dataeval 0.85.0__py3-none-any.whl → 0.86.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dataeval/__init__.py +1 -1
- dataeval/_log.py +1 -1
- dataeval/config.py +21 -4
- dataeval/data/_embeddings.py +2 -2
- dataeval/data/_images.py +2 -3
- dataeval/data/_metadata.py +65 -42
- dataeval/data/_selection.py +2 -3
- dataeval/data/_split.py +2 -3
- dataeval/data/_targets.py +17 -13
- dataeval/data/selections/_classfilter.py +6 -8
- dataeval/data/selections/_prioritize.py +6 -9
- dataeval/data/selections/_shuffle.py +3 -1
- dataeval/detectors/drift/__init__.py +4 -1
- dataeval/detectors/drift/_base.py +4 -5
- dataeval/detectors/drift/_mmd.py +3 -6
- dataeval/detectors/drift/_mvdc.py +92 -0
- dataeval/detectors/drift/_nml/__init__.py +6 -0
- dataeval/detectors/drift/_nml/_base.py +70 -0
- dataeval/detectors/drift/_nml/_chunk.py +396 -0
- dataeval/detectors/drift/_nml/_domainclassifier.py +181 -0
- dataeval/detectors/drift/_nml/_result.py +97 -0
- dataeval/detectors/drift/_nml/_thresholds.py +269 -0
- dataeval/detectors/linters/outliers.py +7 -7
- dataeval/metrics/bias/_parity.py +10 -13
- dataeval/metrics/estimators/_divergence.py +2 -4
- dataeval/metrics/stats/_base.py +103 -42
- dataeval/metrics/stats/_boxratiostats.py +21 -19
- dataeval/metrics/stats/_dimensionstats.py +14 -10
- dataeval/metrics/stats/_hashstats.py +1 -1
- dataeval/metrics/stats/_pixelstats.py +6 -6
- dataeval/metrics/stats/_visualstats.py +3 -3
- dataeval/outputs/__init__.py +2 -1
- dataeval/outputs/_base.py +22 -7
- dataeval/outputs/_bias.py +27 -31
- dataeval/outputs/_drift.py +60 -0
- dataeval/outputs/_linters.py +12 -17
- dataeval/outputs/_stats.py +83 -29
- dataeval/outputs/_workflows.py +2 -2
- dataeval/utils/_array.py +6 -9
- dataeval/utils/_bin.py +1 -2
- dataeval/utils/_clusterer.py +7 -4
- dataeval/utils/_fast_mst.py +27 -13
- dataeval/utils/_image.py +65 -11
- dataeval/utils/_mst.py +1 -3
- dataeval/utils/_plot.py +15 -10
- dataeval/utils/data/_dataset.py +32 -20
- dataeval/utils/data/metadata.py +104 -82
- dataeval/utils/datasets/__init__.py +2 -0
- dataeval/utils/datasets/_antiuav.py +189 -0
- dataeval/utils/datasets/_base.py +11 -8
- dataeval/utils/datasets/_cifar10.py +104 -45
- dataeval/utils/datasets/_fileio.py +21 -47
- dataeval/utils/datasets/_milco.py +19 -11
- dataeval/utils/datasets/_mixin.py +2 -4
- dataeval/utils/datasets/_mnist.py +3 -4
- dataeval/utils/datasets/_ships.py +14 -7
- dataeval/utils/datasets/_voc.py +229 -42
- dataeval/utils/torch/models.py +5 -10
- dataeval/utils/torch/trainer.py +3 -3
- dataeval/workflows/sufficiency.py +2 -2
- {dataeval-0.85.0.dist-info → dataeval-0.86.1.dist-info}/METADATA +3 -2
- dataeval-0.86.1.dist-info/RECORD +114 -0
- dataeval/detectors/ood/vae.py +0 -74
- dataeval-0.85.0.dist-info/RECORD +0 -107
- {dataeval-0.85.0.dist-info → dataeval-0.86.1.dist-info}/LICENSE.txt +0 -0
- {dataeval-0.85.0.dist-info → dataeval-0.86.1.dist-info}/WHEEL +0 -0
dataeval/detectors/ood/vae.py
DELETED
@@ -1,74 +0,0 @@
|
|
1
|
-
"""
|
2
|
-
Adapted for Pytorch from
|
3
|
-
|
4
|
-
Source code derived from Alibi-Detect 0.11.4
|
5
|
-
https://github.com/SeldonIO/alibi-detect/tree/v0.11.4
|
6
|
-
|
7
|
-
Original code Copyright (c) 2023 Seldon Technologies Ltd
|
8
|
-
Licensed under Apache Software License (Apache 2.0)
|
9
|
-
"""
|
10
|
-
|
11
|
-
from __future__ import annotations
|
12
|
-
|
13
|
-
__all__ = []
|
14
|
-
|
15
|
-
from typing import Callable
|
16
|
-
|
17
|
-
import numpy as np
|
18
|
-
import torch
|
19
|
-
|
20
|
-
from dataeval.config import DeviceLike
|
21
|
-
from dataeval.detectors.ood.base import OODBase
|
22
|
-
from dataeval.outputs import OODScoreOutput
|
23
|
-
from dataeval.typing import ArrayLike
|
24
|
-
from dataeval.utils._array import as_numpy
|
25
|
-
from dataeval.utils.torch._internal import predict_batch
|
26
|
-
|
27
|
-
|
28
|
-
class OOD_VAE(OODBase):
|
29
|
-
"""
|
30
|
-
Autoencoder based out-of-distribution detector.
|
31
|
-
|
32
|
-
Parameters
|
33
|
-
----------
|
34
|
-
model : Autoencoder
|
35
|
-
An Autoencoder model.
|
36
|
-
"""
|
37
|
-
|
38
|
-
def __init__(self, model: torch.nn.Module, device: DeviceLike | None = None) -> None:
|
39
|
-
super().__init__(model, device)
|
40
|
-
|
41
|
-
def fit(
|
42
|
-
self,
|
43
|
-
x_ref: ArrayLike,
|
44
|
-
threshold_perc: float,
|
45
|
-
loss_fn: Callable[..., torch.nn.Module] | None = None,
|
46
|
-
optimizer: torch.optim.Optimizer | None = None,
|
47
|
-
epochs: int = 20,
|
48
|
-
batch_size: int = 64,
|
49
|
-
verbose: bool = False,
|
50
|
-
) -> None:
|
51
|
-
if loss_fn is None:
|
52
|
-
loss_fn = torch.nn.MSELoss()
|
53
|
-
|
54
|
-
if optimizer is None:
|
55
|
-
optimizer = torch.optim.Adam(self.model.parameters(), lr=1e-4)
|
56
|
-
|
57
|
-
super().fit(x_ref, threshold_perc, loss_fn, optimizer, epochs, batch_size, verbose)
|
58
|
-
|
59
|
-
def _score(self, X: ArrayLike, batch_size: int = int(1e10)) -> OODScoreOutput:
|
60
|
-
self._validate(X := as_numpy(X))
|
61
|
-
|
62
|
-
# reconstruct instances
|
63
|
-
X_recon = predict_batch(X, self.model, batch_size=batch_size)[0] # don't need mu or logvar from model
|
64
|
-
|
65
|
-
# compute feature and instance level scores
|
66
|
-
fscore = np.power(X.reshape((len(X), -1)) - X_recon, 2)
|
67
|
-
# fscore_flat = fscore.reshape(fscore.shape[0], -1).copy()
|
68
|
-
# n_score_features = int(np.ceil(fscore_flat.shape[1]))
|
69
|
-
# sorted_fscore = np.sort(fscore_flat, axis=1)
|
70
|
-
# sorted_fscore_perc = sorted_fscore[:, -n_score_features:]
|
71
|
-
# iscore = np.mean(sorted_fscore_perc, axis=1)
|
72
|
-
iscore = np.sum(fscore, axis=1)
|
73
|
-
|
74
|
-
return OODScoreOutput(iscore, fscore)
|
dataeval-0.85.0.dist-info/RECORD
DELETED
@@ -1,107 +0,0 @@
|
|
1
|
-
dataeval/__init__.py,sha256=6uGTi3XO_V1liRkoVKdH5Ue8LPXkinLwmAsJzZO40Rk,1636
|
2
|
-
dataeval/_log.py,sha256=Mn5bRWO0cgtAYd5VGYSFiPgu57ta3zoktrtHAZ1m3dU,357
|
3
|
-
dataeval/config.py,sha256=lD1YDH8HosFeRU5rQEYRBcmXMZy-csWaMlJTRZGd9iU,3582
|
4
|
-
dataeval/data/__init__.py,sha256=qNnRRiVP_sLthkkHpUrMgI_r8dQK-cC-xoGrrjQeRKc,544
|
5
|
-
dataeval/data/_embeddings.py,sha256=6Medqj_JCQt1iwZwWGSs1OeX-bHB8bg5BJqADY1N2s8,12883
|
6
|
-
dataeval/data/_images.py,sha256=WF9XJRka8ohUdyI2IKBMAy3JoJhOm1iC-8tbYl8woRM,2642
|
7
|
-
dataeval/data/_metadata.py,sha256=hNgsCEN8EyfDDX7zLKcQnsaDl-9xvvs5tUzqMjVLvI4,14457
|
8
|
-
dataeval/data/_selection.py,sha256=V61_pTFj0hSzmltA6CV5t51Znqw2dIQZ71Iu46bLm44,4486
|
9
|
-
dataeval/data/_split.py,sha256=6Jtm_i__CcPtNE3eSeBdPxc7gn7Cp-GM7g9wJWFlVus,16761
|
10
|
-
dataeval/data/_targets.py,sha256=ws5d9wRiDkIuOV7GSAKNxzgSm6AWTgb0BFroQK5nAmM,3057
|
11
|
-
dataeval/data/selections/__init__.py,sha256=2m8ZB53wXzqLcqmc6p5atO6graB6ZyiRSNJFxf11X_g,613
|
12
|
-
dataeval/data/selections/_classbalance.py,sha256=7v8ApoL3X8eCZ6fGDNTehE_bZ1loaP3TlhsJLaICVWg,1458
|
13
|
-
dataeval/data/selections/_classfilter.py,sha256=rEeq959p_SLl_etS7pcM8ZxK4yzEYlYZAQ3FlcLV0R8,4330
|
14
|
-
dataeval/data/selections/_indices.py,sha256=RFsR9z10aM3N0gJSfKrukFpi-LkiQGXoOwXhmOQ5cpg,630
|
15
|
-
dataeval/data/selections/_limit.py,sha256=JG4GmEiNKt3sk4PbOUbBnGGzNlyz72H-kQrt8COMm4Y,512
|
16
|
-
dataeval/data/selections/_prioritize.py,sha256=yw51ZQk6FPvyC38M4_pS_Se2Dq0LDFcdDhfbsELzTZc,11306
|
17
|
-
dataeval/data/selections/_reverse.py,sha256=b67kNC43A5KpQOic5gifjo9HpJ7FMh4LFCrfovPiJ-M,368
|
18
|
-
dataeval/data/selections/_shuffle.py,sha256=gVz_2T4rlucq8Ytqz5jvmmZdTrZDaIv43jJbq97tLjQ,1173
|
19
|
-
dataeval/detectors/__init__.py,sha256=3Sg-XWlwr75zEEH3hZKA4nWMtGvaRlnfzTWvZG_Ak6U,189
|
20
|
-
dataeval/detectors/drift/__init__.py,sha256=gD8aY5PotS-S2ot7iB_z_zzSOjIbQLw5znFBNj0jtHE,646
|
21
|
-
dataeval/detectors/drift/_base.py,sha256=amGqzUAe8fU5qwM5lq1p8PCuhjGh9MHkdW1zeBF1LEE,7574
|
22
|
-
dataeval/detectors/drift/_cvm.py,sha256=cS33zWJmFY1fft1XcANcP2jSD5ou7TxvIU2AldhTynM,3004
|
23
|
-
dataeval/detectors/drift/_ks.py,sha256=uMc5-NA-lSV1IODrY8uJe87ll3uRJT_oXLJFXy95M1w,3186
|
24
|
-
dataeval/detectors/drift/_mmd.py,sha256=wHUy_vUafCikrZ_WX8qQXpxFwzw07-5zVutloR6hl1k,11589
|
25
|
-
dataeval/detectors/drift/_uncertainty.py,sha256=BHlykJ-r7TGLJxdPfoazXnoAJ1qVDzbk5HjAMdsnHz8,5847
|
26
|
-
dataeval/detectors/drift/updates.py,sha256=L1PnrPlIE1x6ujCc5mCwjcAZwadVTn-Zjb6MnTDvzJQ,2251
|
27
|
-
dataeval/detectors/linters/__init__.py,sha256=xn2zPwUcmsuf-Jd9uw6AVI11C9z1b1Y9fYtuFnXenZ0,404
|
28
|
-
dataeval/detectors/linters/duplicates.py,sha256=X5WSEvI_BHkLoXjkaHK6wTnSkx4IjpO_exMRjSlhc70,4963
|
29
|
-
dataeval/detectors/linters/outliers.py,sha256=D8A-Fov5iUrlU9xMX5Ht33FqUY8Lk5ulC6BlHbUoLwU,9048
|
30
|
-
dataeval/detectors/ood/__init__.py,sha256=juCYBDs7CQEAtMhnEpPqF6uTrOIH9kTBSuQ_GRw6a8o,283
|
31
|
-
dataeval/detectors/ood/ae.py,sha256=fTrUfFxv6xUqzKpwMC8rW3JrizA16M_bgzqLuBKMrS0,2944
|
32
|
-
dataeval/detectors/ood/base.py,sha256=9b-Ljznf0lB1SXF4F_Aj3eJ4Y3ijGEDPMjucUsWOGJM,3051
|
33
|
-
dataeval/detectors/ood/mixin.py,sha256=0_o-1HPvgf3-Lf1MSOIfjj5UB8LTLEBGYtJJfyCCzwc,5431
|
34
|
-
dataeval/detectors/ood/vae.py,sha256=Fcq0-WbLhzYCgYOAJPBklHm7yuXmFJuEpBkhgwM5kiA,2291
|
35
|
-
dataeval/metadata/__init__.py,sha256=XDDmJbOZBNM6pL0r6Nbu6oMRoyAh22IDkPYGndNlkZU,316
|
36
|
-
dataeval/metadata/_distance.py,sha256=T1Umju_QwBiLmn1iUbxZagzBS2VnHaDIdp6j-NpaZuk,4076
|
37
|
-
dataeval/metadata/_ood.py,sha256=lnKtKModArnUrAhH_XswEtUAhUkh1U_oNsLt1UmNP44,12748
|
38
|
-
dataeval/metadata/_utils.py,sha256=r8qBJT83RblobD5W5zyTVi6vYi51Dwkqswizdbzss-M,1169
|
39
|
-
dataeval/metrics/__init__.py,sha256=8VC8q3HuJN3o_WN51Ae2_wXznl3RMXIvA5GYVcy7vr8,225
|
40
|
-
dataeval/metrics/bias/__init__.py,sha256=329S1_3WnWqeU4-qVcbe0fMy4lDrj9uKslWHIQf93yg,839
|
41
|
-
dataeval/metrics/bias/_balance.py,sha256=l1hTVkVwD85bP20MTthA-I5BkvbytylQkJu3Q6iTuPA,6152
|
42
|
-
dataeval/metrics/bias/_completeness.py,sha256=BysXU2Jpw33n5dl3acJFEqF3mFGiJLsfG4n5Q2fkTaY,4608
|
43
|
-
dataeval/metrics/bias/_coverage.py,sha256=PeUoOiaghUEdn6Ov8z2-am7-fnBVIPcFbJK7Ty5JObA,3647
|
44
|
-
dataeval/metrics/bias/_diversity.py,sha256=B_qWVDMZfh818U0qVm8yidquB0H0XvW8N75OWVWXy2g,5814
|
45
|
-
dataeval/metrics/bias/_parity.py,sha256=ea1D-eJh6cJxQ11XD6VbDXBKecE0jJJwptGD7LQJmBw,11529
|
46
|
-
dataeval/metrics/estimators/__init__.py,sha256=Pnds8uIyAovt2fKqZjiHCIP_kVoBWlVllekYuK5UmmU,568
|
47
|
-
dataeval/metrics/estimators/_ber.py,sha256=C30E5LiGGTAfo31zWFYDptDg0R7CTJGJ-a60YgzSkYY,5382
|
48
|
-
dataeval/metrics/estimators/_clusterer.py,sha256=1HrpihGTJ63IkNSOy4Ibw633Gllkm1RxKmoKT5MOgt0,1434
|
49
|
-
dataeval/metrics/estimators/_divergence.py,sha256=QDWl1lyAYoO9D3Ho7qOHSk6ud8Gi2MGuXEsYwO1HxvA,4043
|
50
|
-
dataeval/metrics/estimators/_uap.py,sha256=BULEBbJ9BQ1IcTeZf0x7iI60QHAWCccBOM97FIu9VXA,1928
|
51
|
-
dataeval/metrics/stats/__init__.py,sha256=6tA_9nbbM5ObJ6cds8Y1VBtTQiTOxrpGQSFLu_lWGGA,1098
|
52
|
-
dataeval/metrics/stats/_base.py,sha256=YIfOVGd7E19B4dpAnzDYRQkaikvRRyJIpznJNfVtPdw,10750
|
53
|
-
dataeval/metrics/stats/_boxratiostats.py,sha256=8Kd2FTZ5PLNYZfdAjU_R385gb0Z16JY0L9H_d5ZhgQs,6341
|
54
|
-
dataeval/metrics/stats/_dimensionstats.py,sha256=73mFP-Myxne0peFliwvTntc0kk4cpq0krzMvSLDSIMM,2702
|
55
|
-
dataeval/metrics/stats/_hashstats.py,sha256=gp9X_pnTT3mPH9YNrWLdn2LQPK_epJ3dQRoyOCwmKlg,4758
|
56
|
-
dataeval/metrics/stats/_imagestats.py,sha256=gUPNgN5Zwzdr7WnSwbve1NXNsyxd5dy3cSnlR_7guCg,3007
|
57
|
-
dataeval/metrics/stats/_labelstats.py,sha256=lz8I6eSd8tFkmQqy5cOG8hn9yxs0mP-Ic9ratFHiuoU,2813
|
58
|
-
dataeval/metrics/stats/_pixelstats.py,sha256=SfergRbjNJE4h0xqe-0c8RnKtZmEkZ9MwExdipLSGvg,3247
|
59
|
-
dataeval/metrics/stats/_visualstats.py,sha256=cq4AbF2B50Ihbzb86FphcnKQ1TSwNnP3PsnbpiPQZWw,3698
|
60
|
-
dataeval/outputs/__init__.py,sha256=ciK-RdXgtn_s7MSCUW1UXvrXltMbltqbpfe9_V7xGrI,1701
|
61
|
-
dataeval/outputs/_base.py,sha256=aZFbgybnZSQ3ws7QYRLTbDFqUfBFRVtIwX2LZfeGFUA,5703
|
62
|
-
dataeval/outputs/_bias.py,sha256=7L-d3DUWY6Vud7iX_VoQT0HG0KaV1U35gvmRApqzyB0,12401
|
63
|
-
dataeval/outputs/_drift.py,sha256=gOiu2C-ERTWiRqlP0auMYxPBGdm9HecWPqWfg7I4tZg,2015
|
64
|
-
dataeval/outputs/_estimators.py,sha256=a2oAIxxEDZ9WLGfMWH8KD-BVUS_SnULRPR-iI9hFPoQ,3047
|
65
|
-
dataeval/outputs/_linters.py,sha256=YOdjrfm8ypdRrqYOaPM9nc6wVJI3-ita3Haj7LHDNaw,6416
|
66
|
-
dataeval/outputs/_metadata.py,sha256=ffZgpX8KWURPHXpOWjbvJ2KRqWQkS2nWuIjKUzoHhMI,1710
|
67
|
-
dataeval/outputs/_ood.py,sha256=suLKVXULGtXH0rq9eXHI1d3d2jhGmItJtz4QiQd47A4,1718
|
68
|
-
dataeval/outputs/_stats.py,sha256=c73Yc3Kkrl-MN6BGKe1V0Yr6Ix2Yp_DZZfFSp8fZMZ0,13180
|
69
|
-
dataeval/outputs/_utils.py,sha256=HHlGC7sk416m_3Bgn075Qdblz_aPup_UOafJpB0RuXY,893
|
70
|
-
dataeval/outputs/_workflows.py,sha256=MkRD6ubI4NCBXb9v3kjXy64cUGs3G-JKkBdOpRD9XVE,10750
|
71
|
-
dataeval/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
72
|
-
dataeval/typing.py,sha256=GDMuef-oFFukNtsiKFmsExHdNvYR_j-tQcsCwZ9reow,7198
|
73
|
-
dataeval/utils/__init__.py,sha256=hRvyUK7b3d6JBEV5u47rFcOHEcmDYqAvZQw_T5pDAWw,264
|
74
|
-
dataeval/utils/_array.py,sha256=KqAdXEMjcXYvdWdYEEoEbigwQJ4S9VYxQS3sRFeY5XY,5929
|
75
|
-
dataeval/utils/_bin.py,sha256=nylthmsC3vzLHLhlUMACvZs--h7xvAh9Pt75InaQJW8,7322
|
76
|
-
dataeval/utils/_clusterer.py,sha256=fw5x-2QN0TIbiodDKHZxRgxKHINedpPcOklzce0Rbjg,5436
|
77
|
-
dataeval/utils/_fast_mst.py,sha256=4_7ykVihCL5jWtxcGnrecIsDQo65kUml9SZ1JxgBZYY,7172
|
78
|
-
dataeval/utils/_image.py,sha256=capzF_X5H0jy0PmTP3Hf52GFgLqrnfU6gS4tiwck9jo,1939
|
79
|
-
dataeval/utils/_method.py,sha256=9B9JQbgqWJBRhQJb7glajUtWaQzUTIUuvrZ9_bisxsM,394
|
80
|
-
dataeval/utils/_mst.py,sha256=f0vXytTUjlOS6AyL7c6PkXmaHuuGUK-vMLpq-5xMgxk,2183
|
81
|
-
dataeval/utils/_plot.py,sha256=mTRQNbJsA42QMiOwZbJaH8sNYgP996QFDEGVVE9HSgY,7076
|
82
|
-
dataeval/utils/data/__init__.py,sha256=xGzrjrOxOP2DP1tU84AWMKPnSxFvSjM81CTlDg4rNM8,331
|
83
|
-
dataeval/utils/data/_dataset.py,sha256=MHY582yRm4FxQkkLWUhKZBb7ZyvWypM6ldUG89vd3uE,7936
|
84
|
-
dataeval/utils/data/collate.py,sha256=5egEEKhNNCGeNLChO1p6dZ4Wg6x51VEaMNHz7hEZUxI,3936
|
85
|
-
dataeval/utils/data/metadata.py,sha256=1XeGYj_e97-nJ_IrWEHPhWICmouYU5qbXWbp7uhZrIE,14171
|
86
|
-
dataeval/utils/datasets/__init__.py,sha256=Jfe7XI_9U5S4wuI_2QCoeuWNOxz4j0nAQvxc5wG5mWY,486
|
87
|
-
dataeval/utils/datasets/_base.py,sha256=TpmgPzF3EShCLAF5S4Zf9lFN78q17bTZF6AUE1qKdlk,8857
|
88
|
-
dataeval/utils/datasets/_cifar10.py,sha256=oSX5JEzbBM4zGC9kC7-hVTOglms3rYaUuYiA00_DUJ4,5439
|
89
|
-
dataeval/utils/datasets/_fileio.py,sha256=SixIk5nIlIwJdX9zjNXS10vHA3hL8aaYbqHsDg1xSpY,6447
|
90
|
-
dataeval/utils/datasets/_milco.py,sha256=BF2XvyzuOop1mg5pFZcRfYmZcezlbpZWHyd_TtEHFF4,7573
|
91
|
-
dataeval/utils/datasets/_mixin.py,sha256=FJgZP_cpJkgAHA3j3ai_j3Wt7aFSEjIMVmt9NpvVXzg,1757
|
92
|
-
dataeval/utils/datasets/_mnist.py,sha256=4WOkQTORYMs6KEeyyJgChTnH03797y4ezgaZtYqplh4,8102
|
93
|
-
dataeval/utils/datasets/_ships.py,sha256=RMdX2KlnXJYOTzBb6euA5TAqxs-S8b56pAGiyQhNMuo,4870
|
94
|
-
dataeval/utils/datasets/_types.py,sha256=iSKyHXRlGuomXs0FHK6md8lXLQrQQ4fxgVOwr4o81bo,1089
|
95
|
-
dataeval/utils/datasets/_voc.py,sha256=kif6ms_romK6VElP4pf2SK4cJ5dEHDOkxSaSaeP3c5k,15565
|
96
|
-
dataeval/utils/torch/__init__.py,sha256=dn5mjCrFp0b1aL_UEURhONU0Ag0cmXoTOBSGagpkTiA,325
|
97
|
-
dataeval/utils/torch/_blocks.py,sha256=HVhBTMMD5NA4qheMUgyol1KWiKZDIuc8k5j4RcMKmhk,1466
|
98
|
-
dataeval/utils/torch/_gmm.py,sha256=XM68GNEP97EjaB1U49-ZXRb81d0CEFnPS910alrcB3g,3740
|
99
|
-
dataeval/utils/torch/_internal.py,sha256=vHy-DzPhmvE8h3wmWc3aciBJ8nDGzQ1z1jTZgGjmDyM,4154
|
100
|
-
dataeval/utils/torch/models.py,sha256=hmroEs6C6jQ5tAoZa71RFeIvXLxfXrTJSFH_jG2LGQU,9749
|
101
|
-
dataeval/utils/torch/trainer.py,sha256=iUotX4OdirH8-ZtjdpU8gbJavkYW9YY9qpA2mAlFy1Y,5520
|
102
|
-
dataeval/workflows/__init__.py,sha256=ou8y0KO-d6W5lgmcyLjKlf-J_ckP3vilW7wHkgiDlZ4,255
|
103
|
-
dataeval/workflows/sufficiency.py,sha256=mjKmfRrAjShLUFIARv5o8yT5fnFvDsS5Qu6ujIPUgQg,8497
|
104
|
-
dataeval-0.85.0.dist-info/LICENSE.txt,sha256=uAooygKWvX6NbU9Ran9oG2msttoG8aeTeHSTe5JeCnY,1061
|
105
|
-
dataeval-0.85.0.dist-info/METADATA,sha256=CFxQYk5W58oMLj9y41anNfkN8kgKvWtERBQBdm4XKEY,5308
|
106
|
-
dataeval-0.85.0.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
107
|
-
dataeval-0.85.0.dist-info/RECORD,,
|
File without changes
|
File without changes
|