dataeval 0.85.0__py3-none-any.whl → 0.86.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dataeval/__init__.py +1 -1
- dataeval/data/_metadata.py +17 -5
- dataeval/data/_selection.py +1 -1
- dataeval/data/selections/_classfilter.py +4 -3
- dataeval/detectors/drift/__init__.py +4 -1
- dataeval/detectors/drift/_mvdc.py +92 -0
- dataeval/detectors/drift/_nml/__init__.py +6 -0
- dataeval/detectors/drift/_nml/_base.py +68 -0
- dataeval/detectors/drift/_nml/_chunk.py +404 -0
- dataeval/detectors/drift/_nml/_domainclassifier.py +192 -0
- dataeval/detectors/drift/_nml/_result.py +98 -0
- dataeval/detectors/drift/_nml/_thresholds.py +280 -0
- dataeval/outputs/__init__.py +2 -1
- dataeval/outputs/_bias.py +1 -3
- dataeval/outputs/_drift.py +68 -0
- dataeval/outputs/_linters.py +1 -6
- dataeval/outputs/_stats.py +1 -6
- {dataeval-0.85.0.dist-info → dataeval-0.86.0.dist-info}/METADATA +3 -2
- {dataeval-0.85.0.dist-info → dataeval-0.86.0.dist-info}/RECORD +21 -14
- {dataeval-0.85.0.dist-info → dataeval-0.86.0.dist-info}/LICENSE.txt +0 -0
- {dataeval-0.85.0.dist-info → dataeval-0.86.0.dist-info}/WHEEL +0 -0
dataeval/__init__.py
CHANGED
dataeval/data/_metadata.py
CHANGED
@@ -191,6 +191,11 @@ class Metadata:
|
|
191
191
|
self._process()
|
192
192
|
return self._image_indices
|
193
193
|
|
194
|
+
@property
|
195
|
+
def image_count(self) -> int:
|
196
|
+
self._process()
|
197
|
+
return int(self._image_indices.max() + 1)
|
198
|
+
|
194
199
|
def _collate(self, force: bool = False):
|
195
200
|
if self._collated and not force:
|
196
201
|
return
|
@@ -359,12 +364,19 @@ class Metadata:
|
|
359
364
|
|
360
365
|
def add_factors(self, factors: Mapping[str, ArrayLike]) -> None:
|
361
366
|
self._merge()
|
362
|
-
|
363
|
-
|
364
|
-
|
367
|
+
|
368
|
+
targets = len(self.targets.source) if self.targets.source is not None else len(self.targets)
|
369
|
+
images = self.image_count
|
370
|
+
lengths = {k: len(v if isinstance(v, Sized) else np.atleast_1d(as_numpy(v))) for k, v in factors.items()}
|
371
|
+
targets_match = all(f == targets for f in lengths.values())
|
372
|
+
images_match = targets_match if images == targets else all(f == images for f in lengths.values())
|
373
|
+
if not targets_match and not images_match:
|
365
374
|
raise ValueError(
|
366
375
|
"The lists/arrays in the provided factors have a different length than the current metadata factors."
|
367
376
|
)
|
368
|
-
merged = cast(
|
377
|
+
merged = cast(dict[str, ArrayLike], self._merged[0] if self._merged is not None else {})
|
369
378
|
for k, v in factors.items():
|
370
|
-
|
379
|
+
v = as_numpy(v)
|
380
|
+
merged[k] = v if (self.targets.source is None or lengths[k] == targets) else v[self.targets.source]
|
381
|
+
|
382
|
+
self._processed = False
|
dataeval/data/_selection.py
CHANGED
@@ -120,7 +120,7 @@ class Select(AnnotatedDataset[_TDatum]):
|
|
120
120
|
|
121
121
|
def _apply_subselection(self, datum: _TDatum, index: int) -> _TDatum:
|
122
122
|
for subselection, indices in self._subselections:
|
123
|
-
datum = subselection(datum) if index in indices else datum
|
123
|
+
datum = subselection(datum) if self._selection[index] in indices else datum
|
124
124
|
return datum
|
125
125
|
|
126
126
|
def __getitem__(self, index: int) -> _TDatum:
|
@@ -10,7 +10,6 @@ from numpy.typing import NDArray
|
|
10
10
|
from dataeval.data._selection import Select, Selection, SelectionStage, Subselection
|
11
11
|
from dataeval.typing import Array, ObjectDetectionDatum, ObjectDetectionTarget, SegmentationDatum, SegmentationTarget
|
12
12
|
from dataeval.utils._array import as_numpy
|
13
|
-
from dataeval.utils.data.metadata import flatten
|
14
13
|
|
15
14
|
|
16
15
|
class ClassFilter(Selection[Any]):
|
@@ -96,13 +95,15 @@ class ClassFilterSubSelection(Subselection[Any]):
|
|
96
95
|
def __init__(self, classes: Sequence[int]) -> None:
|
97
96
|
self.classes = classes
|
98
97
|
|
98
|
+
def _filter(self, d: dict[str, Any], mask: NDArray[np.bool_]) -> dict[str, Any]:
|
99
|
+
return {k: self._filter(v, mask) if isinstance(v, dict) else _try_mask_object(v, mask) for k, v in d.items()}
|
100
|
+
|
99
101
|
def __call__(self, datum: _TDatum) -> _TDatum:
|
100
102
|
# build a mask for any arrays
|
101
103
|
image, target, metadata = datum
|
102
104
|
|
103
105
|
mask = np.isin(as_numpy(target.labels), self.classes)
|
104
|
-
|
105
|
-
filtered_metadata = {k: _try_mask_object(v, mask) for k, v in flattened_metadata.items()}
|
106
|
+
filtered_metadata = self._filter(metadata, mask)
|
106
107
|
|
107
108
|
# return a masked datum
|
108
109
|
filtered_datum = image, ClassFilterTarget(target, mask), filtered_metadata
|
@@ -7,6 +7,8 @@ __all__ = [
|
|
7
7
|
"DriftKS",
|
8
8
|
"DriftMMD",
|
9
9
|
"DriftMMDOutput",
|
10
|
+
"DriftMVDC",
|
11
|
+
"DriftMVDCOutput",
|
10
12
|
"DriftOutput",
|
11
13
|
"DriftUncertainty",
|
12
14
|
"UpdateStrategy",
|
@@ -18,5 +20,6 @@ from dataeval.detectors.drift._base import UpdateStrategy
|
|
18
20
|
from dataeval.detectors.drift._cvm import DriftCVM
|
19
21
|
from dataeval.detectors.drift._ks import DriftKS
|
20
22
|
from dataeval.detectors.drift._mmd import DriftMMD
|
23
|
+
from dataeval.detectors.drift._mvdc import DriftMVDC
|
21
24
|
from dataeval.detectors.drift._uncertainty import DriftUncertainty
|
22
|
-
from dataeval.outputs._drift import DriftMMDOutput, DriftOutput
|
25
|
+
from dataeval.outputs._drift import DriftMMDOutput, DriftMVDCOutput, DriftOutput
|
@@ -0,0 +1,92 @@
|
|
1
|
+
from __future__ import annotations
|
2
|
+
|
3
|
+
from typing import TYPE_CHECKING
|
4
|
+
|
5
|
+
import numpy as np
|
6
|
+
import pandas as pd
|
7
|
+
from numpy.typing import ArrayLike
|
8
|
+
|
9
|
+
if TYPE_CHECKING:
|
10
|
+
from typing import Self
|
11
|
+
else:
|
12
|
+
from typing_extensions import Self
|
13
|
+
|
14
|
+
from dataeval.detectors.drift._nml._chunk import CountBasedChunker, SizeBasedChunker
|
15
|
+
from dataeval.detectors.drift._nml._domainclassifier import DomainClassifierCalculator
|
16
|
+
from dataeval.detectors.drift._nml._thresholds import ConstantThreshold
|
17
|
+
from dataeval.outputs._drift import DriftMVDCOutput
|
18
|
+
from dataeval.utils._array import flatten
|
19
|
+
|
20
|
+
|
21
|
+
class DriftMVDC:
|
22
|
+
"""Multivariant Domain Classifier
|
23
|
+
|
24
|
+
Parameters
|
25
|
+
----------
|
26
|
+
n_folds : int, default 5
|
27
|
+
Number of cross-validation (CV) folds.
|
28
|
+
chunk_size : int or None, default None
|
29
|
+
Number of samples in a chunk used in CV, will get one metric & prediction per chunk.
|
30
|
+
chunk_count : int or None, default None
|
31
|
+
Number of total chunks used in CV, will get one metric & prediction per chunk.
|
32
|
+
threshold : Tuple[float, float], default (0.45, 0.65)
|
33
|
+
(lower, upper) metric bounds on roc_auc for identifying :term:`drift<Drift>`.
|
34
|
+
"""
|
35
|
+
|
36
|
+
def __init__(
|
37
|
+
self,
|
38
|
+
n_folds: int = 5,
|
39
|
+
chunk_size: int | None = None,
|
40
|
+
chunk_count: int | None = None,
|
41
|
+
threshold: tuple[float, float] = (0.45, 0.65),
|
42
|
+
) -> None:
|
43
|
+
self.threshold: tuple[float, float] = max(0.0, min(threshold)), min(1.0, max(threshold))
|
44
|
+
chunker = (
|
45
|
+
CountBasedChunker(10 if chunk_count is None else chunk_count)
|
46
|
+
if chunk_size is None
|
47
|
+
else SizeBasedChunker(chunk_size)
|
48
|
+
)
|
49
|
+
self._calc = DomainClassifierCalculator(
|
50
|
+
cv_folds_num=n_folds,
|
51
|
+
chunker=chunker,
|
52
|
+
threshold=ConstantThreshold(lower=self.threshold[0], upper=self.threshold[1]),
|
53
|
+
)
|
54
|
+
|
55
|
+
def fit(self, x_ref: ArrayLike) -> Self:
|
56
|
+
"""
|
57
|
+
Fit the domain classifier on the training dataframe
|
58
|
+
|
59
|
+
Parameters
|
60
|
+
----------
|
61
|
+
x_ref : ArrayLike
|
62
|
+
Reference data with dim[n_samples, n_features].
|
63
|
+
|
64
|
+
Returns
|
65
|
+
-------
|
66
|
+
Self
|
67
|
+
|
68
|
+
"""
|
69
|
+
# for 1D input, assume that is 1 sample: dim[1,n_features]
|
70
|
+
self.x_ref: pd.DataFrame = pd.DataFrame(flatten(np.atleast_2d(np.asarray(x_ref))))
|
71
|
+
self.n_features: int = self.x_ref.shape[-1]
|
72
|
+
self._calc.fit(self.x_ref)
|
73
|
+
return self
|
74
|
+
|
75
|
+
def predict(self, x: ArrayLike) -> DriftMVDCOutput:
|
76
|
+
"""
|
77
|
+
Perform :term:`inference<Inference>` on the test dataframe
|
78
|
+
|
79
|
+
Parameters
|
80
|
+
----------
|
81
|
+
x : ArrayLike
|
82
|
+
Test (analysis) data with dim[n_samples, n_features].
|
83
|
+
|
84
|
+
Returns
|
85
|
+
-------
|
86
|
+
DomainClassifierDriftResult
|
87
|
+
"""
|
88
|
+
self.x_test: pd.DataFrame = pd.DataFrame(flatten(np.atleast_2d(np.asarray(x))))
|
89
|
+
if self.x_test.shape[-1] != self.n_features:
|
90
|
+
raise ValueError("Reference and test embeddings have different number of features")
|
91
|
+
|
92
|
+
return self._calc.calculate(self.x_test)
|
@@ -0,0 +1,68 @@
|
|
1
|
+
"""
|
2
|
+
Source code derived from NannyML 0.13.0
|
3
|
+
https://github.com/NannyML/nannyml/blob/main/nannyml/base.py
|
4
|
+
|
5
|
+
Licensed under Apache Software License (Apache 2.0)
|
6
|
+
"""
|
7
|
+
|
8
|
+
from __future__ import annotations
|
9
|
+
|
10
|
+
import logging
|
11
|
+
from abc import ABC, abstractmethod
|
12
|
+
from logging import Logger
|
13
|
+
from typing import Sequence
|
14
|
+
|
15
|
+
import pandas as pd
|
16
|
+
from typing_extensions import Self
|
17
|
+
|
18
|
+
from dataeval.detectors.drift._nml._chunk import Chunk, Chunker, CountBasedChunker
|
19
|
+
from dataeval.outputs._drift import DriftMVDCOutput
|
20
|
+
|
21
|
+
|
22
|
+
def _validate(data: pd.DataFrame, expected_features: int | None = None) -> int:
|
23
|
+
if data.empty:
|
24
|
+
raise ValueError("data contains no rows. Please provide a valid data set.")
|
25
|
+
if expected_features is not None and data.shape[-1] != expected_features:
|
26
|
+
raise ValueError(f"expected '{expected_features}' features in data set:\n\t{data}")
|
27
|
+
return data.shape[-1]
|
28
|
+
|
29
|
+
|
30
|
+
def _create_multilevel_index(chunks: Sequence[Chunk], result_group_name: str, result_column_names: Sequence[str]):
|
31
|
+
chunk_column_names = (*chunks[0].KEYS, "period")
|
32
|
+
chunk_tuples = [("chunk", chunk_column_name) for chunk_column_name in chunk_column_names]
|
33
|
+
result_tuples = [(result_group_name, column_name) for column_name in result_column_names]
|
34
|
+
return pd.MultiIndex.from_tuples(chunk_tuples + result_tuples)
|
35
|
+
|
36
|
+
|
37
|
+
class AbstractCalculator(ABC):
|
38
|
+
"""Base class for drift calculation."""
|
39
|
+
|
40
|
+
def __init__(self, chunker: Chunker | None = None, logger: Logger | None = None):
|
41
|
+
self.chunker = chunker if isinstance(chunker, Chunker) else CountBasedChunker(10)
|
42
|
+
self.result: DriftMVDCOutput | None = None
|
43
|
+
self.n_features: int | None = None
|
44
|
+
self._logger = logger if isinstance(logger, Logger) else logging.getLogger(__name__)
|
45
|
+
|
46
|
+
def fit(self, reference_data: pd.DataFrame) -> Self:
|
47
|
+
"""Trains the calculator using reference data."""
|
48
|
+
self.n_features = _validate(reference_data)
|
49
|
+
|
50
|
+
self._logger.debug(f"fitting {str(self)}")
|
51
|
+
self.result = self._fit(reference_data)
|
52
|
+
return self
|
53
|
+
|
54
|
+
def calculate(self, data: pd.DataFrame) -> DriftMVDCOutput:
|
55
|
+
"""Performs a calculation on the provided data."""
|
56
|
+
if self.result is None:
|
57
|
+
raise RuntimeError("must run fit with reference data before running calculate")
|
58
|
+
_validate(data, self.n_features)
|
59
|
+
|
60
|
+
self._logger.debug(f"calculating {str(self)}")
|
61
|
+
self.result = self._calculate(data)
|
62
|
+
return self.result
|
63
|
+
|
64
|
+
@abstractmethod
|
65
|
+
def _fit(self, reference_data: pd.DataFrame) -> DriftMVDCOutput: ...
|
66
|
+
|
67
|
+
@abstractmethod
|
68
|
+
def _calculate(self, data: pd.DataFrame) -> DriftMVDCOutput: ...
|
@@ -0,0 +1,404 @@
|
|
1
|
+
"""
|
2
|
+
NannyML module providing intelligent splitting of data into chunks.
|
3
|
+
|
4
|
+
Source code derived from NannyML 0.13.0
|
5
|
+
https://github.com/NannyML/nannyml/blob/main/nannyml/chunk.py
|
6
|
+
|
7
|
+
Licensed under Apache Software License (Apache 2.0)
|
8
|
+
"""
|
9
|
+
|
10
|
+
from __future__ import annotations
|
11
|
+
|
12
|
+
import copy
|
13
|
+
import logging
|
14
|
+
import warnings
|
15
|
+
from abc import ABC, abstractmethod
|
16
|
+
from typing import Any, Generic, Literal, Sequence, TypeVar, cast
|
17
|
+
|
18
|
+
import pandas as pd
|
19
|
+
from dateutil.parser import ParserError
|
20
|
+
from pandas import Index, Period
|
21
|
+
from typing_extensions import Self
|
22
|
+
|
23
|
+
logger = logging.getLogger(__name__)
|
24
|
+
|
25
|
+
|
26
|
+
class Chunk(ABC):
|
27
|
+
"""A subset of data that acts as a logical unit during calculations."""
|
28
|
+
|
29
|
+
KEYS: Sequence[str]
|
30
|
+
|
31
|
+
def __init__(
|
32
|
+
self,
|
33
|
+
data: pd.DataFrame,
|
34
|
+
):
|
35
|
+
self.key: str
|
36
|
+
self.data = data
|
37
|
+
|
38
|
+
self.start_index: int = -1
|
39
|
+
self.end_index: int = -1
|
40
|
+
self.chunk_index: int = -1
|
41
|
+
|
42
|
+
def __repr__(self):
|
43
|
+
attr_str = ", ".join([f"{k}={v}" for k, v in self.dict().items()])
|
44
|
+
return f"{self.__class__.__name__}(data=pd.DataFrame(shape={self.data.shape}), {attr_str})"
|
45
|
+
|
46
|
+
def __len__(self):
|
47
|
+
return self.data.shape[0]
|
48
|
+
|
49
|
+
@abstractmethod
|
50
|
+
def __add__(self, other: Self) -> Self: ...
|
51
|
+
|
52
|
+
@abstractmethod
|
53
|
+
def __lt__(self, other: Self) -> bool: ...
|
54
|
+
|
55
|
+
@abstractmethod
|
56
|
+
def dict(self) -> dict[str, Any]: ...
|
57
|
+
|
58
|
+
|
59
|
+
class IndexChunk(Chunk):
|
60
|
+
"""Creates a new chunk.
|
61
|
+
|
62
|
+
Parameters
|
63
|
+
----------
|
64
|
+
data : DataFrame, required
|
65
|
+
The data to be contained within the chunk.
|
66
|
+
start_datetime: datetime
|
67
|
+
The starting point in time for this chunk.
|
68
|
+
end_datetime: datetime
|
69
|
+
The end point in time for this chunk.
|
70
|
+
"""
|
71
|
+
|
72
|
+
KEYS = ("key", "chunk_index", "start_index", "end_index")
|
73
|
+
|
74
|
+
def __init__(
|
75
|
+
self,
|
76
|
+
data: pd.DataFrame,
|
77
|
+
start_index: int,
|
78
|
+
end_index: int,
|
79
|
+
):
|
80
|
+
super().__init__(data)
|
81
|
+
self.key = f"[{start_index}:{end_index}]"
|
82
|
+
self.start_index: int = start_index
|
83
|
+
self.end_index: int = end_index
|
84
|
+
|
85
|
+
def __lt__(self, other: Self) -> bool:
|
86
|
+
return self.end_index < other.start_index
|
87
|
+
|
88
|
+
def __add__(self, other: Self) -> Self:
|
89
|
+
a, b = (self, other) if self < other else (other, self)
|
90
|
+
result = copy.deepcopy(a)
|
91
|
+
result.data = pd.concat([a.data, b.data])
|
92
|
+
result.end_index = b.end_index
|
93
|
+
return result
|
94
|
+
|
95
|
+
def dict(self) -> dict[str, Any]:
|
96
|
+
return dict(zip(self.KEYS, (self.key, self.chunk_index, self.start_index, self.end_index)))
|
97
|
+
|
98
|
+
|
99
|
+
class PeriodChunk(Chunk):
|
100
|
+
"""Creates a new chunk.
|
101
|
+
|
102
|
+
Parameters
|
103
|
+
----------
|
104
|
+
data : DataFrame, required
|
105
|
+
The data to be contained within the chunk.
|
106
|
+
start_datetime: datetime
|
107
|
+
The starting point in time for this chunk.
|
108
|
+
end_datetime: datetime
|
109
|
+
The end point in time for this chunk.
|
110
|
+
chunk_size : int
|
111
|
+
The size of the chunk.
|
112
|
+
"""
|
113
|
+
|
114
|
+
KEYS = ("key", "chunk_index", "start_date", "end_date", "chunk_size")
|
115
|
+
|
116
|
+
def __init__(self, data: pd.DataFrame, period: Period, chunk_size: int):
|
117
|
+
super().__init__(data)
|
118
|
+
self.key = str(period)
|
119
|
+
self.start_datetime = period.start_time
|
120
|
+
self.end_datetime = period.end_time
|
121
|
+
self.chunk_size = chunk_size
|
122
|
+
|
123
|
+
def __lt__(self, other: Self) -> bool:
|
124
|
+
return self.end_datetime < other.start_datetime
|
125
|
+
|
126
|
+
def __add__(self, other: Self) -> Self:
|
127
|
+
a, b = (self, other) if self < other else (other, self)
|
128
|
+
result = copy.deepcopy(a)
|
129
|
+
result.data = pd.concat([a.data, b.data])
|
130
|
+
result.end_datetime = b.end_datetime
|
131
|
+
result.chunk_size += b.chunk_size
|
132
|
+
return result
|
133
|
+
|
134
|
+
def dict(self) -> dict[str, Any]:
|
135
|
+
return dict(
|
136
|
+
zip(self.KEYS, (self.key, self.chunk_index, self.start_datetime, self.end_datetime, self.chunk_size))
|
137
|
+
)
|
138
|
+
|
139
|
+
|
140
|
+
TChunk = TypeVar("TChunk", bound=Chunk)
|
141
|
+
|
142
|
+
|
143
|
+
class Chunker(Generic[TChunk]):
|
144
|
+
"""Base class for Chunker implementations.
|
145
|
+
|
146
|
+
Inheriting classes will split a DataFrame into a list of Chunks.
|
147
|
+
They will do this based on several constraints, e.g. observation timestamps, number of observations per Chunk
|
148
|
+
or a preferred number of Chunks.
|
149
|
+
"""
|
150
|
+
|
151
|
+
def split(self, data: pd.DataFrame) -> list[TChunk]:
|
152
|
+
"""Splits a given data frame into a list of chunks.
|
153
|
+
|
154
|
+
This method provides a uniform interface across Chunker implementations to keep them interchangeable.
|
155
|
+
|
156
|
+
After performing the implementation-specific `_split` method, there are some checks on the resulting chunk list.
|
157
|
+
|
158
|
+
If the total number of chunks is low a warning will be written out to the logs.
|
159
|
+
|
160
|
+
We dynamically determine the optimal minimum number of observations per chunk and then check if the resulting
|
161
|
+
chunks contain at least as many. If there are any underpopulated chunks a warning will be written out in
|
162
|
+
the logs.
|
163
|
+
|
164
|
+
Parameters
|
165
|
+
----------
|
166
|
+
data: DataFrame
|
167
|
+
The data to be split into chunks
|
168
|
+
|
169
|
+
Returns
|
170
|
+
-------
|
171
|
+
chunks: List[Chunk]
|
172
|
+
The list of chunks
|
173
|
+
|
174
|
+
"""
|
175
|
+
if data.shape[0] == 0:
|
176
|
+
return []
|
177
|
+
|
178
|
+
chunks = self._split(data)
|
179
|
+
for chunk_index, chunk in enumerate(chunks):
|
180
|
+
chunk.start_index = cast(int, chunk.data.index.min())
|
181
|
+
chunk.end_index = cast(int, chunk.data.index.max())
|
182
|
+
chunk.chunk_index = chunk_index
|
183
|
+
|
184
|
+
if len(chunks) < 6:
|
185
|
+
# TODO wording
|
186
|
+
warnings.warn(
|
187
|
+
"The resulting number of chunks is too low. "
|
188
|
+
"Please consider splitting your data in a different way or continue at your own risk."
|
189
|
+
)
|
190
|
+
|
191
|
+
return chunks
|
192
|
+
|
193
|
+
@abstractmethod
|
194
|
+
def _split(self, data: pd.DataFrame) -> list[TChunk]: ...
|
195
|
+
|
196
|
+
|
197
|
+
class PeriodBasedChunker(Chunker[PeriodChunk]):
|
198
|
+
"""A Chunker that will split data into Chunks based on a date column in the data.
|
199
|
+
|
200
|
+
Examples
|
201
|
+
--------
|
202
|
+
Chunk using monthly periods and providing a column name
|
203
|
+
|
204
|
+
>>> from nannyml.chunk import PeriodBasedChunker
|
205
|
+
>>> df = pd.read_parquet("/path/to/my/data.pq")
|
206
|
+
>>> chunker = PeriodBasedChunker(timestamp_column_name="observation_date", offset="M")
|
207
|
+
>>> chunks = chunker.split(data=df)
|
208
|
+
|
209
|
+
Or chunk using weekly periods
|
210
|
+
|
211
|
+
>>> from nannyml.chunk import PeriodBasedChunker
|
212
|
+
>>> df = pd.read_parquet("/path/to/my/data.pq")
|
213
|
+
>>> chunker = PeriodBasedChunker(timestamp_column_name=df["observation_date"], offset="W", minimum_chunk_size=50)
|
214
|
+
>>> chunks = chunker.split(data=df)
|
215
|
+
|
216
|
+
"""
|
217
|
+
|
218
|
+
def __init__(self, timestamp_column_name: str, offset: str = "W") -> None:
|
219
|
+
"""Creates a new PeriodBasedChunker.
|
220
|
+
|
221
|
+
Parameters
|
222
|
+
----------
|
223
|
+
timestamp_column_name : str
|
224
|
+
The column name containing the timestamp to chunk on
|
225
|
+
offset : str
|
226
|
+
A frequency string representing a pandas.tseries.offsets.DateOffset.
|
227
|
+
The offset determines how the time-based grouping will occur. A list of possible values
|
228
|
+
can be found at <https://pandas.pydata.org/docs/user_guide/timeseries.html#offset-aliases>.
|
229
|
+
"""
|
230
|
+
self.timestamp_column_name = timestamp_column_name
|
231
|
+
self.offset = offset
|
232
|
+
|
233
|
+
def _split(self, data: pd.DataFrame) -> list[PeriodChunk]:
|
234
|
+
chunks = []
|
235
|
+
if self.timestamp_column_name is None:
|
236
|
+
raise ValueError("timestamp_column_name must be provided")
|
237
|
+
if self.timestamp_column_name not in data:
|
238
|
+
raise ValueError(f"timestamp column '{self.timestamp_column_name}' not in columns")
|
239
|
+
|
240
|
+
try:
|
241
|
+
grouped = data.groupby(pd.to_datetime(data[self.timestamp_column_name]).dt.to_period(self.offset))
|
242
|
+
except ParserError:
|
243
|
+
raise ValueError(
|
244
|
+
f"could not parse date_column '{self.timestamp_column_name}' values as dates."
|
245
|
+
f"Please verify if you've specified the correct date column."
|
246
|
+
)
|
247
|
+
|
248
|
+
for k, v in grouped.groups.items():
|
249
|
+
period, index = cast(Period, k), cast(Index, v)
|
250
|
+
chunk = PeriodChunk(
|
251
|
+
data=grouped.get_group(period), # type: ignore | dataframe
|
252
|
+
period=period,
|
253
|
+
chunk_size=len(index),
|
254
|
+
)
|
255
|
+
chunks.append(chunk)
|
256
|
+
|
257
|
+
return chunks
|
258
|
+
|
259
|
+
|
260
|
+
class SizeBasedChunker(Chunker[IndexChunk]):
|
261
|
+
"""A Chunker that will split data into Chunks based on the preferred number of observations per Chunk.
|
262
|
+
|
263
|
+
Notes
|
264
|
+
-----
|
265
|
+
- Chunks are adjacent, not overlapping
|
266
|
+
- There may be "incomplete" chunks, as the remainder of observations after dividing by `chunk_size`
|
267
|
+
will form a chunk of their own.
|
268
|
+
|
269
|
+
Examples
|
270
|
+
--------
|
271
|
+
Chunk using monthly periods and providing a column name
|
272
|
+
|
273
|
+
>>> from nannyml.chunk import SizeBasedChunker
|
274
|
+
>>> df = pd.read_parquet("/path/to/my/data.pq")
|
275
|
+
>>> chunker = SizeBasedChunker(chunk_size=2000, incomplete="drop")
|
276
|
+
>>> chunks = chunker.split(data=df)
|
277
|
+
|
278
|
+
"""
|
279
|
+
|
280
|
+
def __init__(
|
281
|
+
self,
|
282
|
+
chunk_size: int,
|
283
|
+
incomplete: Literal["append", "drop", "keep"] = "keep",
|
284
|
+
):
|
285
|
+
"""Create a new SizeBasedChunker.
|
286
|
+
|
287
|
+
Parameters
|
288
|
+
----------
|
289
|
+
chunk_size: int
|
290
|
+
The preferred size of the resulting Chunks, i.e. the number of observations in each Chunk.
|
291
|
+
incomplete: str, default='keep'
|
292
|
+
Choose how to handle any leftover observations that don't make up a full Chunk.
|
293
|
+
The following options are available:
|
294
|
+
|
295
|
+
- ``'drop'``: drop the leftover observations
|
296
|
+
- ``'keep'``: keep the incomplete Chunk (containing less than ``chunk_size`` observations)
|
297
|
+
- ``'append'``: append leftover observations to the last complete Chunk (overfilling it)
|
298
|
+
|
299
|
+
Defaults to ``'keep'``.
|
300
|
+
|
301
|
+
Returns
|
302
|
+
-------
|
303
|
+
chunker: a size-based instance used to split data into Chunks of a constant size.
|
304
|
+
|
305
|
+
"""
|
306
|
+
if not isinstance(chunk_size, int) or chunk_size <= 0:
|
307
|
+
raise ValueError(f"chunk_size={chunk_size} is invalid - provide an integer greater than 0")
|
308
|
+
if incomplete not in ("append", "drop", "keep"):
|
309
|
+
raise ValueError(f"incomplete={incomplete} is invalid - must be one of ['append', 'drop', 'keep']")
|
310
|
+
|
311
|
+
self.chunk_size = chunk_size
|
312
|
+
self.incomplete = incomplete
|
313
|
+
|
314
|
+
def _split(self, data: pd.DataFrame) -> list[IndexChunk]:
|
315
|
+
def _create_chunk(index: int, data: pd.DataFrame, chunk_size: int) -> IndexChunk:
|
316
|
+
chunk_data = data.iloc[index : index + chunk_size]
|
317
|
+
chunk = IndexChunk(
|
318
|
+
data=chunk_data,
|
319
|
+
start_index=index,
|
320
|
+
end_index=index + chunk_size - 1,
|
321
|
+
)
|
322
|
+
return chunk
|
323
|
+
|
324
|
+
chunks = [
|
325
|
+
_create_chunk(index=i, data=data, chunk_size=self.chunk_size)
|
326
|
+
for i in range(0, data.shape[0], self.chunk_size)
|
327
|
+
if i + self.chunk_size - 1 < len(data)
|
328
|
+
]
|
329
|
+
|
330
|
+
# deal with unassigned observations
|
331
|
+
if data.shape[0] % self.chunk_size != 0 and self.incomplete != "drop":
|
332
|
+
incomplete_chunk = _create_chunk(
|
333
|
+
index=self.chunk_size * (data.shape[0] // self.chunk_size),
|
334
|
+
data=data,
|
335
|
+
chunk_size=(data.shape[0] % self.chunk_size),
|
336
|
+
)
|
337
|
+
if self.incomplete == "append":
|
338
|
+
chunks[-1] += incomplete_chunk
|
339
|
+
else:
|
340
|
+
chunks += [incomplete_chunk]
|
341
|
+
|
342
|
+
return chunks
|
343
|
+
|
344
|
+
|
345
|
+
class CountBasedChunker(Chunker[IndexChunk]):
|
346
|
+
"""A Chunker that will split data into chunks based on the preferred number of total chunks.
|
347
|
+
|
348
|
+
Notes
|
349
|
+
-----
|
350
|
+
- Chunks are adjacent, not overlapping
|
351
|
+
- There may be "incomplete" chunks, as the remainder of observations after dividing by `chunk_size`
|
352
|
+
will form a chunk of their own.
|
353
|
+
|
354
|
+
Examples
|
355
|
+
--------
|
356
|
+
>>> from nannyml.chunk import CountBasedChunker
|
357
|
+
>>> df = pd.read_parquet("/path/to/my/data.pq")
|
358
|
+
>>> chunker = CountBasedChunker(chunk_number=100)
|
359
|
+
>>> chunks = chunker.split(data=df)
|
360
|
+
|
361
|
+
"""
|
362
|
+
|
363
|
+
def __init__(
|
364
|
+
self,
|
365
|
+
chunk_number: int,
|
366
|
+
incomplete: Literal["append", "drop", "keep"] = "keep",
|
367
|
+
):
|
368
|
+
"""Creates a new CountBasedChunker.
|
369
|
+
|
370
|
+
It will calculate the amount of observations per chunk based on the given chunk count.
|
371
|
+
It then continues to split the data into chunks just like a SizeBasedChunker does.
|
372
|
+
|
373
|
+
Parameters
|
374
|
+
----------
|
375
|
+
chunk_number: int
|
376
|
+
The amount of chunks to split the data in.
|
377
|
+
incomplete: str, default='keep'
|
378
|
+
Choose how to handle any leftover observations that don't make up a full Chunk.
|
379
|
+
The following options are available:
|
380
|
+
|
381
|
+
- ``'drop'``: drop the leftover observations
|
382
|
+
- ``'keep'``: keep the incomplete Chunk (containing less than ``chunk_size`` observations)
|
383
|
+
- ``'append'``: append leftover observations to the last complete Chunk (overfilling it)
|
384
|
+
|
385
|
+
Defaults to ``'keep'``.
|
386
|
+
|
387
|
+
Returns
|
388
|
+
-------
|
389
|
+
chunker: CountBasedChunker
|
390
|
+
|
391
|
+
"""
|
392
|
+
if not isinstance(chunk_number, int) or chunk_number <= 0:
|
393
|
+
raise ValueError(f"given chunk_number {chunk_number} is invalid - provide an integer greater than 0")
|
394
|
+
if incomplete not in ("append", "drop", "keep"):
|
395
|
+
raise ValueError(f"incomplete={incomplete} is invalid - must be one of ['append', 'drop', 'keep']")
|
396
|
+
|
397
|
+
self.chunk_number = chunk_number
|
398
|
+
self.incomplete: Literal["append", "drop", "keep"] = incomplete
|
399
|
+
|
400
|
+
def _split(self, data: pd.DataFrame) -> list[IndexChunk]:
|
401
|
+
chunk_size = data.shape[0] // self.chunk_number
|
402
|
+
chunker = SizeBasedChunker(chunk_size, self.incomplete)
|
403
|
+
chunks = chunker.split(data=data)
|
404
|
+
return chunks
|