys.stdin.fileno())
407
+ except (OSError, FileNotFoundError):
408
+ pass
409
+
410
+ sources.append((lf, f"stdin.{file_format}" if file_format else "stdin", "stdin"))
411
+ return sources
412
+
413
+ filepath = Path(filename)
414
+
415
+ if file_format == "csv":
416
+ lf = pl.scan_csv(filename, has_header=has_header)
417
+ sources.append((lf, filename, filepath.stem))
418
+ elif file_format == "excel":
419
+ if first_sheet:
420
+ # Read only the first sheet for multiple files
421
+ lf = pl.read_excel(filename).lazy()
422
+ sources.append((lf, filename, filepath.stem))
423
+ else:
424
+ # For single file, expand all sheets
425
+ sheets = pl.read_excel(filename, sheet_id=0)
426
+ for sheet_name, df in sheets.items():
427
+ tabname = f"{filepath.stem}_{sheet_name}" if prefix_sheet else sheet_name
428
+ sources.append((df.lazy(), filename, tabname))
429
+ elif file_format == "tsv":
430
+ lf = pl.scan_csv(filename, has_header=has_header, separator="\t")
431
+ sources.append((lf, filename, filepath.stem))
432
+ elif file_format == "parquet":
433
+ lf = pl.scan_parquet(filename)
434
+ sources.append((lf, filename, filepath.stem))
435
+ elif file_format == "json":
436
+ df = pl.read_json(filename)
437
+ sources.append((df, filename, filepath.stem))
438
+ elif file_format == "ndjson":
439
+ lf = pl.scan_ndjson(filename)
440
+ sources.append((lf, filename, filepath.stem))
441
+ else:
442
+ ext = filepath.suffix.lower()
443
+ if ext == ".csv":
444
+ file_format = "csv"
445
+ elif ext in (".xlsx", ".xls"):
446
+ file_format = "excel"
447
+ elif ext in (".tsv", ".tab"):
448
+ file_format = "tsv"
449
+ elif ext == ".parquet":
450
+ file_format = "parquet"
451
+ elif ext == ".json":
452
+ file_format = "json"
453
+ elif ext == ".ndjson":
454
+ file_format = "ndjson"
455
+ else:
456
+ # Default to TSV
457
+ file_format = "tsv"
458
+
459
+ sources.extend(load_file(filename, first_sheet, prefix_sheet, file_format, has_header))
460
+
461
+ return sources
@@ -475,10 +475,10 @@ class DataFrameTable(DataTable):
475
475
  self.refresh_row(new_row)
476
476
  elif self.cursor_type == "row":
477
477
  self.refresh_row(old_coordinate.row)
478
- self.refresh_row(new_coordinate.row)
478
+ self._highlight_row(new_coordinate.row)
479
479
  elif self.cursor_type == "column":
480
480
  self.refresh_column(old_coordinate.column)
481
- self.refresh_column(new_coordinate.column)
481
+ self._highlight_column(new_coordinate.column)
482
482
 
483
483
  # Handle scrolling if needed
484
484
  if self._require_update_dimensions:
@@ -1,7 +1,6 @@
1
1
  """DataFrame Viewer application and utilities."""
2
2
 
3
3
  import os
4
- import sys
5
4
  from functools import partial
6
5
  from pathlib import Path
7
6
  from textwrap import dedent
@@ -13,7 +12,7 @@ from textual.theme import BUILTIN_THEMES
13
12
  from textual.widgets import TabbedContent, TabPane
14
13
  from textual.widgets.tabbed_content import ContentTab, ContentTabs
15
14
 
16
- from .common import get_next_item
15
+ from .common import get_next_item, load_file
17
16
  from .data_frame_help_panel import DataFrameHelpPanel
18
17
  from .data_frame_table import DataFrameTable
19
18
  from .yes_no_screen import OpenFileScreen, SaveFileScreen
@@ -79,21 +78,20 @@ class DataFrameViewer(App):
79
78
  }
80
79
  """
81
80
 
82
- def __init__(self, *filenames: str, file_format: str | None = None, has_header: bool = True) -> None:
81
+ def __init__(self, *sources: str) -> None:
83
82
  """Initialize the DataFrame Viewer application.
84
83
 
85
- Loads dataframes from provided filenames and prepares the tabbed interface.
84
+ Loads data from provided sources and prepares the tabbed interface.
86
85
 
87
86
  Args:
88
- *filenames: Variable number of file paths to load (CSV, Excel, Parquet, etc).
89
- file_format: Optional format specifier for input files (e.g., 'csv', 'excel').
90
- has_header: Whether the input files have a header row. Defaults to True.
87
+ sources: sources to load dataframes from, each as a tuple of
88
+ (DataFrame | LazyFrame, filename, tabname).
91
89
 
92
90
  Returns:
93
91
  None
94
92
  """
95
93
  super().__init__()
96
- self.sources = _load_dataframe(filenames, file_format, has_header=has_header)
94
+ self.sources = sources
97
95
  self.tabs: dict[TabPane, DataFrameTable] = {}
98
96
  self.help_panel = None
99
97
 
@@ -111,12 +109,18 @@ class DataFrameViewer(App):
111
109
  with self.tabbed:
112
110
  seen_names = set()
113
111
  for idx, (df, filename, tabname) in enumerate(self.sources, start=1):
112
+ tab_id = f"tab_{idx}"
113
+
114
+ if not tabname:
115
+ tabname = Path(filename).stem or tab_id
116
+
114
117
  # Ensure unique tab names
115
- if tabname in seen_names:
116
- tabname = f"{tabname}_{idx}"
118
+ counter = 1
119
+ while tabname in seen_names:
120
+ tabname = f"{tabname}_{counter}"
121
+ counter += 1
117
122
  seen_names.add(tabname)
118
123
 
119
- tab_id = f"tab_{idx}"
120
124
  try:
121
125
  table = DataFrameTable(df, filename, name=tabname, id=tab_id, zebra_stripes=True)
122
126
  tab = TabPane(tabname, table, name=tabname, id=tab_id)
@@ -300,7 +304,7 @@ class DataFrameViewer(App):
300
304
  if filename and os.path.exists(filename):
301
305
  try:
302
306
  n_tab = 0
303
- for lf, filename, tabname in _load_file(filename, prefix_sheet=True):
307
+ for lf, filename, tabname in load_file(filename, prefix_sheet=True):
304
308
  self._add_tab(lf.collect(), filename, tabname)
305
309
  n_tab += 1
306
310
  self.notify(f"Added [$accent]{n_tab}[/] tab(s) for [$success]{filename}[/]", title="Open")
@@ -368,105 +372,3 @@ class DataFrameViewer(App):
368
372
  self.notify(f"Closed tab [$success]{active_pane.name}[/]", title="Close")
369
373
  except NoMatches:
370
374
  pass
371
-
372
-
373
- def _load_dataframe(
374
- filenames: list[str], file_format: str | None = None, has_header: bool = True
375
- ) -> list[tuple[pl.LazyFrame, str, str]]:
376
- """Load DataFrames from file specifications.
377
-
378
- Handles loading from multiple files, single files, or stdin. For Excel files,
379
- loads all sheets as separate entries. For other formats, loads as single file.
380
-
381
- Args:
382
- filenames: List of filenames to load. If single filename is "-", read from stdin.
383
- file_format: Optional format specifier for input files (e.g., 'csv', 'excel').
384
- has_header: Whether the input files have a header row. Defaults to True.
385
-
386
- Returns:
387
- List of tuples of (LazyFrame, filename, tabname) ready for display.
388
- """
389
- sources = []
390
-
391
- prefix_sheet = len(filenames) > 1
392
-
393
- for filename in filenames:
394
- sources.extend(_load_file(filename, prefix_sheet=prefix_sheet, file_format=file_format, has_header=has_header))
395
- return sources
396
-
397
-
398
- def _load_file(
399
- filename: str,
400
- first_sheet: bool = False,
401
- prefix_sheet: bool = False,
402
- file_format: str | None = None,
403
- has_header: bool = True,
404
- ) -> list[tuple[pl.LazyFrame, str, str]]:
405
- """Load a single file and return list of sources.
406
-
407
- For Excel files, when `first_sheet` is True, returns only the first sheet. Otherwise, returns one entry per sheet.
408
- For other files or multiple files, returns one entry per file.
409
-
410
- Args:
411
- filename: Path to file to load.
412
- first_sheet: If True, only load first sheet for Excel files. Defaults to False.
413
- prefix_sheet: If True, prefix filename to sheet name as the tab name for Excel files. Defaults to False.
414
- file_format: Optional format specifier for input files (e.g., 'csv', 'excel', 'tsv', 'parquet', 'json', 'ndjson').
415
-
416
- Returns:
417
- List of tuples of (LazyFrame, filename, tabname).
418
- """
419
- sources = []
420
-
421
- if filename == "-":
422
- from io import StringIO
423
-
424
- # Read from stdin into memory first (stdin is not seekable)
425
- stdin_data = sys.stdin.read()
426
- lf = pl.scan_csv(StringIO(stdin_data), has_header=has_header, separator="," if file_format == "csv" else "\t")
427
-
428
- # Reopen stdin to /dev/tty for proper terminal interaction
429
- try:
430
- tty = open("/dev/tty")
431
- os.dup2(tty.fileno(), sys.stdin.fileno())
432
- except (OSError, FileNotFoundError):
433
- pass
434
-
435
- sources.append((lf, "stdin.tsv" if file_format == "tsv" else "stdin.csv", "stdin"))
436
- return sources
437
-
438
- filepath = Path(filename)
439
- ext = filepath.suffix.lower()
440
-
441
- if file_format == "csv" or ext == ".csv":
442
- lf = pl.scan_csv(filename, has_header=has_header)
443
- sources.append((lf, filename, filepath.stem))
444
- elif file_format == "excel" or ext in (".xlsx", ".xls"):
445
- if first_sheet:
446
- # Read only the first sheet for multiple files
447
- lf = pl.read_excel(filename).lazy()
448
- sources.append((lf, filename, filepath.stem))
449
- else:
450
- # For single file, expand all sheets
451
- sheets = pl.read_excel(filename, sheet_id=0)
452
- for sheet_name, df in sheets.items():
453
- tabname = f"{filepath.stem}_{sheet_name}" if prefix_sheet else sheet_name
454
- sources.append((df.lazy(), filename, tabname))
455
- elif file_format == "tsv" or ext in (".tsv", ".tab"):
456
- lf = pl.scan_csv(filename, has_header=has_header, separator="\t")
457
- sources.append((lf, filename, filepath.stem))
458
- elif file_format == "parquet" or ext == ".parquet":
459
- lf = pl.scan_parquet(filename)
460
- sources.append((lf, filename, filepath.stem))
461
- elif file_format == "json" or ext == ".json":
462
- df = pl.read_json(filename)
463
- sources.append((df, filename, filepath.stem))
464
- elif file_format == "ndjson" or ext == ".ndjson":
465
- lf = pl.scan_ndjson(filename)
466
- sources.append((lf, filename, filepath.stem))
467
- else:
468
- # Treat other formats as TSV
469
- lf = pl.scan_csv(filename, has_header=has_header, separator="\t")
470
- sources.append((lf, filename, filepath.stem))
471
-
472
- return sources
@@ -13,7 +13,7 @@ from textual.renderables.bar import Bar
13
13
  from textual.screen import ModalScreen
14
14
  from textual.widgets import DataTable
15
15
 
16
- from .common import NULL, NULL_DISPLAY, RIDX, DtypeConfig, format_row
16
+ from .common import NULL, NULL_DISPLAY, RIDX, DtypeConfig, format_float, format_row
17
17
 
18
18
 
19
19
  class TableScreen(ModalScreen):
@@ -30,7 +30,7 @@ class TableScreen(ModalScreen):
30
30
 
31
31
  TableScreen > DataTable {
32
32
  width: auto;
33
- min-width: 30;
33
+ min-width: 20;
34
34
  border: solid $primary;
35
35
  }
36
36
  """
@@ -271,10 +271,10 @@ class StatisticsScreen(TableScreen):
271
271
  value = stat_value
272
272
  if stat_value is None:
273
273
  value = NULL_DISPLAY
274
- elif dc.gtype == "int" and self.thousand_separator:
274
+ elif dc.gtype == "integer" and self.thousand_separator:
275
275
  value = f"{stat_value:,}"
276
276
  elif dc.gtype == "float":
277
- value = f"{stat_value:,.2f}" if self.thousand_separator else f"{stat_value:.2f}"
277
+ value = format_float(stat_value, self.thousand_separator)
278
278
  else:
279
279
  value = str(stat_value)
280
280
 
@@ -321,10 +321,10 @@ class StatisticsScreen(TableScreen):
321
321
  value = stat_value
322
322
  if stat_value is None:
323
323
  value = NULL_DISPLAY
324
- elif dc.gtype == "int" and self.thousand_separator:
324
+ elif dc.gtype == "integer" and self.thousand_separator:
325
325
  value = f"{stat_value:,}"
326
326
  elif dc.gtype == "float":
327
- value = f"{stat_value:,.2f}" if self.thousand_separator else f"{stat_value:.2f}"
327
+ value = format_float(stat_value, self.thousand_separator)
328
328
  else:
329
329
  value = str(stat_value)
330
330
 
@@ -413,10 +413,10 @@ class FrequencyScreen(TableScreen):
413
413
 
414
414
  if column is None:
415
415
  value = NULL_DISPLAY
416
- elif dc.gtype == "int" and self.thousand_separator:
416
+ elif dc.gtype == "integer" and self.thousand_separator:
417
417
  value = f"{column:,}"
418
418
  elif dc.gtype == "float":
419
- value = f"{column:,.2f}" if self.thousand_separator else f"{column:.3f}"
419
+ value = format_float(column, self.thousand_separator)
420
420
  else:
421
421
  value = str(column)
422
422
 
@@ -1,7 +1,7 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dataframe-textual
3
- Version: 1.0.0
4
- Summary: Interactive CSV/Excel viewer for the terminal (Textual TUI)
3
+ Version: 1.1.4
4
+ Summary: Interactive terminal viewer/editor for tabular data
5
5
  Project-URL: Homepage, https://github.com/need47/dataframe-textual
6
6
  Project-URL: Repository, https://github.com/need47/dataframe-textual.git
7
7
  Project-URL: Documentation, https://github.com/need47/dataframe-textual#readme
@@ -9,7 +9,7 @@ Project-URL: Bug Tracker, https://github.com/need47/dataframe-textual/issues
9
9
  Author-email: Tiejun Cheng <need47@gmail.com>
10
10
  License: MIT
11
11
  License-File: LICENSE
12
- Keywords: csv,data-analysis,excel,interactive,polars,terminal,textual,tui,viewer
12
+ Keywords: csv,data-analysis,editor,excel,interactive,polars,terminal,textual,tui,viewer
13
13
  Classifier: Development Status :: 3 - Alpha
14
14
  Classifier: Environment :: Console
15
15
  Classifier: Intended Audience :: Developers
@@ -29,7 +29,7 @@ Classifier: Topic :: Utilities
29
29
  Classifier: Typing :: Typed
30
30
  Requires-Python: >=3.11
31
31
  Requires-Dist: polars>=1.34.0
32
- Requires-Dist: textual>=1.0.0
32
+ Requires-Dist: textual>=6.5.0
33
33
  Provides-Extra: dev
34
34
  Requires-Dist: textual-dev>=1.8.0; extra == 'dev'
35
35
  Provides-Extra: excel
@@ -77,9 +77,11 @@ pip install dataframe-textual
77
77
  pip install dataframe-textual[excel]
78
78
  ```
79
79
 
80
+ This installs an executable `dv`.
81
+
80
82
  Then run:
81
83
  ```bash
82
- dataframe-textual <csv_file>
84
+ dv <csv_file>
83
85
  ```
84
86
 
85
87
  ### Using [uv](https://docs.astral.sh/uv/)
@@ -90,9 +92,10 @@ uvx https://github.com/need47/dataframe-textual.git <csvfile>
90
92
 
91
93
  # Clone or download the project
92
94
  cd dataframe-textual
95
+ uv sync --extra excel # with Excel support
93
96
 
94
97
  # Run directly with uv
95
- uv run main.py <csv_file>
98
+ uv run dv <csv_file>
96
99
  ```
97
100
 
98
101
  ### Development installation
@@ -115,7 +118,7 @@ pip install -e ".[excel,dev]"
115
118
 
116
119
  ```bash
117
120
  # After pip install dataframe-textual
118
- dataframe-textual pokemon.csv
121
+ dv pokemon.csv
119
122
 
120
123
  # Or if running from source
121
124
  python main.py pokemon.csv
@@ -124,21 +127,21 @@ python main.py pokemon.csv
124
127
  uv run python main.py pokemon.csv
125
128
 
126
129
  # Read from stdin (auto-detects format; defaults to TSV if not recognized)
127
- cat data.tsv | dataframe-textual
128
- dataframe-textual < data.tsv
130
+ cat data.tsv | dv
131
+ dv < data.tsv
129
132
  ```
130
133
 
131
134
  ### Multi-File Usage - Multiple Tabs
132
135
 
133
136
  ```bash
134
137
  # Open multiple files in tabs
135
- dataframe-textual file1.csv file2.csv file3.csv
138
+ dv file1.csv file2.csv file3.csv
136
139
 
137
140
  # Open multiple sheets in tabs in an Excel file
138
- dataframe-textual file.xlsx
141
+ dv file.xlsx
139
142
 
140
143
  # Mix files and stdin (read from stdin, then open file)
141
- dataframe-textual data1.tsv < data2.tsv
144
+ dv data1.tsv < data2.tsv
142
145
  ```
143
146
 
144
147
  When multiple files are opened:
@@ -686,32 +689,23 @@ Press `Ctrl+C` to copy:
686
689
 
687
690
  ```bash
688
691
  # View Pokemon dataset
689
- dataframe-textual pokemon.csv
690
-
691
- # View Titanic dataset with analysis
692
- dataframe-textual titanic.csv
693
-
694
- # Filter and view specific columns
695
- cut -d',' -f1,2,3 pokemon.csv | dataframe-textual -f csv
696
-
697
- # View with grep filter (then use | search in viewer)
698
- grep "Fire" pokemon.tsv | dataframe-textual
692
+ dv pokemon.csv
699
693
 
700
- # Chain with other commands
701
- cat data.tsv | sort -t',' -k2 | dataframe-textual
694
+ # Chain with other command and specify input file format
695
+ cut -d',' -f1,2,3 pokemon.csv | dv -f csv
702
696
  ```
703
697
 
704
698
  ### Multi-File/Tab Examples
705
699
 
706
700
  ```bash
707
701
  # Open multiple sheets as tabs in a single Excel
708
- dataframe-textual sales.xlsx
702
+ dv sales.xlsx
709
703
 
710
704
  # Open multiple files as tabs
711
- dataframe-textual pokemon.csv titanic.csv
705
+ dv pokemon.csv titanic.csv
712
706
 
713
707
  # Start with one file, then open others using Ctrl+O
714
- dataframe-textual initial_data.csv
708
+ dv initial_data.csv
715
709
  ```
716
710
 
717
711
  ## Dependencies
@@ -0,0 +1,13 @@
1
+ dataframe_textual/__init__.py,sha256=IFPb8RMUgghw0eRomehkkC684Iny_gs1VkiZMQ5ZpFk,813
2
+ dataframe_textual/__main__.py,sha256=hgjKLT3ggGxVVeRBunkArTy7PTqOHVJUf3fsH4P5dfU,2146
3
+ dataframe_textual/common.py,sha256=q4bXS7oiJAsdcMEfHkPm5-e8SlfcwCBNhFN9TinQqV0,16171
4
+ dataframe_textual/data_frame_help_panel.py,sha256=XgKGEPJr2hnDWpZ5mavLRcBSPa9cvrXdzVUGFQavXm4,3353
5
+ dataframe_textual/data_frame_table.py,sha256=mOm0pzuN61N01KXi_II6Ld4-NqVYYdiKfzukDMlJpxw,102644
6
+ dataframe_textual/data_frame_viewer.py,sha256=4mV3k7MNTf9TKBmGJ8fDx7itA1vo4qSmaWpvZozwfjs,12987
7
+ dataframe_textual/table_screen.py,sha256=vSevLh944xBTIYVcokABCfSUi84s9gclizx6eDmxyFY,17585
8
+ dataframe_textual/yes_no_screen.py,sha256=vyUKMBbbwgt5At1U430eLg3WbJvqUNoz2GpvdnMd7q0,22921
9
+ dataframe_textual-1.1.4.dist-info/METADATA,sha256=GKyTQtMDbIdgJD6zv9WIex6Oq4SvmYfNH3xDw4mZwb4,25422
10
+ dataframe_textual-1.1.4.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
11
+ dataframe_textual-1.1.4.dist-info/entry_points.txt,sha256=Z0XKp1ACvmbJymekkxt-C81I0OoInksr5Ib0w2OT_a4,55
12
+ dataframe_textual-1.1.4.dist-info/licenses/LICENSE,sha256=AVTg0gk1X-LHI-nnHlAMDQetrwuDZK4eypgSMDO46Yc,1069
13
+ dataframe_textual-1.1.4.dist-info/RECORD,,
@@ -0,0 +1,2 @@
1
+ [console_scripts]
2
+ dv = dataframe_textual.__main__:main
@@ -1,13 +0,0 @@
1
- dataframe_textual/__init__.py,sha256=uzB3bjlbm8JbsjxEgwqvPcYERktm3F9d9Op_6cWJ1sk,853
2
- dataframe_textual/__main__.py,sha256=ANe7s2SKO53ksFg-0VrCT2GRCG48wDSAZsLrWvoQwmQ,2082
3
- dataframe_textual/common.py,sha256=XVTzv565MnxD8B7tXKJSprhV5oOwvW_rv0RzMA9icmk,10896
4
- dataframe_textual/data_frame_help_panel.py,sha256=XgKGEPJr2hnDWpZ5mavLRcBSPa9cvrXdzVUGFQavXm4,3353
5
- dataframe_textual/data_frame_table.py,sha256=NzxtsOpSj6s-ToP5PBKlCHcSK3Fj5Q1eucUnQfTWLzQ,102638
6
- dataframe_textual/data_frame_viewer.py,sha256=9vUBdIgSoOf4fdDtI4sAPY6cF1tFdsXwpWatyDsuXh0,17196
7
- dataframe_textual/table_screen.py,sha256=qcfaSaDlM9Jb6793boyXt8HbHqM21-6O6eWwYn9z9l4,17624
8
- dataframe_textual/yes_no_screen.py,sha256=vyUKMBbbwgt5At1U430eLg3WbJvqUNoz2GpvdnMd7q0,22921
9
- dataframe_textual-1.0.0.dist-info/METADATA,sha256=SoeKzKEYNlKM2eKh_xzzlMegW83SDqkrXv_UouPQDsI,25753
10
- dataframe_textual-1.0.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
11
- dataframe_textual-1.0.0.dist-info/entry_points.txt,sha256=FkXDHVYYtGud6F2Jm2X9OMFAuFrSflNfgcNP5c2469M,70
12
- dataframe_textual-1.0.0.dist-info/licenses/LICENSE,sha256=AVTg0gk1X-LHI-nnHlAMDQetrwuDZK4eypgSMDO46Yc,1069
13
- dataframe_textual-1.0.0.dist-info/RECORD,,
@@ -1,2 +0,0 @@
1
- [console_scripts]
2
- dataframe-textual = dataframe_textual.__main__:main