dataeval 0.86.9__py3-none-any.whl → 0.88.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (78) hide show
  1. dataeval/__init__.py +1 -1
  2. dataeval/_log.py +1 -1
  3. dataeval/_version.py +2 -2
  4. dataeval/config.py +4 -19
  5. dataeval/data/_embeddings.py +78 -35
  6. dataeval/data/_images.py +41 -8
  7. dataeval/data/_metadata.py +348 -66
  8. dataeval/data/_selection.py +22 -7
  9. dataeval/data/_split.py +3 -2
  10. dataeval/data/selections/_classbalance.py +4 -3
  11. dataeval/data/selections/_classfilter.py +9 -8
  12. dataeval/data/selections/_indices.py +4 -3
  13. dataeval/data/selections/_prioritize.py +249 -29
  14. dataeval/data/selections/_reverse.py +1 -1
  15. dataeval/data/selections/_shuffle.py +5 -4
  16. dataeval/detectors/drift/_base.py +2 -1
  17. dataeval/detectors/drift/_mmd.py +2 -1
  18. dataeval/detectors/drift/_nml/_base.py +1 -1
  19. dataeval/detectors/drift/_nml/_chunk.py +2 -1
  20. dataeval/detectors/drift/_nml/_result.py +3 -2
  21. dataeval/detectors/drift/_nml/_thresholds.py +6 -5
  22. dataeval/detectors/drift/_uncertainty.py +2 -1
  23. dataeval/detectors/linters/duplicates.py +2 -1
  24. dataeval/detectors/linters/outliers.py +4 -3
  25. dataeval/detectors/ood/__init__.py +2 -1
  26. dataeval/detectors/ood/ae.py +1 -1
  27. dataeval/detectors/ood/base.py +39 -1
  28. dataeval/detectors/ood/knn.py +95 -0
  29. dataeval/detectors/ood/mixin.py +2 -1
  30. dataeval/metadata/_utils.py +1 -1
  31. dataeval/metrics/bias/_balance.py +29 -22
  32. dataeval/metrics/bias/_diversity.py +4 -4
  33. dataeval/metrics/bias/_parity.py +2 -2
  34. dataeval/metrics/stats/_base.py +3 -29
  35. dataeval/metrics/stats/_boxratiostats.py +2 -1
  36. dataeval/metrics/stats/_dimensionstats.py +2 -1
  37. dataeval/metrics/stats/_hashstats.py +21 -3
  38. dataeval/metrics/stats/_pixelstats.py +2 -1
  39. dataeval/metrics/stats/_visualstats.py +2 -1
  40. dataeval/outputs/_base.py +2 -3
  41. dataeval/outputs/_bias.py +2 -1
  42. dataeval/outputs/_estimators.py +1 -1
  43. dataeval/outputs/_linters.py +3 -3
  44. dataeval/outputs/_stats.py +3 -3
  45. dataeval/outputs/_utils.py +1 -1
  46. dataeval/outputs/_workflows.py +49 -31
  47. dataeval/typing.py +23 -9
  48. dataeval/utils/__init__.py +2 -2
  49. dataeval/utils/_array.py +3 -2
  50. dataeval/utils/_bin.py +9 -7
  51. dataeval/utils/_method.py +2 -3
  52. dataeval/utils/_multiprocessing.py +34 -0
  53. dataeval/utils/_plot.py +2 -1
  54. dataeval/utils/data/__init__.py +6 -5
  55. dataeval/utils/data/{metadata.py → _merge.py} +3 -2
  56. dataeval/utils/data/_validate.py +170 -0
  57. dataeval/utils/data/collate.py +2 -1
  58. dataeval/utils/torch/_internal.py +2 -1
  59. dataeval/utils/torch/trainer.py +1 -1
  60. dataeval/workflows/sufficiency.py +13 -9
  61. {dataeval-0.86.9.dist-info → dataeval-0.88.0.dist-info}/METADATA +8 -21
  62. dataeval-0.88.0.dist-info/RECORD +105 -0
  63. dataeval/utils/data/_dataset.py +0 -246
  64. dataeval/utils/datasets/__init__.py +0 -21
  65. dataeval/utils/datasets/_antiuav.py +0 -189
  66. dataeval/utils/datasets/_base.py +0 -266
  67. dataeval/utils/datasets/_cifar10.py +0 -201
  68. dataeval/utils/datasets/_fileio.py +0 -142
  69. dataeval/utils/datasets/_milco.py +0 -197
  70. dataeval/utils/datasets/_mixin.py +0 -54
  71. dataeval/utils/datasets/_mnist.py +0 -202
  72. dataeval/utils/datasets/_seadrone.py +0 -512
  73. dataeval/utils/datasets/_ships.py +0 -144
  74. dataeval/utils/datasets/_types.py +0 -48
  75. dataeval/utils/datasets/_voc.py +0 -583
  76. dataeval-0.86.9.dist-info/RECORD +0 -115
  77. {dataeval-0.86.9.dist-info → dataeval-0.88.0.dist-info}/WHEEL +0 -0
  78. /dataeval-0.86.9.dist-info/licenses/LICENSE.txt → /dataeval-0.88.0.dist-info/licenses/LICENSE +0 -0
@@ -1,144 +0,0 @@
1
- from __future__ import annotations
2
-
3
- __all__ = []
4
-
5
- from pathlib import Path
6
- from typing import TYPE_CHECKING, Any, Sequence
7
-
8
- import numpy as np
9
- from numpy.typing import NDArray
10
-
11
- from dataeval.utils.datasets._base import BaseICDataset, DataLocation
12
- from dataeval.utils.datasets._mixin import BaseDatasetNumpyMixin
13
-
14
- if TYPE_CHECKING:
15
- from dataeval.typing import Transform
16
-
17
-
18
- class Ships(BaseICDataset[NDArray[Any]], BaseDatasetNumpyMixin):
19
- """
20
- A dataset that focuses on identifying ships from satellite images.
21
-
22
- The dataset comes from kaggle,
23
- `Ships in Satellite Imagery <https://www.kaggle.com/datasets/rhammell/ships-in-satellite-imagery>`_.
24
- The images come from Planet satellite imagery when they gave
25
- `open-access to a portion of their data <https://www.planet.com/pulse/open-california-rapideye-data/>`_.
26
-
27
- There are 4000 80x80x3 (HWC) images of ships, sea, and land.
28
- There are also 8 larger scene images similar to what would be operationally provided.
29
-
30
- Parameters
31
- ----------
32
- root : str or pathlib.Path
33
- Root directory where the data should be downloaded to or the ``ships`` folder of the already downloaded data.
34
- transforms : Transform, Sequence[Transform] or None, default None
35
- Transform(s) to apply to the data.
36
- download : bool, default False
37
- If True, downloads the dataset from the internet and puts it in root directory.
38
- Class checks to see if data is already downloaded to ensure it does not create a duplicate download.
39
- verbose : bool, default False
40
- If True, outputs print statements.
41
-
42
- Attributes
43
- ----------
44
- path : pathlib.Path
45
- Location of the folder containing the data.
46
- image_set : "base"
47
- The base image set is the only available image set for the Ships dataset.
48
- index2label : dict[int, str]
49
- Dictionary which translates from class integers to the associated class strings.
50
- label2index : dict[str, int]
51
- Dictionary which translates from class strings to the associated class integers.
52
- metadata : DatasetMetadata
53
- Typed dictionary containing dataset metadata, such as `id` which returns the dataset class name.
54
- transforms : Sequence[Transform]
55
- The transforms to be applied to the data.
56
- size : int
57
- The size of the dataset.
58
-
59
- Note
60
- ----
61
- Data License: `CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>`_
62
- """
63
-
64
- _resources = [
65
- DataLocation(
66
- url="https://zenodo.org/record/3611230/files/ships-in-satellite-imagery.zip",
67
- filename="ships-in-satellite-imagery.zip",
68
- md5=True,
69
- checksum="b2e8a41ed029592b373bd72ee4b89f32",
70
- ),
71
- ]
72
-
73
- index2label: dict[int, str] = {
74
- 0: "no ship",
75
- 1: "ship",
76
- }
77
-
78
- def __init__(
79
- self,
80
- root: str | Path,
81
- transforms: Transform[NDArray[Any]] | Sequence[Transform[NDArray[Any]]] | None = None,
82
- download: bool = False,
83
- verbose: bool = False,
84
- ) -> None:
85
- super().__init__(
86
- root,
87
- "base",
88
- transforms,
89
- download,
90
- verbose,
91
- )
92
- self._scenes: list[str] = self._load_scenes()
93
- self._remove_extraneous_json_file()
94
-
95
- def _remove_extraneous_json_file(self) -> None:
96
- json_path = self.path / "shipsnet.json"
97
- if json_path.exists():
98
- json_path.unlink()
99
-
100
- def _load_data_inner(self) -> tuple[list[str], list[int], dict[str, Any]]:
101
- """Function to load in the file paths for the data and labels"""
102
- file_data = {"label": [], "scene_id": [], "longitude": [], "latitude": [], "path": []}
103
- data_folder = sorted((self.path / "shipsnet").glob("*.png"))
104
- if not data_folder:
105
- raise FileNotFoundError
106
-
107
- for entry in data_folder:
108
- # Remove file extension and split by "_"
109
- parts = entry.stem.split("__")
110
- file_data["label"].append(int(parts[0]))
111
- file_data["scene_id"].append(parts[1])
112
- lat_lon = parts[2].split("_")
113
- file_data["longitude"].append(float(lat_lon[0]))
114
- file_data["latitude"].append(float(lat_lon[1]))
115
- file_data["path"].append(entry)
116
- data = file_data.pop("path")
117
- labels = file_data.pop("label")
118
- return data, labels, file_data
119
-
120
- def _load_scenes(self) -> list[str]:
121
- """Function to load in the file paths for the scene images"""
122
- return sorted(str(entry) for entry in (self.path / "scenes").glob("*.png"))
123
-
124
- def get_scene(self, index: int) -> NDArray[np.uintp]:
125
- """
126
- Get the desired satellite image (scene) by passing in the index of the desired file.
127
-
128
- Args
129
- ----
130
- index : int
131
- Value of the desired data point
132
-
133
- Returns
134
- -------
135
- NDArray[np.uintp]
136
- Scene image
137
-
138
- Note
139
- ----
140
- The scene will be returned with the channel axis first.
141
- """
142
- scene = self._read_file(self._scenes[index])
143
- np.moveaxis(scene, -1, 0)
144
- return scene
@@ -1,48 +0,0 @@
1
- from __future__ import annotations
2
-
3
- __all__ = []
4
-
5
- from dataclasses import dataclass
6
- from typing import Any, Generic, TypedDict, TypeVar
7
-
8
- from torch.utils.data import Dataset
9
- from typing_extensions import NotRequired, Required
10
-
11
-
12
- class DatasetMetadata(TypedDict):
13
- id: Required[str]
14
- index2label: NotRequired[dict[int, str]]
15
- split: NotRequired[str]
16
-
17
-
18
- _TDatum = TypeVar("_TDatum")
19
- _TArray = TypeVar("_TArray")
20
-
21
-
22
- class AnnotatedDataset(Dataset[_TDatum]):
23
- metadata: DatasetMetadata
24
-
25
- def __len__(self) -> int: ...
26
-
27
-
28
- class ImageClassificationDataset(AnnotatedDataset[tuple[_TArray, _TArray, dict[str, Any]]]): ...
29
-
30
-
31
- @dataclass
32
- class ObjectDetectionTarget(Generic[_TArray]):
33
- boxes: _TArray
34
- labels: _TArray
35
- scores: _TArray
36
-
37
-
38
- class ObjectDetectionDataset(AnnotatedDataset[tuple[_TArray, ObjectDetectionTarget[_TArray], dict[str, Any]]]): ...
39
-
40
-
41
- @dataclass
42
- class SegmentationTarget(Generic[_TArray]):
43
- mask: _TArray
44
- labels: _TArray
45
- scores: _TArray
46
-
47
-
48
- class SegmentationDataset(AnnotatedDataset[tuple[_TArray, SegmentationTarget[_TArray], dict[str, Any]]]): ...