dataeval 0.86.0__py3-none-any.whl → 0.86.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (62) hide show
  1. dataeval/__init__.py +1 -1
  2. dataeval/_log.py +1 -1
  3. dataeval/config.py +21 -4
  4. dataeval/data/_embeddings.py +2 -2
  5. dataeval/data/_images.py +2 -3
  6. dataeval/data/_metadata.py +48 -37
  7. dataeval/data/_selection.py +1 -2
  8. dataeval/data/_split.py +2 -3
  9. dataeval/data/_targets.py +17 -13
  10. dataeval/data/selections/_classfilter.py +2 -5
  11. dataeval/data/selections/_prioritize.py +6 -9
  12. dataeval/data/selections/_shuffle.py +3 -1
  13. dataeval/detectors/drift/_base.py +4 -5
  14. dataeval/detectors/drift/_mmd.py +3 -6
  15. dataeval/detectors/drift/_nml/_base.py +4 -2
  16. dataeval/detectors/drift/_nml/_chunk.py +11 -19
  17. dataeval/detectors/drift/_nml/_domainclassifier.py +8 -19
  18. dataeval/detectors/drift/_nml/_result.py +8 -9
  19. dataeval/detectors/drift/_nml/_thresholds.py +66 -77
  20. dataeval/detectors/linters/outliers.py +7 -7
  21. dataeval/metrics/bias/_parity.py +10 -13
  22. dataeval/metrics/estimators/_divergence.py +2 -4
  23. dataeval/metrics/stats/_base.py +103 -42
  24. dataeval/metrics/stats/_boxratiostats.py +21 -19
  25. dataeval/metrics/stats/_dimensionstats.py +14 -10
  26. dataeval/metrics/stats/_hashstats.py +1 -1
  27. dataeval/metrics/stats/_pixelstats.py +6 -6
  28. dataeval/metrics/stats/_visualstats.py +3 -3
  29. dataeval/outputs/_base.py +22 -7
  30. dataeval/outputs/_bias.py +26 -28
  31. dataeval/outputs/_drift.py +1 -9
  32. dataeval/outputs/_linters.py +11 -11
  33. dataeval/outputs/_stats.py +82 -23
  34. dataeval/outputs/_workflows.py +2 -2
  35. dataeval/utils/_array.py +6 -9
  36. dataeval/utils/_bin.py +1 -2
  37. dataeval/utils/_clusterer.py +7 -4
  38. dataeval/utils/_fast_mst.py +27 -13
  39. dataeval/utils/_image.py +65 -11
  40. dataeval/utils/_mst.py +1 -3
  41. dataeval/utils/_plot.py +15 -10
  42. dataeval/utils/data/_dataset.py +32 -20
  43. dataeval/utils/data/metadata.py +104 -82
  44. dataeval/utils/datasets/__init__.py +2 -0
  45. dataeval/utils/datasets/_antiuav.py +189 -0
  46. dataeval/utils/datasets/_base.py +11 -8
  47. dataeval/utils/datasets/_cifar10.py +104 -45
  48. dataeval/utils/datasets/_fileio.py +21 -47
  49. dataeval/utils/datasets/_milco.py +19 -11
  50. dataeval/utils/datasets/_mixin.py +2 -4
  51. dataeval/utils/datasets/_mnist.py +3 -4
  52. dataeval/utils/datasets/_ships.py +14 -7
  53. dataeval/utils/datasets/_voc.py +229 -42
  54. dataeval/utils/torch/models.py +5 -10
  55. dataeval/utils/torch/trainer.py +3 -3
  56. dataeval/workflows/sufficiency.py +2 -2
  57. {dataeval-0.86.0.dist-info → dataeval-0.86.1.dist-info}/METADATA +1 -1
  58. dataeval-0.86.1.dist-info/RECORD +114 -0
  59. dataeval/detectors/ood/vae.py +0 -74
  60. dataeval-0.86.0.dist-info/RECORD +0 -114
  61. {dataeval-0.86.0.dist-info → dataeval-0.86.1.dist-info}/LICENSE.txt +0 -0
  62. {dataeval-0.86.0.dist-info → dataeval-0.86.1.dist-info}/WHEEL +0 -0
@@ -1,74 +0,0 @@
1
- """
2
- Adapted for Pytorch from
3
-
4
- Source code derived from Alibi-Detect 0.11.4
5
- https://github.com/SeldonIO/alibi-detect/tree/v0.11.4
6
-
7
- Original code Copyright (c) 2023 Seldon Technologies Ltd
8
- Licensed under Apache Software License (Apache 2.0)
9
- """
10
-
11
- from __future__ import annotations
12
-
13
- __all__ = []
14
-
15
- from typing import Callable
16
-
17
- import numpy as np
18
- import torch
19
-
20
- from dataeval.config import DeviceLike
21
- from dataeval.detectors.ood.base import OODBase
22
- from dataeval.outputs import OODScoreOutput
23
- from dataeval.typing import ArrayLike
24
- from dataeval.utils._array import as_numpy
25
- from dataeval.utils.torch._internal import predict_batch
26
-
27
-
28
- class OOD_VAE(OODBase):
29
- """
30
- Autoencoder based out-of-distribution detector.
31
-
32
- Parameters
33
- ----------
34
- model : Autoencoder
35
- An Autoencoder model.
36
- """
37
-
38
- def __init__(self, model: torch.nn.Module, device: DeviceLike | None = None) -> None:
39
- super().__init__(model, device)
40
-
41
- def fit(
42
- self,
43
- x_ref: ArrayLike,
44
- threshold_perc: float,
45
- loss_fn: Callable[..., torch.nn.Module] | None = None,
46
- optimizer: torch.optim.Optimizer | None = None,
47
- epochs: int = 20,
48
- batch_size: int = 64,
49
- verbose: bool = False,
50
- ) -> None:
51
- if loss_fn is None:
52
- loss_fn = torch.nn.MSELoss()
53
-
54
- if optimizer is None:
55
- optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
56
-
57
- super().fit(x_ref, threshold_perc, loss_fn, optimizer, epochs, batch_size, verbose)
58
-
59
- def _score(self, X: ArrayLike, batch_size: int = int(1e10)) -> OODScoreOutput:
60
- self._validate(X := as_numpy(X))
61
-
62
- # reconstruct instances
63
- X_recon = predict_batch(X, self.model, batch_size=batch_size)[0] # don't need mu or logvar from model
64
-
65
- # compute feature and instance level scores
66
- fscore = np.power(X.reshape((len(X), -1)) - X_recon, 2)
67
- # fscore_flat = fscore.reshape(fscore.shape[0], -1).copy()
68
- # n_score_features = int(np.ceil(fscore_flat.shape[1]))
69
- # sorted_fscore = np.sort(fscore_flat, axis=1)
70
- # sorted_fscore_perc = sorted_fscore[:, -n_score_features:]
71
- # iscore = np.mean(sorted_fscore_perc, axis=1)
72
- iscore = np.sum(fscore, axis=1)
73
-
74
- return OODScoreOutput(iscore, fscore)
@@ -1,114 +0,0 @@
1
- dataeval/__init__.py,sha256=GdieNQ3woQUTyIFklJx7AgEeiBCz9gXzo-UVt6YFHPo,1636
2
- dataeval/_log.py,sha256=Mn5bRWO0cgtAYd5VGYSFiPgu57ta3zoktrtHAZ1m3dU,357
3
- dataeval/config.py,sha256=lD1YDH8HosFeRU5rQEYRBcmXMZy-csWaMlJTRZGd9iU,3582
4
- dataeval/data/__init__.py,sha256=qNnRRiVP_sLthkkHpUrMgI_r8dQK-cC-xoGrrjQeRKc,544
5
- dataeval/data/_embeddings.py,sha256=6Medqj_JCQt1iwZwWGSs1OeX-bHB8bg5BJqADY1N2s8,12883
6
- dataeval/data/_images.py,sha256=WF9XJRka8ohUdyI2IKBMAy3JoJhOm1iC-8tbYl8woRM,2642
7
- dataeval/data/_metadata.py,sha256=mK-WbrFkMo3v8f66uHT4B6-Fsc1odh0CcMTuz2aXSZc,14968
8
- dataeval/data/_selection.py,sha256=rYCM4KTqLSOYOzyjKCQKH2KQgJhxNnB2g3pY4JbOEYc,4503
9
- dataeval/data/_split.py,sha256=6Jtm_i__CcPtNE3eSeBdPxc7gn7Cp-GM7g9wJWFlVus,16761
10
- dataeval/data/_targets.py,sha256=ws5d9wRiDkIuOV7GSAKNxzgSm6AWTgb0BFroQK5nAmM,3057
11
- dataeval/data/selections/__init__.py,sha256=2m8ZB53wXzqLcqmc6p5atO6graB6ZyiRSNJFxf11X_g,613
12
- dataeval/data/selections/_classbalance.py,sha256=7v8ApoL3X8eCZ6fGDNTehE_bZ1loaP3TlhsJLaICVWg,1458
13
- dataeval/data/selections/_classfilter.py,sha256=VSNl_BSPRHQOBU6GYQwPZhl7j2jYESVJSSdyqWiG_vA,4394
14
- dataeval/data/selections/_indices.py,sha256=RFsR9z10aM3N0gJSfKrukFpi-LkiQGXoOwXhmOQ5cpg,630
15
- dataeval/data/selections/_limit.py,sha256=JG4GmEiNKt3sk4PbOUbBnGGzNlyz72H-kQrt8COMm4Y,512
16
- dataeval/data/selections/_prioritize.py,sha256=yw51ZQk6FPvyC38M4_pS_Se2Dq0LDFcdDhfbsELzTZc,11306
17
- dataeval/data/selections/_reverse.py,sha256=b67kNC43A5KpQOic5gifjo9HpJ7FMh4LFCrfovPiJ-M,368
18
- dataeval/data/selections/_shuffle.py,sha256=gVz_2T4rlucq8Ytqz5jvmmZdTrZDaIv43jJbq97tLjQ,1173
19
- dataeval/detectors/__init__.py,sha256=3Sg-XWlwr75zEEH3hZKA4nWMtGvaRlnfzTWvZG_Ak6U,189
20
- dataeval/detectors/drift/__init__.py,sha256=Jqv98oOVeC2tvHlNGxQ8RJ6De2q4SyS5lTpaYlb4ocM,756
21
- dataeval/detectors/drift/_base.py,sha256=amGqzUAe8fU5qwM5lq1p8PCuhjGh9MHkdW1zeBF1LEE,7574
22
- dataeval/detectors/drift/_cvm.py,sha256=cS33zWJmFY1fft1XcANcP2jSD5ou7TxvIU2AldhTynM,3004
23
- dataeval/detectors/drift/_ks.py,sha256=uMc5-NA-lSV1IODrY8uJe87ll3uRJT_oXLJFXy95M1w,3186
24
- dataeval/detectors/drift/_mmd.py,sha256=wHUy_vUafCikrZ_WX8qQXpxFwzw07-5zVutloR6hl1k,11589
25
- dataeval/detectors/drift/_mvdc.py,sha256=ABxGut6KzxF_oM-Hs87WARCR0692dhPVdZNoGGwJaa4,3058
26
- dataeval/detectors/drift/_nml/__init__.py,sha256=MNyKyZlfTjr5uQql2uBBfRkUdsuduie_WJdn09GYmqg,137
27
- dataeval/detectors/drift/_nml/_base.py,sha256=g8RmOnsBVN8vV1S9B9JaQQLudcbyKERwy4OuDjGIxb8,2632
28
- dataeval/detectors/drift/_nml/_chunk.py,sha256=QxohvSycm_cjldmK-ll-APfIsopPgeATHV-9aejyIKE,13826
29
- dataeval/detectors/drift/_nml/_domainclassifier.py,sha256=ccb1tgJ_K7gMYtg1Wdy2gPIpYIhconHQVu3xW5v0hjs,7743
30
- dataeval/detectors/drift/_nml/_result.py,sha256=mnWnP1CwzrDChJygcsuFhkKR5g3yAQS520oo-l9PcZU,3273
31
- dataeval/detectors/drift/_nml/_thresholds.py,sha256=jnhfd0qR99TKF0PyUVcbtE7cj9lic0QxwrWq_fwoAHM,12687
32
- dataeval/detectors/drift/_uncertainty.py,sha256=BHlykJ-r7TGLJxdPfoazXnoAJ1qVDzbk5HjAMdsnHz8,5847
33
- dataeval/detectors/drift/updates.py,sha256=L1PnrPlIE1x6ujCc5mCwjcAZwadVTn-Zjb6MnTDvzJQ,2251
34
- dataeval/detectors/linters/__init__.py,sha256=xn2zPwUcmsuf-Jd9uw6AVI11C9z1b1Y9fYtuFnXenZ0,404
35
- dataeval/detectors/linters/duplicates.py,sha256=X5WSEvI_BHkLoXjkaHK6wTnSkx4IjpO_exMRjSlhc70,4963
36
- dataeval/detectors/linters/outliers.py,sha256=D8A-Fov5iUrlU9xMX5Ht33FqUY8Lk5ulC6BlHbUoLwU,9048
37
- dataeval/detectors/ood/__init__.py,sha256=juCYBDs7CQEAtMhnEpPqF6uTrOIH9kTBSuQ_GRw6a8o,283
38
- dataeval/detectors/ood/ae.py,sha256=fTrUfFxv6xUqzKpwMC8rW3JrizA16M_bgzqLuBKMrS0,2944
39
- dataeval/detectors/ood/base.py,sha256=9b-Ljznf0lB1SXF4F_Aj3eJ4Y3ijGEDPMjucUsWOGJM,3051
40
- dataeval/detectors/ood/mixin.py,sha256=0_o-1HPvgf3-Lf1MSOIfjj5UB8LTLEBGYtJJfyCCzwc,5431
41
- dataeval/detectors/ood/vae.py,sha256=Fcq0-WbLhzYCgYOAJPBklHm7yuXmFJuEpBkhgwM5kiA,2291
42
- dataeval/metadata/__init__.py,sha256=XDDmJbOZBNM6pL0r6Nbu6oMRoyAh22IDkPYGndNlkZU,316
43
- dataeval/metadata/_distance.py,sha256=T1Umju_QwBiLmn1iUbxZagzBS2VnHaDIdp6j-NpaZuk,4076
44
- dataeval/metadata/_ood.py,sha256=lnKtKModArnUrAhH_XswEtUAhUkh1U_oNsLt1UmNP44,12748
45
- dataeval/metadata/_utils.py,sha256=r8qBJT83RblobD5W5zyTVi6vYi51Dwkqswizdbzss-M,1169
46
- dataeval/metrics/__init__.py,sha256=8VC8q3HuJN3o_WN51Ae2_wXznl3RMXIvA5GYVcy7vr8,225
47
- dataeval/metrics/bias/__init__.py,sha256=329S1_3WnWqeU4-qVcbe0fMy4lDrj9uKslWHIQf93yg,839
48
- dataeval/metrics/bias/_balance.py,sha256=l1hTVkVwD85bP20MTthA-I5BkvbytylQkJu3Q6iTuPA,6152
49
- dataeval/metrics/bias/_completeness.py,sha256=BysXU2Jpw33n5dl3acJFEqF3mFGiJLsfG4n5Q2fkTaY,4608
50
- dataeval/metrics/bias/_coverage.py,sha256=PeUoOiaghUEdn6Ov8z2-am7-fnBVIPcFbJK7Ty5JObA,3647
51
- dataeval/metrics/bias/_diversity.py,sha256=B_qWVDMZfh818U0qVm8yidquB0H0XvW8N75OWVWXy2g,5814
52
- dataeval/metrics/bias/_parity.py,sha256=ea1D-eJh6cJxQ11XD6VbDXBKecE0jJJwptGD7LQJmBw,11529
53
- dataeval/metrics/estimators/__init__.py,sha256=Pnds8uIyAovt2fKqZjiHCIP_kVoBWlVllekYuK5UmmU,568
54
- dataeval/metrics/estimators/_ber.py,sha256=C30E5LiGGTAfo31zWFYDptDg0R7CTJGJ-a60YgzSkYY,5382
55
- dataeval/metrics/estimators/_clusterer.py,sha256=1HrpihGTJ63IkNSOy4Ibw633Gllkm1RxKmoKT5MOgt0,1434
56
- dataeval/metrics/estimators/_divergence.py,sha256=QDWl1lyAYoO9D3Ho7qOHSk6ud8Gi2MGuXEsYwO1HxvA,4043
57
- dataeval/metrics/estimators/_uap.py,sha256=BULEBbJ9BQ1IcTeZf0x7iI60QHAWCccBOM97FIu9VXA,1928
58
- dataeval/metrics/stats/__init__.py,sha256=6tA_9nbbM5ObJ6cds8Y1VBtTQiTOxrpGQSFLu_lWGGA,1098
59
- dataeval/metrics/stats/_base.py,sha256=YIfOVGd7E19B4dpAnzDYRQkaikvRRyJIpznJNfVtPdw,10750
60
- dataeval/metrics/stats/_boxratiostats.py,sha256=8Kd2FTZ5PLNYZfdAjU_R385gb0Z16JY0L9H_d5ZhgQs,6341
61
- dataeval/metrics/stats/_dimensionstats.py,sha256=73mFP-Myxne0peFliwvTntc0kk4cpq0krzMvSLDSIMM,2702
62
- dataeval/metrics/stats/_hashstats.py,sha256=gp9X_pnTT3mPH9YNrWLdn2LQPK_epJ3dQRoyOCwmKlg,4758
63
- dataeval/metrics/stats/_imagestats.py,sha256=gUPNgN5Zwzdr7WnSwbve1NXNsyxd5dy3cSnlR_7guCg,3007
64
- dataeval/metrics/stats/_labelstats.py,sha256=lz8I6eSd8tFkmQqy5cOG8hn9yxs0mP-Ic9ratFHiuoU,2813
65
- dataeval/metrics/stats/_pixelstats.py,sha256=SfergRbjNJE4h0xqe-0c8RnKtZmEkZ9MwExdipLSGvg,3247
66
- dataeval/metrics/stats/_visualstats.py,sha256=cq4AbF2B50Ihbzb86FphcnKQ1TSwNnP3PsnbpiPQZWw,3698
67
- dataeval/outputs/__init__.py,sha256=geHB5M3QOiFFaQGV4ZwDTTKpqZPvPePbqG7lzaPhaXQ,1741
68
- dataeval/outputs/_base.py,sha256=aZFbgybnZSQ3ws7QYRLTbDFqUfBFRVtIwX2LZfeGFUA,5703
69
- dataeval/outputs/_bias.py,sha256=_4qgboPstvEFBjTPZOVAOOaXb_BMARLiHY_ElA5wD8E,12368
70
- dataeval/outputs/_drift.py,sha256=kS6gGfaf0XOivf1D8go2fzF5yxl0EHlWFlkwv-4LMNI,4770
71
- dataeval/outputs/_estimators.py,sha256=a2oAIxxEDZ9WLGfMWH8KD-BVUS_SnULRPR-iI9hFPoQ,3047
72
- dataeval/outputs/_linters.py,sha256=PqLa2wIAkwC-NCb5dhDN29PtTiCUk2TLDFpsMO7Awrc,6325
73
- dataeval/outputs/_metadata.py,sha256=ffZgpX8KWURPHXpOWjbvJ2KRqWQkS2nWuIjKUzoHhMI,1710
74
- dataeval/outputs/_ood.py,sha256=suLKVXULGtXH0rq9eXHI1d3d2jhGmItJtz4QiQd47A4,1718
75
- dataeval/outputs/_stats.py,sha256=ACUzwsalDl-bV8llaBArZQ1tLj07RFvzmv-IXViAvSA,13089
76
- dataeval/outputs/_utils.py,sha256=HHlGC7sk416m_3Bgn075Qdblz_aPup_UOafJpB0RuXY,893
77
- dataeval/outputs/_workflows.py,sha256=MkRD6ubI4NCBXb9v3kjXy64cUGs3G-JKkBdOpRD9XVE,10750
78
- dataeval/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
79
- dataeval/typing.py,sha256=GDMuef-oFFukNtsiKFmsExHdNvYR_j-tQcsCwZ9reow,7198
80
- dataeval/utils/__init__.py,sha256=hRvyUK7b3d6JBEV5u47rFcOHEcmDYqAvZQw_T5pDAWw,264
81
- dataeval/utils/_array.py,sha256=KqAdXEMjcXYvdWdYEEoEbigwQJ4S9VYxQS3sRFeY5XY,5929
82
- dataeval/utils/_bin.py,sha256=nylthmsC3vzLHLhlUMACvZs--h7xvAh9Pt75InaQJW8,7322
83
- dataeval/utils/_clusterer.py,sha256=fw5x-2QN0TIbiodDKHZxRgxKHINedpPcOklzce0Rbjg,5436
84
- dataeval/utils/_fast_mst.py,sha256=4_7ykVihCL5jWtxcGnrecIsDQo65kUml9SZ1JxgBZYY,7172
85
- dataeval/utils/_image.py,sha256=capzF_X5H0jy0PmTP3Hf52GFgLqrnfU6gS4tiwck9jo,1939
86
- dataeval/utils/_method.py,sha256=9B9JQbgqWJBRhQJb7glajUtWaQzUTIUuvrZ9_bisxsM,394
87
- dataeval/utils/_mst.py,sha256=f0vXytTUjlOS6AyL7c6PkXmaHuuGUK-vMLpq-5xMgxk,2183
88
- dataeval/utils/_plot.py,sha256=mTRQNbJsA42QMiOwZbJaH8sNYgP996QFDEGVVE9HSgY,7076
89
- dataeval/utils/data/__init__.py,sha256=xGzrjrOxOP2DP1tU84AWMKPnSxFvSjM81CTlDg4rNM8,331
90
- dataeval/utils/data/_dataset.py,sha256=MHY582yRm4FxQkkLWUhKZBb7ZyvWypM6ldUG89vd3uE,7936
91
- dataeval/utils/data/collate.py,sha256=5egEEKhNNCGeNLChO1p6dZ4Wg6x51VEaMNHz7hEZUxI,3936
92
- dataeval/utils/data/metadata.py,sha256=1XeGYj_e97-nJ_IrWEHPhWICmouYU5qbXWbp7uhZrIE,14171
93
- dataeval/utils/datasets/__init__.py,sha256=Jfe7XI_9U5S4wuI_2QCoeuWNOxz4j0nAQvxc5wG5mWY,486
94
- dataeval/utils/datasets/_base.py,sha256=TpmgPzF3EShCLAF5S4Zf9lFN78q17bTZF6AUE1qKdlk,8857
95
- dataeval/utils/datasets/_cifar10.py,sha256=oSX5JEzbBM4zGC9kC7-hVTOglms3rYaUuYiA00_DUJ4,5439
96
- dataeval/utils/datasets/_fileio.py,sha256=SixIk5nIlIwJdX9zjNXS10vHA3hL8aaYbqHsDg1xSpY,6447
97
- dataeval/utils/datasets/_milco.py,sha256=BF2XvyzuOop1mg5pFZcRfYmZcezlbpZWHyd_TtEHFF4,7573
98
- dataeval/utils/datasets/_mixin.py,sha256=FJgZP_cpJkgAHA3j3ai_j3Wt7aFSEjIMVmt9NpvVXzg,1757
99
- dataeval/utils/datasets/_mnist.py,sha256=4WOkQTORYMs6KEeyyJgChTnH03797y4ezgaZtYqplh4,8102
100
- dataeval/utils/datasets/_ships.py,sha256=RMdX2KlnXJYOTzBb6euA5TAqxs-S8b56pAGiyQhNMuo,4870
101
- dataeval/utils/datasets/_types.py,sha256=iSKyHXRlGuomXs0FHK6md8lXLQrQQ4fxgVOwr4o81bo,1089
102
- dataeval/utils/datasets/_voc.py,sha256=kif6ms_romK6VElP4pf2SK4cJ5dEHDOkxSaSaeP3c5k,15565
103
- dataeval/utils/torch/__init__.py,sha256=dn5mjCrFp0b1aL_UEURhONU0Ag0cmXoTOBSGagpkTiA,325
104
- dataeval/utils/torch/_blocks.py,sha256=HVhBTMMD5NA4qheMUgyol1KWiKZDIuc8k5j4RcMKmhk,1466
105
- dataeval/utils/torch/_gmm.py,sha256=XM68GNEP97EjaB1U49-ZXRb81d0CEFnPS910alrcB3g,3740
106
- dataeval/utils/torch/_internal.py,sha256=vHy-DzPhmvE8h3wmWc3aciBJ8nDGzQ1z1jTZgGjmDyM,4154
107
- dataeval/utils/torch/models.py,sha256=hmroEs6C6jQ5tAoZa71RFeIvXLxfXrTJSFH_jG2LGQU,9749
108
- dataeval/utils/torch/trainer.py,sha256=iUotX4OdirH8-ZtjdpU8gbJavkYW9YY9qpA2mAlFy1Y,5520
109
- dataeval/workflows/__init__.py,sha256=ou8y0KO-d6W5lgmcyLjKlf-J_ckP3vilW7wHkgiDlZ4,255
110
- dataeval/workflows/sufficiency.py,sha256=mjKmfRrAjShLUFIARv5o8yT5fnFvDsS5Qu6ujIPUgQg,8497
111
- dataeval-0.86.0.dist-info/LICENSE.txt,sha256=uAooygKWvX6NbU9Ran9oG2msttoG8aeTeHSTe5JeCnY,1061
112
- dataeval-0.86.0.dist-info/METADATA,sha256=viF0VCgv5_1SzwfTVCTNdbw1q5k1D3hgJhB7PoZ1tCM,5321
113
- dataeval-0.86.0.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
114
- dataeval-0.86.0.dist-info/RECORD,,