dataeval 0.76.1__py3-none-any.whl → 0.81.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (96) hide show
  1. dataeval/__init__.py +3 -3
  2. dataeval/{output.py → _output.py} +14 -0
  3. dataeval/config.py +77 -0
  4. dataeval/detectors/__init__.py +1 -1
  5. dataeval/detectors/drift/__init__.py +6 -6
  6. dataeval/detectors/drift/{base.py → _base.py} +41 -30
  7. dataeval/detectors/drift/{cvm.py → _cvm.py} +21 -28
  8. dataeval/detectors/drift/{ks.py → _ks.py} +20 -26
  9. dataeval/detectors/drift/{mmd.py → _mmd.py} +33 -19
  10. dataeval/detectors/drift/{torch.py → _torch.py} +2 -1
  11. dataeval/detectors/drift/{uncertainty.py → _uncertainty.py} +23 -7
  12. dataeval/detectors/drift/updates.py +1 -1
  13. dataeval/detectors/linters/__init__.py +0 -3
  14. dataeval/detectors/linters/duplicates.py +17 -8
  15. dataeval/detectors/linters/outliers.py +23 -14
  16. dataeval/detectors/ood/ae.py +29 -8
  17. dataeval/detectors/ood/base.py +5 -4
  18. dataeval/detectors/ood/metadata_ks_compare.py +1 -1
  19. dataeval/detectors/ood/mixin.py +20 -5
  20. dataeval/detectors/ood/output.py +1 -1
  21. dataeval/detectors/ood/vae.py +73 -0
  22. dataeval/metadata/__init__.py +5 -0
  23. dataeval/metadata/_ood.py +238 -0
  24. dataeval/metrics/__init__.py +1 -1
  25. dataeval/metrics/bias/__init__.py +5 -4
  26. dataeval/metrics/bias/{balance.py → _balance.py} +67 -17
  27. dataeval/metrics/bias/{coverage.py → _coverage.py} +41 -35
  28. dataeval/metrics/bias/{diversity.py → _diversity.py} +17 -12
  29. dataeval/metrics/bias/{parity.py → _parity.py} +89 -61
  30. dataeval/metrics/estimators/__init__.py +14 -4
  31. dataeval/metrics/estimators/{ber.py → _ber.py} +42 -11
  32. dataeval/metrics/estimators/_clusterer.py +104 -0
  33. dataeval/metrics/estimators/{divergence.py → _divergence.py} +18 -13
  34. dataeval/metrics/estimators/{uap.py → _uap.py} +4 -4
  35. dataeval/metrics/stats/__init__.py +7 -7
  36. dataeval/metrics/stats/{base.py → _base.py} +52 -16
  37. dataeval/metrics/stats/{boxratiostats.py → _boxratiostats.py} +6 -9
  38. dataeval/metrics/stats/{datasetstats.py → _datasetstats.py} +10 -14
  39. dataeval/metrics/stats/{dimensionstats.py → _dimensionstats.py} +6 -5
  40. dataeval/metrics/stats/{hashstats.py → _hashstats.py} +6 -6
  41. dataeval/metrics/stats/{labelstats.py → _labelstats.py} +4 -4
  42. dataeval/metrics/stats/{pixelstats.py → _pixelstats.py} +5 -4
  43. dataeval/metrics/stats/{visualstats.py → _visualstats.py} +9 -8
  44. dataeval/typing.py +54 -0
  45. dataeval/utils/__init__.py +2 -2
  46. dataeval/utils/_array.py +169 -0
  47. dataeval/utils/_bin.py +199 -0
  48. dataeval/utils/_clusterer.py +144 -0
  49. dataeval/utils/_fast_mst.py +189 -0
  50. dataeval/utils/{image.py → _image.py} +6 -4
  51. dataeval/utils/_method.py +18 -0
  52. dataeval/utils/{shared.py → _mst.py} +3 -65
  53. dataeval/utils/{plot.py → _plot.py} +4 -4
  54. dataeval/utils/data/__init__.py +22 -0
  55. dataeval/utils/data/_embeddings.py +105 -0
  56. dataeval/utils/data/_images.py +65 -0
  57. dataeval/utils/data/_metadata.py +352 -0
  58. dataeval/utils/data/_selection.py +119 -0
  59. dataeval/utils/{dataset/split.py → data/_split.py} +13 -14
  60. dataeval/utils/data/_targets.py +73 -0
  61. dataeval/utils/data/_types.py +58 -0
  62. dataeval/utils/data/collate.py +103 -0
  63. dataeval/utils/data/datasets/__init__.py +17 -0
  64. dataeval/utils/data/datasets/_base.py +254 -0
  65. dataeval/utils/data/datasets/_cifar10.py +134 -0
  66. dataeval/utils/data/datasets/_fileio.py +168 -0
  67. dataeval/utils/data/datasets/_milco.py +153 -0
  68. dataeval/utils/data/datasets/_mixin.py +56 -0
  69. dataeval/utils/data/datasets/_mnist.py +183 -0
  70. dataeval/utils/data/datasets/_ships.py +123 -0
  71. dataeval/utils/data/datasets/_voc.py +352 -0
  72. dataeval/utils/data/selections/__init__.py +15 -0
  73. dataeval/utils/data/selections/_classfilter.py +60 -0
  74. dataeval/utils/data/selections/_indices.py +26 -0
  75. dataeval/utils/data/selections/_limit.py +26 -0
  76. dataeval/utils/data/selections/_reverse.py +18 -0
  77. dataeval/utils/data/selections/_shuffle.py +29 -0
  78. dataeval/utils/metadata.py +51 -376
  79. dataeval/utils/torch/{gmm.py → _gmm.py} +4 -2
  80. dataeval/utils/torch/{internal.py → _internal.py} +21 -51
  81. dataeval/utils/torch/models.py +43 -2
  82. dataeval/workflows/sufficiency.py +10 -9
  83. {dataeval-0.76.1.dist-info → dataeval-0.81.0.dist-info}/METADATA +4 -1
  84. dataeval-0.81.0.dist-info/RECORD +94 -0
  85. dataeval/detectors/linters/clusterer.py +0 -512
  86. dataeval/detectors/linters/merged_stats.py +0 -49
  87. dataeval/detectors/ood/metadata_least_likely.py +0 -119
  88. dataeval/interop.py +0 -69
  89. dataeval/utils/dataset/__init__.py +0 -7
  90. dataeval/utils/dataset/datasets.py +0 -412
  91. dataeval/utils/dataset/read.py +0 -63
  92. dataeval-0.76.1.dist-info/RECORD +0 -67
  93. /dataeval/{log.py → _log.py} +0 -0
  94. /dataeval/utils/torch/{blocks.py → _blocks.py} +0 -0
  95. {dataeval-0.76.1.dist-info → dataeval-0.81.0.dist-info}/LICENSE.txt +0 -0
  96. {dataeval-0.76.1.dist-info → dataeval-0.81.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,153 @@
1
+ from __future__ import annotations
2
+
3
+ from dataeval.utils.data.datasets._mixin import BaseDatasetNumpyMixin
4
+
5
+ __all__ = []
6
+
7
+ from pathlib import Path
8
+ from typing import Any, Sequence
9
+
10
+ from numpy.typing import NDArray
11
+
12
+ from dataeval.utils.data._types import Transform
13
+ from dataeval.utils.data.datasets._base import BaseODDataset, DataLocation
14
+
15
+
16
+ class MILCO(BaseODDataset[NDArray[Any]], BaseDatasetNumpyMixin):
17
+ """
18
+ A side-scan sonar dataset focused on mine (object) detection.
19
+
20
+
21
+ The dataset comes from the paper
22
+ `Side-scan sonar imaging data of underwater vehicles for mine detection <https://doi.org/10.1016/j.dib.2024.110132>`_
23
+ by N.P. Santos et. al. (2024).
24
+
25
+ This class only accesses a portion of the above dataset due to size constraints.
26
+ The full dataset contains 1170 side-scan sonar images collected using a 900-1800 kHz Marine Sonic
27
+ dual frequency side-scan sonar of a Teledyne Marine Gavia Autonomous Underwater Vehicle.
28
+ All the images were carefully analyzed and annotated, including the image coordinates of the
29
+ Bounding Box (BB) of the detected objects divided into NOn-Mine-like BOttom Objects (NOMBO)
30
+ and MIne-Like COntacts (MILCO) classes.
31
+
32
+ This dataset is consists of 261 images (120 images from 2015, 93 images from 2017, and 48 images from 2021).
33
+ In these 261 images, there are 315 MILCO objects, and 175 NOMBO objects.
34
+ The class “0” corresponds to a MILCO object and the class “1” corresponds to a NOMBO object.
35
+ The raw BB coordinates provided in the downloaded text files are (x, y, w, h),
36
+ given as percentages of the image (x_BB = x/img_width, y_BB = y/img_height, etc.).
37
+ The images come in 2 sizes, 416 x 416 or 1024 x 1024.
38
+
39
+ Parameters
40
+ ----------
41
+ root : str or pathlib.Path
42
+ Root directory of dataset where the ``milco`` folder exists.
43
+ download : bool, default False
44
+ If True, downloads the dataset from the internet and puts it in root directory.
45
+ Class checks to see if data is already downloaded to ensure it does not create a duplicate download.
46
+ transforms : Transform | Sequence[Transform] | None, default None
47
+ Transform(s) to apply to the data.
48
+ verbose : bool, default False
49
+ If True, outputs print statements.
50
+
51
+ Attributes
52
+ ----------
53
+ index2label : dict
54
+ Dictionary which translates from class integers to the associated class strings.
55
+ label2index : dict
56
+ Dictionary which translates from class strings to the associated class integers.
57
+ path : Path
58
+ Location of the folder containing the data.
59
+ metadata : dict
60
+ Dictionary containing Dataset metadata, such as `id` which returns the dataset class name.
61
+ """
62
+
63
+ _resources = [
64
+ DataLocation(
65
+ url="https://figshare.com/ndownloader/files/43169002",
66
+ filename="2015.zip",
67
+ md5=True,
68
+ checksum="93dfbb4fb7987734152c372496b4884c",
69
+ ),
70
+ DataLocation(
71
+ url="https://figshare.com/ndownloader/files/43169005",
72
+ filename="2017.zip",
73
+ md5=True,
74
+ checksum="9c2de230a2bbf654921416bea6fc0f42",
75
+ ),
76
+ DataLocation(
77
+ url="https://figshare.com/ndownloader/files/43168999",
78
+ filename="2021.zip",
79
+ md5=True,
80
+ checksum="b84749b21fa95a4a4c7de3741db78bc7",
81
+ ),
82
+ ]
83
+
84
+ index2label: dict[int, str] = {
85
+ 0: "MILCO",
86
+ 1: "NOMBO",
87
+ }
88
+
89
+ def __init__(
90
+ self,
91
+ root: str | Path,
92
+ download: bool = False,
93
+ transforms: Transform[NDArray[Any]] | Sequence[Transform[NDArray[Any]]] | None = None,
94
+ verbose: bool = False,
95
+ ) -> None:
96
+ super().__init__(
97
+ root,
98
+ download,
99
+ "base",
100
+ transforms,
101
+ verbose,
102
+ )
103
+
104
+ def _load_data(self) -> tuple[list[str], list[str], dict[str, list[Any]]]:
105
+ filepaths: list[str] = []
106
+ targets: list[str] = []
107
+ datum_metadata: dict[str, list[Any]] = {}
108
+ metadata_list: list[dict[str, Any]] = []
109
+
110
+ # Load the data
111
+ for resource in self._resources:
112
+ self._resource = resource
113
+ filepath, target, metadata = super()._load_data()
114
+ filepaths.extend(filepath)
115
+ targets.extend(target)
116
+ metadata_list.append(metadata)
117
+
118
+ # Adjust datum metadata to correct format
119
+ for data_dict in metadata_list:
120
+ for key, val in data_dict.items():
121
+ if key not in datum_metadata:
122
+ datum_metadata[str(key)] = []
123
+ datum_metadata[str(key)].extend(val)
124
+
125
+ return filepaths, targets, datum_metadata
126
+
127
+ def _load_data_inner(self) -> tuple[list[str], list[str], dict[str, Any]]:
128
+ file_data = {"year": [], "image_id": [], "data_path": [], "label_path": []}
129
+ data_folder = self.path / self._resource.filename[:-4]
130
+ for entry in data_folder.iterdir():
131
+ if entry.is_file() and entry.suffix == ".jpg":
132
+ # Remove file extension and split by "_"
133
+ parts = entry.stem.split("_")
134
+ file_data["image_id"].append(parts[0])
135
+ file_data["year"].append(parts[1])
136
+ file_data["data_path"].append(str(entry))
137
+ file_data["label_path"].append(str(entry.parent / entry.stem) + ".txt")
138
+ data = file_data.pop("data_path")
139
+ annotations = file_data.pop("label_path")
140
+
141
+ return data, annotations, file_data
142
+
143
+ def _read_annotations(self, annotation: str) -> tuple[list[list[float]], list[int], dict[str, Any]]:
144
+ """Function for extracting the info out of the text files"""
145
+ labels: list[int] = []
146
+ boxes: list[list[float]] = []
147
+ with open(annotation) as f:
148
+ for line in f.readlines():
149
+ out = line.strip().split(" ")
150
+ labels.append(int(out[0]))
151
+ boxes.append([float(out[1]), float(out[2]), float(out[3]), float(out[4])])
152
+
153
+ return boxes, labels, {}
@@ -0,0 +1,56 @@
1
+ from __future__ import annotations
2
+
3
+ __all__ = []
4
+
5
+ from typing import Any, Generic, TypeVar
6
+
7
+ import numpy as np
8
+ import torch
9
+ from numpy.typing import NDArray
10
+ from PIL import Image
11
+
12
+ _TArray = TypeVar("_TArray")
13
+
14
+
15
+ class BaseDatasetMixin(Generic[_TArray]):
16
+ index2label: dict[int, str]
17
+
18
+ def _as_array(self, raw: list[Any]) -> _TArray: ...
19
+ def _one_hot_encode(self, value: int | list[int]) -> _TArray: ...
20
+ def _read_file(self, path: str) -> _TArray: ...
21
+
22
+
23
+ class BaseDatasetNumpyMixin(BaseDatasetMixin[NDArray[Any]]):
24
+ def _as_array(self, raw: list[Any]) -> NDArray[Any]:
25
+ return np.asarray(raw)
26
+
27
+ def _one_hot_encode(self, value: int | list[int]) -> NDArray[Any]:
28
+ if isinstance(value, int):
29
+ encoded = np.zeros(len(self.index2label))
30
+ encoded[value] = 1
31
+ else:
32
+ encoded = np.zeros((len(value), len(self.index2label)))
33
+ encoded[np.arange(len(value)), value] = 1
34
+ return encoded
35
+
36
+ def _read_file(self, path: str) -> NDArray[Any]:
37
+ x = np.array(Image.open(path)).transpose(2, 0, 1)
38
+ return x
39
+
40
+
41
+ class BaseDatasetTorchMixin(BaseDatasetMixin[torch.Tensor]):
42
+ def _as_array(self, raw: list[Any]) -> torch.Tensor:
43
+ return torch.as_tensor(raw)
44
+
45
+ def _one_hot_encode(self, value: int | list[int]) -> torch.Tensor:
46
+ if isinstance(value, int):
47
+ encoded = torch.zeros(len(self.index2label))
48
+ encoded[value] = 1
49
+ else:
50
+ encoded = torch.zeros((len(value), len(self.index2label)))
51
+ encoded[torch.arange(len(value)), value] = 1
52
+ return encoded
53
+
54
+ def _read_file(self, path: str) -> torch.Tensor:
55
+ x = torch.as_tensor(np.array(Image.open(path)).transpose(2, 0, 1))
56
+ return x
@@ -0,0 +1,183 @@
1
+ from __future__ import annotations
2
+
3
+ __all__ = []
4
+
5
+ from pathlib import Path
6
+ from typing import Any, Literal, Sequence, TypeVar
7
+
8
+ import numpy as np
9
+ from numpy.typing import NDArray
10
+
11
+ from dataeval.utils.data._types import Transform
12
+ from dataeval.utils.data.datasets._base import BaseICDataset, DataLocation
13
+ from dataeval.utils.data.datasets._mixin import BaseDatasetNumpyMixin
14
+
15
+ MNISTClassStringMap = Literal["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
16
+ TMNISTClassMap = TypeVar("TMNISTClassMap", MNISTClassStringMap, int, list[MNISTClassStringMap], list[int])
17
+ CorruptionStringMap = Literal[
18
+ "identity",
19
+ "shot_noise",
20
+ "impulse_noise",
21
+ "glass_blur",
22
+ "motion_blur",
23
+ "shear",
24
+ "scale",
25
+ "rotate",
26
+ "brightness",
27
+ "translate",
28
+ "stripe",
29
+ "fog",
30
+ "spatter",
31
+ "dotted_line",
32
+ "zigzag",
33
+ "canny_edges",
34
+ ]
35
+
36
+
37
+ class MNIST(BaseICDataset[NDArray[Any]], BaseDatasetNumpyMixin):
38
+ """`MNIST <https://en.wikipedia.org/wiki/MNIST_database>`_ Dataset and `Corruptions <https://arxiv.org/abs/1906.02337>`_.
39
+
40
+ There are 15 different styles of corruptions. This class downloads differently depending on if you
41
+ need just the original dataset or if you need corruptions. If you need both a corrupt version and the
42
+ original version then choose `corruption="identity"` as this downloads all of the corrupt datasets and
43
+ provides the original as `identity`. If you just need the original, then using `corruption=None` will
44
+ download only the original dataset to save time and space.
45
+
46
+ Parameters
47
+ ----------
48
+ root : str or pathlib.Path
49
+ Root directory of dataset where the ``mnist`` folder exists.
50
+ download : bool, default False
51
+ If True, downloads the dataset from the internet and puts it in root directory.
52
+ Class checks to see if data is already downloaded to ensure it does not create a duplicate download.
53
+ image_set : "train", "test" or "base", default "train"
54
+ If "base", returns all of the data to allow the user to create their own splits.
55
+ verbose : bool, default False
56
+ If True, outputs print statements.
57
+
58
+ Attributes
59
+ ----------
60
+ index2label : dict
61
+ Dictionary which translates from class integers to the associated class strings.
62
+ label2index : dict
63
+ Dictionary which translates from class strings to the associated class integers.
64
+ path : Path
65
+ Location of the folder containing the data.
66
+ metadata : dict
67
+ Dictionary containing Dataset metadata, such as `id` which returns the dataset class name.
68
+ """
69
+
70
+ _resources = [
71
+ DataLocation(
72
+ url="https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz",
73
+ filename="mnist.npz",
74
+ md5=False,
75
+ checksum="731c5ac602752760c8e48fbffcf8c3b850d9dc2a2aedcf2cc48468fc17b673d1",
76
+ ),
77
+ DataLocation(
78
+ url="https://zenodo.org/record/3239543/files/mnist_c.zip",
79
+ filename="mnist_c.zip",
80
+ md5=True,
81
+ checksum="4b34b33045869ee6d424616cd3a65da3",
82
+ ),
83
+ ]
84
+
85
+ index2label: dict[int, str] = {
86
+ 0: "zero",
87
+ 1: "one",
88
+ 2: "two",
89
+ 3: "three",
90
+ 4: "four",
91
+ 5: "five",
92
+ 6: "six",
93
+ 7: "seven",
94
+ 8: "eight",
95
+ 9: "nine",
96
+ }
97
+
98
+ def __init__(
99
+ self,
100
+ root: str | Path,
101
+ download: bool = False,
102
+ image_set: Literal["train", "test", "base"] = "train",
103
+ corruption: CorruptionStringMap | None = None,
104
+ transforms: Transform[NDArray[Any]] | Sequence[Transform[NDArray[Any]]] | None = None,
105
+ verbose: bool = False,
106
+ ) -> None:
107
+ self.corruption = corruption
108
+ if self.corruption == "identity" and verbose:
109
+ print("Identity is not a corrupted dataset but the original MNIST dataset.")
110
+ self._resource_index = 0 if self.corruption is None else 1
111
+
112
+ super().__init__(
113
+ root,
114
+ download,
115
+ image_set,
116
+ transforms,
117
+ verbose,
118
+ )
119
+
120
+ def _load_data_inner(self) -> tuple[list[str], list[int], dict[str, Any]]:
121
+ """Function to load in the file paths for the data and labels from the correct data format"""
122
+ if self.corruption is None:
123
+ try:
124
+ file_path = self.path / self._resource.filename
125
+ self._loaded_data, labels = self._grab_data(file_path)
126
+ except FileNotFoundError:
127
+ self._loaded_data, labels = self._load_corruption()
128
+ else:
129
+ self._loaded_data, labels = self._load_corruption()
130
+
131
+ index_strings = np.arange(self._loaded_data.shape[0]).astype(str).tolist()
132
+ return index_strings, labels.tolist(), {}
133
+
134
+ def _load_corruption(self) -> tuple[NDArray[Any], NDArray[np.uintp]]:
135
+ """Function to load in the file paths for the data and labels for the different corrupt data formats"""
136
+ corruption = self.corruption if self.corruption is not None else "identity"
137
+ base_path = self.path / corruption
138
+ if self.image_set == "base":
139
+ raw_data = []
140
+ raw_labels = []
141
+ for group in ["train", "test"]:
142
+ file_path = base_path / f"{group}_images.npy"
143
+ raw_data.append(self._grab_corruption_data(file_path))
144
+
145
+ label_path = base_path / f"{group}_labels.npy"
146
+ raw_labels.append(self._grab_corruption_data(label_path))
147
+
148
+ data = np.concatenate(raw_data, axis=0).transpose(0, 3, 1, 2)
149
+ labels = np.concatenate(raw_labels).astype(np.uintp)
150
+ else:
151
+ file_path = base_path / f"{self.image_set}_images.npy"
152
+ data = self._grab_corruption_data(file_path)
153
+ data = data.astype(np.float64).transpose(0, 3, 1, 2)
154
+
155
+ label_path = base_path / f"{self.image_set}_labels.npy"
156
+ labels = self._grab_corruption_data(label_path)
157
+ labels = labels.astype(np.uintp)
158
+
159
+ return data, labels
160
+
161
+ def _grab_data(self, path: Path) -> tuple[NDArray[Any], NDArray[np.uintp]]:
162
+ """Function to load in the data numpy array"""
163
+ with np.load(path, allow_pickle=True) as data_array:
164
+ if self.image_set == "base":
165
+ data = np.concatenate([data_array["x_train"], data_array["x_test"]], axis=0)
166
+ labels = np.concatenate([data_array["y_train"], data_array["y_test"]], axis=0).astype(np.uintp)
167
+ else:
168
+ data, labels = data_array[f"x_{self.image_set}"], data_array[f"y_{self.image_set}"].astype(np.uintp)
169
+ data = np.expand_dims(data, axis=1)
170
+ return data, labels
171
+
172
+ def _grab_corruption_data(self, path: Path) -> NDArray[Any]:
173
+ """Function to load in the data numpy array for the previously chosen corrupt format"""
174
+ x = np.load(path, allow_pickle=False)
175
+ return x
176
+
177
+ def _read_file(self, path: str) -> NDArray[Any]:
178
+ """
179
+ Function to grab the correct image from the loaded data.
180
+ Overwrite of the base `_read_file` because data is an all or nothing load.
181
+ """
182
+ index = int(path)
183
+ return self._loaded_data[index]
@@ -0,0 +1,123 @@
1
+ from __future__ import annotations
2
+
3
+ __all__ = []
4
+
5
+ from pathlib import Path
6
+ from typing import Any, Sequence
7
+
8
+ import numpy as np
9
+ from numpy.typing import NDArray
10
+
11
+ from dataeval.utils.data._types import Transform
12
+ from dataeval.utils.data.datasets._base import BaseICDataset, DataLocation
13
+ from dataeval.utils.data.datasets._mixin import BaseDatasetNumpyMixin
14
+
15
+
16
+ class Ships(BaseICDataset[NDArray[Any]], BaseDatasetNumpyMixin):
17
+ """
18
+ A dataset that focuses on identifying ships from satellite images.
19
+
20
+ The dataset comes from kaggle,
21
+ `Ships in Satellite Imagery <https://www.kaggle.com/datasets/rhammell/ships-in-satellite-imagery>`_.
22
+ The images come from Planet satellite imagery when they gave
23
+ `open-access to a portion of their data <https://www.planet.com/pulse/open-california-rapideye-data/>`_.
24
+
25
+ There are 4000 80x80x3 (HWC) images of ships, sea, and land.
26
+ There are also 8 larger scene images similar to what would be operationally provided.
27
+
28
+ Parameters
29
+ ----------
30
+ root : str or pathlib.Path
31
+ Root directory of dataset where the ``shipdataset`` folder exists.
32
+ download : bool, default False
33
+ If True, downloads the dataset from the internet and puts it in root directory.
34
+ Class checks to see if data is already downloaded to ensure it does not create a duplicate download.
35
+ verbose : bool, default False
36
+ If True, outputs print statements.
37
+
38
+ Attributes
39
+ ----------
40
+ index2label : dict
41
+ Dictionary which translates from class integers to the associated class strings.
42
+ label2index : dict
43
+ Dictionary which translates from class strings to the associated class integers.
44
+ path : Path
45
+ Location of the folder containing the data.
46
+ metadata : dict
47
+ Dictionary containing Dataset metadata, such as `id` which returns the dataset class name.
48
+ """
49
+
50
+ _resources = [
51
+ DataLocation(
52
+ url="https://zenodo.org/record/3611230/files/ships-in-satellite-imagery.zip",
53
+ filename="ships-in-satellite-imagery.zip",
54
+ md5=True,
55
+ checksum="b2e8a41ed029592b373bd72ee4b89f32",
56
+ ),
57
+ ]
58
+
59
+ index2label: dict[int, str] = {
60
+ 0: "no ship",
61
+ 1: "ship",
62
+ }
63
+
64
+ def __init__(
65
+ self,
66
+ root: str | Path,
67
+ download: bool = False,
68
+ transforms: Transform[NDArray[Any]] | Sequence[Transform[NDArray[Any]]] | None = None,
69
+ verbose: bool = False,
70
+ ) -> None:
71
+ super().__init__(
72
+ root,
73
+ download,
74
+ "base",
75
+ transforms,
76
+ verbose,
77
+ )
78
+ self._scenes: list[str] = self._load_scenes()
79
+
80
+ def _load_data_inner(self) -> tuple[list[str], list[int], dict[str, Any]]:
81
+ """Function to load in the file paths for the data and labels"""
82
+ file_data = {"label": [], "scene_id": [], "longitude": [], "latitude": [], "path": []}
83
+ data_folder = self.path / "shipsnet"
84
+ for entry in data_folder.iterdir():
85
+ # Remove file extension and split by "_"
86
+ parts = entry.stem.split("__") # Removes ".png" and splits the string
87
+ file_data["label"].append(int(parts[0]))
88
+ file_data["scene_id"].append(parts[1])
89
+ lat_lon = parts[2].split("_")
90
+ file_data["longitude"].append(float(lat_lon[0]))
91
+ file_data["latitude"].append(float(lat_lon[1]))
92
+ file_data["path"].append(entry)
93
+ data = file_data.pop("path")
94
+ labels = file_data.pop("label")
95
+ return data, labels, file_data
96
+
97
+ def _load_scenes(self) -> list[str]:
98
+ """Function to load in the file paths for the scene images"""
99
+ data_folder = self.path / "scenes"
100
+ scene = [str(entry) for entry in data_folder.iterdir()]
101
+ return scene
102
+
103
+ def get_scene(self, index: int) -> NDArray[np.uintp]:
104
+ """
105
+ Get the desired satellite image (scene) by passing in the index of the desired file.
106
+
107
+ Args
108
+ ----
109
+ index : int
110
+ Value of the desired data point
111
+
112
+ Returns
113
+ -------
114
+ NDArray[np.uintp]
115
+ Scene image
116
+
117
+ Note
118
+ ----
119
+ The scene will be returned with the channel axis first.
120
+ """
121
+ scene = self._read_file(self._scenes[index])
122
+ np.moveaxis(scene, -1, 0)
123
+ return scene