dataeval 0.83.0__py3-none-any.whl → 0.84.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -214,7 +214,7 @@ def flatten(
214
214
  output[k] = cv
215
215
  else:
216
216
  dropped_inner.setdefault(k, set()).add(DropReason.INCONSISTENT_KEY)
217
- elif not isinstance(cv, list):
217
+ else:
218
218
  output[k] = cv if not size else [cv] * size
219
219
 
220
220
  if fully_qualified:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: dataeval
3
- Version: 0.83.0
3
+ Version: 0.84.0
4
4
  Summary: DataEval provides a simple interface to characterize image data and its impact on model performance across classification and object-detection tasks
5
5
  Home-page: https://dataeval.ai/
6
6
  License: MIT
@@ -1,6 +1,6 @@
1
- dataeval/__init__.py,sha256=uL-JSd_dKVJpGx4H8f6aOiQVpli46zeTLFqjb4Pa69c,1636
1
+ dataeval/__init__.py,sha256=VczdyekiNdqvi2dEUf7xXBu3Aw-MoVTvq-k6c2zjeBM,1636
2
2
  dataeval/_log.py,sha256=Mn5bRWO0cgtAYd5VGYSFiPgu57ta3zoktrtHAZ1m3dU,357
3
- dataeval/config.py,sha256=oQ0XQsgIF4_z4n1j0Di6B-JCRUFzzPgJgpQUm3ZlYhs,3539
3
+ dataeval/config.py,sha256=lD1YDH8HosFeRU5rQEYRBcmXMZy-csWaMlJTRZGd9iU,3582
4
4
  dataeval/detectors/__init__.py,sha256=3Sg-XWlwr75zEEH3hZKA4nWMtGvaRlnfzTWvZG_Ak6U,189
5
5
  dataeval/detectors/drift/__init__.py,sha256=6is_XBtG1d-vUbhHvqXGOdnAwxJ7NA5yRfURn7pCeIw,651
6
6
  dataeval/detectors/drift/_base.py,sha256=mJdKvyROgWvz-p1VlAIJqUI6BAj9ss8riUvR5An5wIw,13459
@@ -23,8 +23,9 @@ dataeval/metadata/_distance.py,sha256=xsXMMg1pJkHcEZ-KIlqv9YOGYVID3ELjt3-fr1QVnO
23
23
  dataeval/metadata/_ood.py,sha256=HbS5MusWl62hjixUAd-xaaT0KXkYY1M-MlnUaAI_-8M,12751
24
24
  dataeval/metadata/_utils.py,sha256=r8qBJT83RblobD5W5zyTVi6vYi51Dwkqswizdbzss-M,1169
25
25
  dataeval/metrics/__init__.py,sha256=8VC8q3HuJN3o_WN51Ae2_wXznl3RMXIvA5GYVcy7vr8,225
26
- dataeval/metrics/bias/__init__.py,sha256=1yTLmgiu1kwT_7ZWcjOUbj8R0NJ0DjGoCuWdA0_T7kc,683
26
+ dataeval/metrics/bias/__init__.py,sha256=329S1_3WnWqeU4-qVcbe0fMy4lDrj9uKslWHIQf93yg,839
27
27
  dataeval/metrics/bias/_balance.py,sha256=UnUgbPk2ybFfS5qxv8e_uim7RxamWj0UQP71x3omGs0,6158
28
+ dataeval/metrics/bias/_completeness.py,sha256=BysXU2Jpw33n5dl3acJFEqF3mFGiJLsfG4n5Q2fkTaY,4608
28
29
  dataeval/metrics/bias/_coverage.py,sha256=PeUoOiaghUEdn6Ov8z2-am7-fnBVIPcFbJK7Ty5JObA,3647
29
30
  dataeval/metrics/bias/_diversity.py,sha256=U_l4oYjH39rON2Io0BdCIwJxxob0cKTW8bZNufG0CWs,5820
30
31
  dataeval/metrics/bias/_parity.py,sha256=8JRZv4wLpxN9zTvMDlcpKgz-2nO-9eVjqccODcf2nbw,11535
@@ -34,29 +35,29 @@ dataeval/metrics/estimators/_clusterer.py,sha256=1HrpihGTJ63IkNSOy4Ibw633Gllkm1R
34
35
  dataeval/metrics/estimators/_divergence.py,sha256=QDWl1lyAYoO9D3Ho7qOHSk6ud8Gi2MGuXEsYwO1HxvA,4043
35
36
  dataeval/metrics/estimators/_uap.py,sha256=BULEBbJ9BQ1IcTeZf0x7iI60QHAWCccBOM97FIu9VXA,1928
36
37
  dataeval/metrics/stats/__init__.py,sha256=6tA_9nbbM5ObJ6cds8Y1VBtTQiTOxrpGQSFLu_lWGGA,1098
37
- dataeval/metrics/stats/_base.py,sha256=rn0CrRCvVh3QLDEi_JlOFVUoQ-xtclnOoHt_o1E26J4,10656
38
+ dataeval/metrics/stats/_base.py,sha256=rA-Xt9slf2DOR5ky9gGR5s1pmzTb47DykovDp5EWEP0,10672
38
39
  dataeval/metrics/stats/_boxratiostats.py,sha256=8Kd2FTZ5PLNYZfdAjU_R385gb0Z16JY0L9H_d5ZhgQs,6341
39
40
  dataeval/metrics/stats/_dimensionstats.py,sha256=h2wCLn4UuW7-GV6tM5E1SqSeGa_-4ie9oaEXpSC7EKI,2690
40
41
  dataeval/metrics/stats/_hashstats.py,sha256=yD6cXMvOo10-xtwUr7ftBRbCqMhReNfQJMInEWV_8Mk,4757
41
42
  dataeval/metrics/stats/_imagestats.py,sha256=hyjijPXAfUIJ1lwWiIyYK9VSLiq7Vg2-YhJ5Q8s1rkY,2979
42
- dataeval/metrics/stats/_labelstats.py,sha256=PtGyqj4RHw0cyLAWAR9FzZGqgA81AtxLGHZiuMAL2h0,4100
43
+ dataeval/metrics/stats/_labelstats.py,sha256=WbvXZ831a5BDfm58HF8Z8i5JUV1tgw7tcfzUh8pOXSo,2825
43
44
  dataeval/metrics/stats/_pixelstats.py,sha256=Q0-ldG-znDYBP_qTqm6S4qYm0ZV5FTTHf8MlyGHSYEc,3235
44
45
  dataeval/metrics/stats/_visualstats.py,sha256=ZxBDTerZ8ixibY2pGl7mwwcIz3DWl-k_Jb4YwBjHLNw,3686
45
- dataeval/outputs/__init__.py,sha256=uxTAr1Kn0QNwC7zn1U_5WBAgwZxupM3JGgD25DyO6yI,1655
46
+ dataeval/outputs/__init__.py,sha256=ciK-RdXgtn_s7MSCUW1UXvrXltMbltqbpfe9_V7xGrI,1701
46
47
  dataeval/outputs/_base.py,sha256=aZFbgybnZSQ3ws7QYRLTbDFqUfBFRVtIwX2LZfeGFUA,5703
47
- dataeval/outputs/_bias.py,sha256=O5RHbTUJDwkwJfz2-YoOfRb4eDl5Tg1UFVtvs025wfA,12173
48
+ dataeval/outputs/_bias.py,sha256=GwbjLdppUODOeudYb_7ki2ejDmAYthlRKGijVwgVePE,12407
48
49
  dataeval/outputs/_drift.py,sha256=gOiu2C-ERTWiRqlP0auMYxPBGdm9HecWPqWfg7I4tZg,2015
49
50
  dataeval/outputs/_estimators.py,sha256=a2oAIxxEDZ9WLGfMWH8KD-BVUS_SnULRPR-iI9hFPoQ,3047
50
51
  dataeval/outputs/_linters.py,sha256=YOdjrfm8ypdRrqYOaPM9nc6wVJI3-ita3Haj7LHDNaw,6416
51
52
  dataeval/outputs/_metadata.py,sha256=ffZgpX8KWURPHXpOWjbvJ2KRqWQkS2nWuIjKUzoHhMI,1710
52
53
  dataeval/outputs/_ood.py,sha256=suLKVXULGtXH0rq9eXHI1d3d2jhGmItJtz4QiQd47A4,1718
53
- dataeval/outputs/_stats.py,sha256=PhRdyWWZxewzenFx0MxK9y9ZLE2MnMA-a4-JeSJ_Bs8,13180
54
+ dataeval/outputs/_stats.py,sha256=c73Yc3Kkrl-MN6BGKe1V0Yr6Ix2Yp_DZZfFSp8fZMZ0,13180
54
55
  dataeval/outputs/_utils.py,sha256=HHlGC7sk416m_3Bgn075Qdblz_aPup_UOafJpB0RuXY,893
55
56
  dataeval/outputs/_workflows.py,sha256=MkRD6ubI4NCBXb9v3kjXy64cUGs3G-JKkBdOpRD9XVE,10750
56
57
  dataeval/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
- dataeval/typing.py,sha256=YQ1KteeK1zf2mcWwngWwQP8EC3pI4WsvAzp_x179b4g,6568
58
+ dataeval/typing.py,sha256=h1wNoWovasIEAWwNWvICToJ1bE1DRba68HifP14zjZc,6598
58
59
  dataeval/utils/__init__.py,sha256=T8F8zJh4ZAeu0wDzfpld92I2zJg9mWBmkGCHrDPU7gk,264
59
- dataeval/utils/_array.py,sha256=fc04sYShIdsRS4qtG1UCnlGGk-yVRxlOHTNAmW7NpDY,4990
60
+ dataeval/utils/_array.py,sha256=B44LbVi4g7XntVvnPyi5KeyQIxRQSvYhTVD4Th76u5g,5577
60
61
  dataeval/utils/_bin.py,sha256=nylthmsC3vzLHLhlUMACvZs--h7xvAh9Pt75InaQJW8,7322
61
62
  dataeval/utils/_clusterer.py,sha256=fw5x-2QN0TIbiodDKHZxRgxKHINedpPcOklzce0Rbjg,5436
62
63
  dataeval/utils/_fast_mst.py,sha256=4_7ykVihCL5jWtxcGnrecIsDQo65kUml9SZ1JxgBZYY,7172
@@ -65,12 +66,12 @@ dataeval/utils/_method.py,sha256=9B9JQbgqWJBRhQJb7glajUtWaQzUTIUuvrZ9_bisxsM,394
65
66
  dataeval/utils/_mst.py,sha256=f0vXytTUjlOS6AyL7c6PkXmaHuuGUK-vMLpq-5xMgxk,2183
66
67
  dataeval/utils/_plot.py,sha256=mTRQNbJsA42QMiOwZbJaH8sNYgP996QFDEGVVE9HSgY,7076
67
68
  dataeval/utils/data/__init__.py,sha256=vldQ2ZXl8gnI3s4vAGqUUVi6dc_R58F3JMSpbCOyFRI,820
68
- dataeval/utils/data/_dataset.py,sha256=tjZUJnxj9IY71GKqdKltrwufkn0EC0S3a6ylrW5Bc2s,7756
69
- dataeval/utils/data/_embeddings.py,sha256=fKGFJXhb4ajnBE3jrKxIvBAhBQ6HpcYYkpO_sAk3jTE,3669
70
- dataeval/utils/data/_images.py,sha256=pv_vvpH8hWxPgLvjeVC2mZiyZivZFNLARNIOXam5ceY,1984
69
+ dataeval/utils/data/_dataset.py,sha256=RZT05cfXkiPJPNCG6SVf8zmsk0pQUBViyrSo2l1_G5w,7852
70
+ dataeval/utils/data/_embeddings.py,sha256=NK87PfzpQUagwU1aBknsEEihAPNR3BIqHnHkpeKEgVs,7028
71
+ dataeval/utils/data/_images.py,sha256=Zn2um-oZjypwVTdpQNw7DsjxKyujswe2jLIgxmUPQ7Q,2626
71
72
  dataeval/utils/data/_metadata.py,sha256=VqeePp7NtoFFWzmIhH4fn-cjrnATpgzgzs-d73cnBXM,14370
72
- dataeval/utils/data/_selection.py,sha256=nlslafwAfoZ5d5K_v9bIIvij-UP0NcalKqH4Nw7A-S4,4553
73
- dataeval/utils/data/_split.py,sha256=YdsqTRjKbdSfg8w0f4XgX7j0uOSdtfzvvyObAzyqgI0,18433
73
+ dataeval/utils/data/_selection.py,sha256=2c6DjyeDIJapbI7xL36eBxFnJHIP8Yxt3oU3rBGMqLk,3948
74
+ dataeval/utils/data/_split.py,sha256=q-2RwllJgazwuyxB_GoBqK_nLkqIjyTVr2SQKj_7lhw,16767
74
75
  dataeval/utils/data/_targets.py,sha256=ws5d9wRiDkIuOV7GSAKNxzgSm6AWTgb0BFroQK5nAmM,3057
75
76
  dataeval/utils/data/collate.py,sha256=Z5nmBnWV_IoJzMp_tj8RCKjMJA9sSCY_zZITqISGixc,3865
76
77
  dataeval/utils/data/datasets/__init__.py,sha256=jBrswiERrvBx4pJQJZIq_B5UE-Wy8a2_SBfM2crG8R8,511
@@ -90,7 +91,7 @@ dataeval/utils/data/selections/_limit.py,sha256=ECvHRsp7OF4LZw2tE4sGqqJ085kjC-hd
90
91
  dataeval/utils/data/selections/_prioritize.py,sha256=EAA4_uFVV7MmemhhufGmP7eunnbtyTc-TzgcnvRK5OE,11333
91
92
  dataeval/utils/data/selections/_reverse.py,sha256=6SWpELC9Wgx-kPqzhDrPNn4NKU6FqDJveLrxV4D2Ypk,374
92
93
  dataeval/utils/data/selections/_shuffle.py,sha256=kY3xJvVbBArdrJu_u6mXmxk1HdNmmDE4w7MmxbevUmU,1178
93
- dataeval/utils/metadata.py,sha256=X8Hu4LdCzAaE9uk1hI4BflmFve_VOQCqK9lXq0sk9ow,14196
94
+ dataeval/utils/metadata.py,sha256=1XeGYj_e97-nJ_IrWEHPhWICmouYU5qbXWbp7uhZrIE,14171
94
95
  dataeval/utils/torch/__init__.py,sha256=dn5mjCrFp0b1aL_UEURhONU0Ag0cmXoTOBSGagpkTiA,325
95
96
  dataeval/utils/torch/_blocks.py,sha256=HVhBTMMD5NA4qheMUgyol1KWiKZDIuc8k5j4RcMKmhk,1466
96
97
  dataeval/utils/torch/_gmm.py,sha256=XM68GNEP97EjaB1U49-ZXRb81d0CEFnPS910alrcB3g,3740
@@ -99,7 +100,7 @@ dataeval/utils/torch/models.py,sha256=hmroEs6C6jQ5tAoZa71RFeIvXLxfXrTJSFH_jG2LGQ
99
100
  dataeval/utils/torch/trainer.py,sha256=iUotX4OdirH8-ZtjdpU8gbJavkYW9YY9qpA2mAlFy1Y,5520
100
101
  dataeval/workflows/__init__.py,sha256=ou8y0KO-d6W5lgmcyLjKlf-J_ckP3vilW7wHkgiDlZ4,255
101
102
  dataeval/workflows/sufficiency.py,sha256=mjKmfRrAjShLUFIARv5o8yT5fnFvDsS5Qu6ujIPUgQg,8497
102
- dataeval-0.83.0.dist-info/LICENSE.txt,sha256=uAooygKWvX6NbU9Ran9oG2msttoG8aeTeHSTe5JeCnY,1061
103
- dataeval-0.83.0.dist-info/METADATA,sha256=lVRLNQcl2DYQDo7GHpFv_z133aD5hn-uOCkXXltGK5s,5320
104
- dataeval-0.83.0.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
105
- dataeval-0.83.0.dist-info/RECORD,,
103
+ dataeval-0.84.0.dist-info/LICENSE.txt,sha256=uAooygKWvX6NbU9Ran9oG2msttoG8aeTeHSTe5JeCnY,1061
104
+ dataeval-0.84.0.dist-info/METADATA,sha256=oEAANNRg8RUIWn9AdrQEV7OUnX5mJbgf4NqXr5QY8AY,5320
105
+ dataeval-0.84.0.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
106
+ dataeval-0.84.0.dist-info/RECORD,,