dataeval 0.75.0__py3-none-any.whl → 0.76.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dataeval/__init__.py +3 -3
- dataeval/detectors/drift/base.py +2 -2
- dataeval/detectors/drift/ks.py +2 -1
- dataeval/detectors/drift/mmd.py +3 -2
- dataeval/detectors/drift/uncertainty.py +2 -2
- dataeval/detectors/drift/updates.py +1 -1
- dataeval/detectors/linters/clusterer.py +3 -2
- dataeval/detectors/linters/duplicates.py +4 -4
- dataeval/detectors/linters/outliers.py +96 -3
- dataeval/detectors/ood/__init__.py +1 -1
- dataeval/detectors/ood/base.py +1 -17
- dataeval/detectors/ood/output.py +1 -1
- dataeval/interop.py +1 -1
- dataeval/metrics/__init__.py +1 -1
- dataeval/metrics/bias/__init__.py +1 -1
- dataeval/metrics/bias/balance.py +3 -3
- dataeval/metrics/bias/coverage.py +1 -1
- dataeval/metrics/bias/diversity.py +14 -10
- dataeval/metrics/bias/parity.py +7 -9
- dataeval/metrics/estimators/ber.py +4 -3
- dataeval/metrics/estimators/divergence.py +3 -3
- dataeval/metrics/estimators/uap.py +3 -3
- dataeval/metrics/stats/__init__.py +1 -1
- dataeval/metrics/stats/base.py +24 -8
- dataeval/metrics/stats/boxratiostats.py +5 -5
- dataeval/metrics/stats/datasetstats.py +39 -6
- dataeval/metrics/stats/dimensionstats.py +4 -4
- dataeval/metrics/stats/hashstats.py +2 -2
- dataeval/metrics/stats/labelstats.py +89 -6
- dataeval/metrics/stats/pixelstats.py +7 -5
- dataeval/metrics/stats/visualstats.py +6 -4
- dataeval/output.py +23 -14
- dataeval/utils/__init__.py +2 -2
- dataeval/utils/dataset/read.py +1 -1
- dataeval/utils/dataset/split.py +1 -1
- dataeval/utils/metadata.py +255 -110
- dataeval/utils/plot.py +129 -6
- dataeval/workflows/sufficiency.py +2 -2
- {dataeval-0.75.0.dist-info → dataeval-0.76.1.dist-info}/LICENSE.txt +2 -2
- {dataeval-0.75.0.dist-info → dataeval-0.76.1.dist-info}/METADATA +57 -30
- dataeval-0.76.1.dist-info/RECORD +67 -0
- dataeval-0.75.0.dist-info/RECORD +0 -67
- {dataeval-0.75.0.dist-info → dataeval-0.76.1.dist-info}/WHEEL +0 -0
dataeval/utils/plot.py
CHANGED
@@ -3,6 +3,7 @@ from __future__ import annotations
|
|
3
3
|
__all__ = []
|
4
4
|
|
5
5
|
import contextlib
|
6
|
+
from typing import Any
|
6
7
|
|
7
8
|
import numpy as np
|
8
9
|
from numpy.typing import ArrayLike
|
@@ -70,12 +71,17 @@ def heatmap(
|
|
70
71
|
# Rotate the tick labels and set their alignment.
|
71
72
|
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
|
72
73
|
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
74
|
+
light_gray = "0.9"
|
75
|
+
# Turn spines on and create light gray easily visible grid.
|
76
|
+
for spine in ax.spines.values():
|
77
|
+
spine.set_visible(True)
|
78
|
+
spine.set_color(light_gray)
|
79
|
+
|
80
|
+
xticks = np.arange(np_data.shape[1] + 1) - 0.5
|
81
|
+
yticks = np.arange(np_data.shape[0] + 1) - 0.5
|
82
|
+
ax.set_xticks(xticks, minor=True)
|
83
|
+
ax.set_yticks(yticks, minor=True)
|
84
|
+
ax.grid(which="minor", color=light_gray, linestyle="-", linewidth=3)
|
79
85
|
ax.tick_params(which="minor", bottom=False, left=False)
|
80
86
|
|
81
87
|
if xlabel:
|
@@ -124,3 +130,120 @@ def format_text(*args: str) -> str:
|
|
124
130
|
"""
|
125
131
|
x = args[0]
|
126
132
|
return f"{x:.2f}".replace("0.00", "0").replace("0.", ".").replace("nan", "")
|
133
|
+
|
134
|
+
|
135
|
+
def histogram_plot(
|
136
|
+
data_dict: dict[str, Any],
|
137
|
+
log: bool = True,
|
138
|
+
xlabel: str = "values",
|
139
|
+
ylabel: str = "counts",
|
140
|
+
) -> Figure:
|
141
|
+
"""
|
142
|
+
Plots a formatted histogram
|
143
|
+
|
144
|
+
Parameters
|
145
|
+
----------
|
146
|
+
data_dict : dict
|
147
|
+
Dictionary containing the metrics and their value arrays
|
148
|
+
log : bool, default True
|
149
|
+
If True, plots the histogram on a semi-log scale (y axis)
|
150
|
+
xlabel : str, default "values"
|
151
|
+
X-axis label
|
152
|
+
ylabel : str, default "counts"
|
153
|
+
Y-axis label
|
154
|
+
|
155
|
+
Returns
|
156
|
+
-------
|
157
|
+
matplotlib.figure.Figure
|
158
|
+
Formatted plot of histograms
|
159
|
+
"""
|
160
|
+
import matplotlib.pyplot as plt
|
161
|
+
|
162
|
+
num_metrics = len(data_dict)
|
163
|
+
if num_metrics > 2:
|
164
|
+
rows = int(len(data_dict) / 3)
|
165
|
+
fig, axs = plt.subplots(rows, 3, figsize=(10, rows * 2.5))
|
166
|
+
else:
|
167
|
+
fig, axs = plt.subplots(1, num_metrics, figsize=(4 * num_metrics, 4))
|
168
|
+
|
169
|
+
for ax, metric in zip(
|
170
|
+
axs.flat,
|
171
|
+
data_dict,
|
172
|
+
):
|
173
|
+
# Plot the histogram for the chosen metric
|
174
|
+
ax.hist(data_dict[metric], bins=20, log=log)
|
175
|
+
|
176
|
+
# Add labels to the histogram
|
177
|
+
ax.set_title(metric)
|
178
|
+
ax.set_ylabel(ylabel)
|
179
|
+
ax.set_xlabel(xlabel)
|
180
|
+
|
181
|
+
fig.tight_layout()
|
182
|
+
return fig
|
183
|
+
|
184
|
+
|
185
|
+
def channel_histogram_plot(
|
186
|
+
data_dict: dict[str, Any],
|
187
|
+
log: bool = True,
|
188
|
+
max_channels: int = 3,
|
189
|
+
ch_mask: list[bool] | None = None,
|
190
|
+
xlabel: str = "values",
|
191
|
+
ylabel: str = "counts",
|
192
|
+
) -> Figure:
|
193
|
+
"""
|
194
|
+
Plots a formatted heatmap
|
195
|
+
|
196
|
+
Parameters
|
197
|
+
----------
|
198
|
+
data_dict : dict
|
199
|
+
Dictionary containing the metrics and their value arrays
|
200
|
+
log : bool, default True
|
201
|
+
If True, plots the histogram on a semi-log scale (y axis)
|
202
|
+
xlabel : str, default "values"
|
203
|
+
X-axis label
|
204
|
+
ylabel : str, default "counts"
|
205
|
+
Y-axis label
|
206
|
+
|
207
|
+
Returns
|
208
|
+
-------
|
209
|
+
matplotlib.figure.Figure
|
210
|
+
Formatted plot of histograms
|
211
|
+
"""
|
212
|
+
import matplotlib.pyplot as plt
|
213
|
+
|
214
|
+
channelwise_metrics = ["mean", "std", "var", "skew", "zeros", "brightness", "contrast", "darkness", "entropy"]
|
215
|
+
data_keys = [key for key in data_dict if key in channelwise_metrics]
|
216
|
+
label_kwargs = {"label": [f"Channel {i}" for i in range(max_channels)]}
|
217
|
+
|
218
|
+
num_metrics = len(data_keys)
|
219
|
+
if num_metrics > 2:
|
220
|
+
rows = int(len(data_keys) / 3)
|
221
|
+
fig, axs = plt.subplots(rows, 3, figsize=(10, rows * 2.5))
|
222
|
+
else:
|
223
|
+
fig, axs = plt.subplots(1, num_metrics, figsize=(4 * num_metrics, 4))
|
224
|
+
|
225
|
+
for ax, metric in zip(
|
226
|
+
axs.flat,
|
227
|
+
data_keys,
|
228
|
+
):
|
229
|
+
# Plot the histogram for the chosen metric
|
230
|
+
data = data_dict[metric][ch_mask].reshape(-1, max_channels)
|
231
|
+
ax.hist(
|
232
|
+
data,
|
233
|
+
bins=20,
|
234
|
+
density=True,
|
235
|
+
log=log,
|
236
|
+
**label_kwargs,
|
237
|
+
)
|
238
|
+
# Only plot the labels once for channels
|
239
|
+
if label_kwargs:
|
240
|
+
ax.legend()
|
241
|
+
label_kwargs = {}
|
242
|
+
|
243
|
+
# Add labels to the histogram
|
244
|
+
ax.set_title(metric)
|
245
|
+
ax.set_ylabel(ylabel)
|
246
|
+
ax.set_xlabel(xlabel)
|
247
|
+
|
248
|
+
fig.tight_layout()
|
249
|
+
return fig
|
@@ -24,7 +24,7 @@ with contextlib.suppress(ImportError):
|
|
24
24
|
@dataclass(frozen=True)
|
25
25
|
class SufficiencyOutput(Output):
|
26
26
|
"""
|
27
|
-
Output class for :class:`Sufficiency` workflow
|
27
|
+
Output class for :class:`Sufficiency` workflow.
|
28
28
|
|
29
29
|
Attributes
|
30
30
|
----------
|
@@ -378,7 +378,7 @@ T = TypeVar("T")
|
|
378
378
|
|
379
379
|
class Sufficiency(Generic[T]):
|
380
380
|
"""
|
381
|
-
Project dataset :term:`sufficiency<Sufficiency>` using given a model and evaluation criteria
|
381
|
+
Project dataset :term:`sufficiency<Sufficiency>` using given a model and evaluation criteria.
|
382
382
|
|
383
383
|
Parameters
|
384
384
|
----------
|
@@ -1,6 +1,6 @@
|
|
1
1
|
MIT License
|
2
2
|
|
3
|
-
Copyright (c)
|
3
|
+
Copyright (c) 2025 ARiA
|
4
4
|
|
5
5
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
6
|
of this software and associated documentation files (the "Software"), to deal
|
@@ -18,4 +18,4 @@ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
18
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
19
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
20
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
-
SOFTWARE.
|
21
|
+
SOFTWARE.
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: dataeval
|
3
|
-
Version: 0.
|
3
|
+
Version: 0.76.1
|
4
4
|
Summary: DataEval provides a simple interface to characterize image data and its impact on model performance across classification and object-detection tasks
|
5
5
|
Home-page: https://dataeval.ai/
|
6
6
|
License: MIT
|
@@ -21,8 +21,9 @@ Classifier: Programming Language :: Python :: 3.12
|
|
21
21
|
Classifier: Programming Language :: Python :: 3 :: Only
|
22
22
|
Classifier: Topic :: Scientific/Engineering
|
23
23
|
Provides-Extra: all
|
24
|
-
Requires-Dist: matplotlib ; extra == "all"
|
25
|
-
Requires-Dist: numpy (>=1.24.
|
24
|
+
Requires-Dist: matplotlib (>=3.7.1) ; extra == "all"
|
25
|
+
Requires-Dist: numpy (>=1.24.2)
|
26
|
+
Requires-Dist: pandas (>=2.0) ; extra == "all"
|
26
27
|
Requires-Dist: pillow (>=10.3.0)
|
27
28
|
Requires-Dist: requests
|
28
29
|
Requires-Dist: scikit-learn (>=1.5.0)
|
@@ -38,13 +39,17 @@ Description-Content-Type: text/markdown
|
|
38
39
|
|
39
40
|
# DataEval
|
40
41
|
|
41
|
-
To view our extensive collection of tutorials, how-to's, explanation guides,
|
42
|
+
To view our extensive collection of tutorials, how-to's, explanation guides,
|
43
|
+
and reference material, please visit our documentation on
|
44
|
+
**[Read the Docs](https://dataeval.readthedocs.io/)**
|
42
45
|
|
43
46
|
## About DataEval
|
44
47
|
|
45
48
|
<!-- start tagline -->
|
46
49
|
|
47
|
-
DataEval curates datasets to train and test performant, robust, unbiased and
|
50
|
+
DataEval curates datasets to train and test performant, robust, unbiased and
|
51
|
+
reliable AI models and monitors for data shifts that impact performance of
|
52
|
+
deployed models.
|
48
53
|
|
49
54
|
<!-- end tagline -->
|
50
55
|
|
@@ -52,65 +57,86 @@ DataEval curates datasets to train and test performant, robust, unbiased and rel
|
|
52
57
|
|
53
58
|
<!-- start needs -->
|
54
59
|
|
55
|
-
DataEval is an effective, powerful, and reliable set of tools for any T&E
|
60
|
+
DataEval is an effective, powerful, and reliable set of tools for any T&E
|
61
|
+
engineer. Throughout all stages of the machine learning lifecycle, DataEval
|
62
|
+
supports model development, data analysis, and monitoring with state-of-the-art
|
63
|
+
algorithms to help you solve difficult problems. With a focus on computer
|
64
|
+
vision tasks, DataEval provides simple, but effective metrics for performance
|
65
|
+
estimation, bias detection, and dataset linting.
|
56
66
|
|
57
67
|
<!-- end needs -->
|
58
68
|
|
59
69
|
<!-- start JATIC interop -->
|
60
|
-
DataEval is easy to install, supports a wide range of Python versions, and is
|
61
|
-
|
70
|
+
DataEval is easy to install, supports a wide range of Python versions, and is
|
71
|
+
compatible with many of the most popular packages in the scientific and T&E
|
72
|
+
communities.
|
73
|
+
|
74
|
+
DataEval also has native interopability between JATIC's suite of tools when
|
75
|
+
using MAITE-compliant datasets and models.
|
62
76
|
<!-- end JATIC interop -->
|
63
77
|
|
64
78
|
## Getting Started
|
65
79
|
|
66
80
|
**Python versions:** 3.9 - 3.12
|
67
81
|
|
68
|
-
**Supported packages**: *NumPy*, *Pandas*, *Sci-kit learn*, *MAITE*, *NRTK*,
|
82
|
+
**Supported packages**: *NumPy*, *Pandas*, *Sci-kit learn*, *MAITE*, *NRTK*,
|
83
|
+
*Gradient*
|
69
84
|
|
70
|
-
Choose your preferred method of installation below or follow our
|
85
|
+
Choose your preferred method of installation below or follow our
|
86
|
+
[installation guide](https://dataeval.readthedocs.io/en/v0.74.2/installation.html).
|
71
87
|
|
72
88
|
* [Installing with pip](#installing-with-pip)
|
73
89
|
* [Installing with conda/mamba](#installing-with-conda)
|
74
90
|
* [Installing from GitHub](#installing-from-github)
|
75
91
|
|
76
92
|
### **Installing with pip**
|
77
|
-
You can install DataEval directly from pypi.org using the following command. The optional dependencies of DataEval are `all`.
|
78
93
|
|
79
|
-
|
94
|
+
You can install DataEval directly from pypi.org using the following command.
|
95
|
+
The optional dependencies of DataEval are `all`.
|
96
|
+
|
97
|
+
```bash
|
80
98
|
pip install dataeval[all]
|
81
99
|
```
|
82
100
|
|
83
101
|
### **Installing with conda**
|
84
102
|
|
85
|
-
DataEval can be installed in a Conda/Mamba environment using the provided
|
86
|
-
are installed from the `pytorch`
|
103
|
+
DataEval can be installed in a Conda/Mamba environment using the provided
|
104
|
+
`environment.yaml` file. As some dependencies are installed from the `pytorch`
|
105
|
+
channel, the channel is specified in the below example.
|
87
106
|
|
88
|
-
```
|
107
|
+
```bash
|
89
108
|
micromamba create -f environment\environment.yaml -c pytorch
|
90
109
|
```
|
91
110
|
|
92
111
|
### **Installing from GitHub**
|
93
112
|
|
94
|
-
To install DataEval from source locally on Ubuntu, you will need `git-lfs` to
|
113
|
+
To install DataEval from source locally on Ubuntu, you will need `git-lfs` to
|
114
|
+
download larger, binary source files and `poetry` for project dependency
|
115
|
+
management.
|
95
116
|
|
96
|
-
```
|
117
|
+
```bash
|
97
118
|
sudo apt-get install git-lfs
|
98
119
|
pip install poetry
|
99
120
|
```
|
100
121
|
|
101
122
|
Pull the source down and change to the DataEval project directory.
|
102
|
-
|
123
|
+
|
124
|
+
```bash
|
103
125
|
git clone https://github.com/aria-ml/dataeval.git
|
104
126
|
cd dataeval
|
105
127
|
```
|
106
128
|
|
107
129
|
Install DataEval with optional dependencies for development.
|
108
|
-
|
130
|
+
|
131
|
+
```bash
|
109
132
|
poetry install --all-extras --with dev
|
110
133
|
```
|
111
134
|
|
112
|
-
Now that DataEval is installed, you can run commands in the poetry virtual
|
113
|
-
|
135
|
+
Now that DataEval is installed, you can run commands in the poetry virtual
|
136
|
+
environment by prefixing shell commands with `poetry run`, or activate the
|
137
|
+
virtual environment directly in the shell.
|
138
|
+
|
139
|
+
```bash
|
114
140
|
poetry shell
|
115
141
|
```
|
116
142
|
|
@@ -118,19 +144,20 @@ poetry shell
|
|
118
144
|
|
119
145
|
If you have any questions, feel free to reach out to the people below:
|
120
146
|
|
121
|
-
|
122
|
-
|
147
|
+
* **POC**: Scott Swan @scott.swan
|
148
|
+
* **DPOC**: Andrew Weng @aweng
|
123
149
|
|
124
150
|
## Acknowledgement
|
125
151
|
|
126
|
-
<!-- start
|
127
|
-
|
128
|
-
### Alibi-Detect
|
129
|
-
This project uses code from the [Alibi-Detect](https://github.com/SeldonIO/alibi-detect) Python library developed by SeldonIO.\
|
130
|
-
Additional documentation from their developers is available on the [Alibi-Detect documentation page](https://docs.seldon.io/projects/alibi-detect/en/stable/).
|
152
|
+
<!-- start acknowledgement -->
|
131
153
|
|
132
154
|
### CDAO Funding Acknowledgement
|
133
|
-
This material is based upon work supported by the Chief Digital and Artificial Intelligence Office under Contract No. W519TC-23-9-2033. The views and conclusions contained herein are those of the author(s) and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government.
|
134
155
|
|
135
|
-
|
156
|
+
This material is based upon work supported by the Chief Digital and Artificial
|
157
|
+
Intelligence Office under Contract No. W519TC-23-9-2033. The views and
|
158
|
+
conclusions contained herein are those of the author(s) and should not be
|
159
|
+
interpreted as necessarily representing the official policies or endorsements,
|
160
|
+
either expressed or implied, of the U.S. Government.
|
161
|
+
|
162
|
+
<!-- end acknowledgement -->
|
136
163
|
|
@@ -0,0 +1,67 @@
|
|
1
|
+
dataeval/__init__.py,sha256=vqyenyxYGE0OXW3C8PC1YDZRak1uLFIYd45-vh9qafQ,1474
|
2
|
+
dataeval/detectors/__init__.py,sha256=iifG-Z08mH5B4QhkKtAieDGJBKldKvmCXpDQJD9qVY8,206
|
3
|
+
dataeval/detectors/drift/__init__.py,sha256=wO294Oz--l0GuZTAkBpyGwZphbQsot57HoiEX6kjNOc,652
|
4
|
+
dataeval/detectors/drift/base.py,sha256=8zHUnUpmgpWMzDv5C-tUX61lbpDjhJ-eAIiNxaNvWP8,14469
|
5
|
+
dataeval/detectors/drift/cvm.py,sha256=TATS6IOE0INO1pkyRkesgrhDawD_kITsRsOOGVRs420,4132
|
6
|
+
dataeval/detectors/drift/ks.py,sha256=SAd2T9CdytXD7DegCzAX1pWYJdPuttyL97KAQYF4j7Y,4265
|
7
|
+
dataeval/detectors/drift/mmd.py,sha256=z7JPFbW4fmHJhR-Qe1OQ4mM8kW6dNxnd3uHD9oXMETE,7599
|
8
|
+
dataeval/detectors/drift/torch.py,sha256=ykD-Nggys5T9FTGXXbYYOi2WRKwEzEjXhL8ZueVmTxU,7659
|
9
|
+
dataeval/detectors/drift/uncertainty.py,sha256=zkrqz5euJJtYFKsDiRqFfTnDjVOTbqpZWgZiGMrYxvI,5351
|
10
|
+
dataeval/detectors/drift/updates.py,sha256=nKsF4xrMFZd2X84GJ5XnGylUuketX_RcH7UpcdlonIo,1781
|
11
|
+
dataeval/detectors/linters/__init__.py,sha256=CZV5naeYQYL3sHXO_CXB26AXkyTeKHI-TMaewtEs8Ag,483
|
12
|
+
dataeval/detectors/linters/clusterer.py,sha256=V-bNs4ut2E6SIqU4MR1Y96WBZcs4cavQhvXBB0vFZPw,20937
|
13
|
+
dataeval/detectors/linters/duplicates.py,sha256=Ba-Nmbjqg_HDMlEBqlWW1aFO_BA-HSc-uWHc3cmI394,5620
|
14
|
+
dataeval/detectors/linters/merged_stats.py,sha256=X-bDTwjyR8RuVmzxLaHZmQ5nI3oOWvsqVlitdSncapk,1355
|
15
|
+
dataeval/detectors/linters/outliers.py,sha256=o0LtAHdazLfj5GM2HcVDjVY_AfSU5GpBUjxHPC9VfIc,13728
|
16
|
+
dataeval/detectors/ood/__init__.py,sha256=Ws6_un4pFWNknki7Bp7qjrslZVB9pYNE-K72u2lF65k,291
|
17
|
+
dataeval/detectors/ood/ae.py,sha256=SL8oKTERhMwaZTQWwDhQQ6H07UKj8ozXqEWO3TaOAos,2151
|
18
|
+
dataeval/detectors/ood/base.py,sha256=-ApcC9lyZJAgk-joMpLXF20sJqtvlAugg-W18TcAsEw,3010
|
19
|
+
dataeval/detectors/ood/metadata_ks_compare.py,sha256=-hEhDNXFC7X8wmFeoigO7A7Qn90vRLroN_nKDwNgjnE,5204
|
20
|
+
dataeval/detectors/ood/metadata_least_likely.py,sha256=rb8GOgsrlrEzc6fxccdmyZQ5PC7HtTsTY8U97D-h5OU,5088
|
21
|
+
dataeval/detectors/ood/metadata_ood_mi.py,sha256=7_Sdzf7-x1TlrIQvSyOIB98C8_UQhUwmwFQmZ9_q1Uc,4042
|
22
|
+
dataeval/detectors/ood/mixin.py,sha256=Ia-rJF6rtGhE8uavijdbzOha3ueFk2CFfA0Ah_mnF40,4976
|
23
|
+
dataeval/detectors/ood/output.py,sha256=yygnsjaIQB6v6sXh7glqX2aoqWdf3_YLINqx7BGKMtk,1710
|
24
|
+
dataeval/interop.py,sha256=P9Kwe-vOVgbn1ng60y4giCnJYmHjIOpyGpccuIA7P1g,2322
|
25
|
+
dataeval/log.py,sha256=Mn5bRWO0cgtAYd5VGYSFiPgu57ta3zoktrtHAZ1m3dU,357
|
26
|
+
dataeval/metrics/__init__.py,sha256=OMntcHmmrsOfIlRsJTZQQaF5qXEuP61Li-ElKy7Ysbk,240
|
27
|
+
dataeval/metrics/bias/__init__.py,sha256=SIg4Qxza9BqXyKNQLIY0bpqoFvZfK5-GaejpTH6efVc,601
|
28
|
+
dataeval/metrics/bias/balance.py,sha256=B1sPackyodiBct9Hs88BR4nJde_R61JyjwSBIG_CFug,9171
|
29
|
+
dataeval/metrics/bias/coverage.py,sha256=igVDWJSrO2MvaTEiDUhVzVWPGNB1QOZvngCi8UF0RwA,5746
|
30
|
+
dataeval/metrics/bias/diversity.py,sha256=nF1y2FaQIU0yHQtckoddjqoty2hsVVMqwaXWHRdGfqA,8521
|
31
|
+
dataeval/metrics/bias/parity.py,sha256=2gSpXkg6ASnkywRTqqx3b3k1T5Qg1Jm-ihMKNZgEwys,12732
|
32
|
+
dataeval/metrics/estimators/__init__.py,sha256=oY_9jX7V-Kg7-4KpvMNB4rUhsk8QTA0DIoM8d2VtVIg,380
|
33
|
+
dataeval/metrics/estimators/ber.py,sha256=vcndXr0PNLRlYz7u7K74f-B5g3DnUkaTO_WigGdj0cg,5012
|
34
|
+
dataeval/metrics/estimators/divergence.py,sha256=joqqlH0AQFibJkHCCb7i7dMJIGF28fmZIR-tGupQQJQ,4247
|
35
|
+
dataeval/metrics/estimators/uap.py,sha256=ZAQUjJCbdulftWk6yjILCbnXGOE8RuDqEINZRtMW3tc,2143
|
36
|
+
dataeval/metrics/stats/__init__.py,sha256=pUT84sOxDiCHW6xz6Ml1Mf1bFszQrtd3qPG0Ja3boxA,1088
|
37
|
+
dataeval/metrics/stats/base.py,sha256=1ejjwlA0FmllcAw7J9Yv1r7GMmBYKvuGPzmDk9ktASM,12613
|
38
|
+
dataeval/metrics/stats/boxratiostats.py,sha256=PS1wvWwhTCMJX56erfPW-BZymXrevvXnKl2PkE0qmLk,6315
|
39
|
+
dataeval/metrics/stats/datasetstats.py,sha256=mt5t5WhlVI7mo56dmhqgnk1eH8oBV7dahgmqkFDcKo0,7387
|
40
|
+
dataeval/metrics/stats/dimensionstats.py,sha256=AlPor23dUH718jFNiVNedHQVaQzN-6OKQEVDQbnGE50,4027
|
41
|
+
dataeval/metrics/stats/hashstats.py,sha256=5nNSJ3Tl8gPqpYlWpxl7EHfW6pJd1BtbXYUiuGgH4Eo,5070
|
42
|
+
dataeval/metrics/stats/labelstats.py,sha256=MW6kB7V8pdIc7yHdXzRwlD6xSl6SYZonNsLUPKAVILI,6992
|
43
|
+
dataeval/metrics/stats/pixelstats.py,sha256=tfvu0tYPgDS0jCCSY2sZ2Ice5r1nNuKx-LYXxZQCw7s,4220
|
44
|
+
dataeval/metrics/stats/visualstats.py,sha256=pEQnAPFg-zQ1U5orwF0-U7kfHuZGjMJDsdEMAoDZd4I,4634
|
45
|
+
dataeval/output.py,sha256=Dyfv1xlrwSbCe7HdDyq8t-kiIRJbBeaMEmMROr1FrVQ,4034
|
46
|
+
dataeval/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
47
|
+
dataeval/utils/__init__.py,sha256=WW9e_1RbtkvLDRqu1NpDw3-V4su4mA8yJ_P3bgd_7Ho,283
|
48
|
+
dataeval/utils/dataset/__init__.py,sha256=IvRauQaa0CzJ5nZrfTSjGoaaKelyJcQDe3OPRw0-NXs,332
|
49
|
+
dataeval/utils/dataset/datasets.py,sha256=7tSqN3d8UncqmXh4eiEwarXgVxc4sMuIKPTqBCE0pN8,15080
|
50
|
+
dataeval/utils/dataset/read.py,sha256=Q_RaNTFXhkMsx3PrgJEIySdHAA-QxGuih6eq6mnJv-4,1524
|
51
|
+
dataeval/utils/dataset/split.py,sha256=1vNy5I1zZx-LIf8B0y57dUaO_UdVd1hyJggUANkwNtM,18958
|
52
|
+
dataeval/utils/image.py,sha256=AQljELyMFkYsf2AoNOH5dZG8DYE4hPw0MCk85eIXqAw,1926
|
53
|
+
dataeval/utils/metadata.py,sha256=tRcXgJsM1l7vt_naNJj8g8_EHD_AB5MGi1uWxqZsA6M,27431
|
54
|
+
dataeval/utils/plot.py,sha256=YyFL1KoJgnl2Bip7m73WVBJa6zbsBnn5c1b3skFfUrA,7068
|
55
|
+
dataeval/utils/shared.py,sha256=xvF3VLfyheVwJtdtDrneOobkKf7t-JTmf_w91FWXmqo,3616
|
56
|
+
dataeval/utils/torch/__init__.py,sha256=dn5mjCrFp0b1aL_UEURhONU0Ag0cmXoTOBSGagpkTiA,325
|
57
|
+
dataeval/utils/torch/blocks.py,sha256=HVhBTMMD5NA4qheMUgyol1KWiKZDIuc8k5j4RcMKmhk,1466
|
58
|
+
dataeval/utils/torch/gmm.py,sha256=fQ8CBO4Bf6i9N1CZdeJ8VJP25fsPjgMextQkondwgvo,3693
|
59
|
+
dataeval/utils/torch/internal.py,sha256=qAzQTwTI9Qy6f01Olw3d1TIJ4HoWGf0gQzgWVcdD2x4,6653
|
60
|
+
dataeval/utils/torch/models.py,sha256=Df3B_9x5uu-Y5ZOyhRZYpKJnDvxt0hgMeJLy1E4oxpU,8519
|
61
|
+
dataeval/utils/torch/trainer.py,sha256=Qay0LK63RuyoGYiJ5zI2C5BVym309ORvp6shhpcrIU4,5589
|
62
|
+
dataeval/workflows/__init__.py,sha256=L9yfBipNFGnYuN2JbMknIHDvziwfa2XAGFnOwifZbls,216
|
63
|
+
dataeval/workflows/sufficiency.py,sha256=jf53J1PAlfRHSjGpMCWRJzImitLtCQvTMCaMm28ZuPM,18675
|
64
|
+
dataeval-0.76.1.dist-info/LICENSE.txt,sha256=uAooygKWvX6NbU9Ran9oG2msttoG8aeTeHSTe5JeCnY,1061
|
65
|
+
dataeval-0.76.1.dist-info/METADATA,sha256=w02IzEy_S5kgRZFRGbWayMg98uFdn3jJT4Gl6MOQzek,5196
|
66
|
+
dataeval-0.76.1.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
67
|
+
dataeval-0.76.1.dist-info/RECORD,,
|
dataeval-0.75.0.dist-info/RECORD
DELETED
@@ -1,67 +0,0 @@
|
|
1
|
-
dataeval/__init__.py,sha256=yESctPswyAJ01Hr9k4QUoGZp8D0RtvoQ26k4AFE2vs4,1472
|
2
|
-
dataeval/detectors/__init__.py,sha256=iifG-Z08mH5B4QhkKtAieDGJBKldKvmCXpDQJD9qVY8,206
|
3
|
-
dataeval/detectors/drift/__init__.py,sha256=wO294Oz--l0GuZTAkBpyGwZphbQsot57HoiEX6kjNOc,652
|
4
|
-
dataeval/detectors/drift/base.py,sha256=sX46grnr4DV0WMofLTI2a_tDHR4OLZEUCQrMLePouqg,14468
|
5
|
-
dataeval/detectors/drift/cvm.py,sha256=TATS6IOE0INO1pkyRkesgrhDawD_kITsRsOOGVRs420,4132
|
6
|
-
dataeval/detectors/drift/ks.py,sha256=3Jgh5W7pC1hO1yZPCiXc47snlSdXv5BIG8sCyRRz-Ec,4220
|
7
|
-
dataeval/detectors/drift/mmd.py,sha256=lD__AouWlYWCJOD0eNNEhmLTnUPwNTBU6OCgITcpw40,7592
|
8
|
-
dataeval/detectors/drift/torch.py,sha256=ykD-Nggys5T9FTGXXbYYOi2WRKwEzEjXhL8ZueVmTxU,7659
|
9
|
-
dataeval/detectors/drift/uncertainty.py,sha256=Pdim80_-ainvOX5-7fhH9cvblYI2d-zocEwZO-JfCg4,5345
|
10
|
-
dataeval/detectors/drift/updates.py,sha256=UJ0z5hlunRi7twnkLABfdJG3tT2EqX4y9IGx8_USYvo,1780
|
11
|
-
dataeval/detectors/linters/__init__.py,sha256=CZV5naeYQYL3sHXO_CXB26AXkyTeKHI-TMaewtEs8Ag,483
|
12
|
-
dataeval/detectors/linters/clusterer.py,sha256=1qIQo5NuJkx-phKFWuXkUpUJLcqTt92L8Cpv3AmO3xQ,20929
|
13
|
-
dataeval/detectors/linters/duplicates.py,sha256=pcCRN27IuGa6ASkiFG73kYdI8_X0j12INbkD9GOlWPs,5614
|
14
|
-
dataeval/detectors/linters/merged_stats.py,sha256=X-bDTwjyR8RuVmzxLaHZmQ5nI3oOWvsqVlitdSncapk,1355
|
15
|
-
dataeval/detectors/linters/outliers.py,sha256=Fn6R_7mGOrWlTRCXFrjHvIFNELN6CTosoJgzDr8cVr0,10253
|
16
|
-
dataeval/detectors/ood/__init__.py,sha256=hTeR-Aqt6SKWsqFusaKiw_TlnFPe_sV3fQ7NKUTzZrU,292
|
17
|
-
dataeval/detectors/ood/ae.py,sha256=SL8oKTERhMwaZTQWwDhQQ6H07UKj8ozXqEWO3TaOAos,2151
|
18
|
-
dataeval/detectors/ood/base.py,sha256=6gUkbGE6PbKmA899rXOTOIeT8u_gaD0DNDQV8Wyfk5Y,3421
|
19
|
-
dataeval/detectors/ood/metadata_ks_compare.py,sha256=-hEhDNXFC7X8wmFeoigO7A7Qn90vRLroN_nKDwNgjnE,5204
|
20
|
-
dataeval/detectors/ood/metadata_least_likely.py,sha256=rb8GOgsrlrEzc6fxccdmyZQ5PC7HtTsTY8U97D-h5OU,5088
|
21
|
-
dataeval/detectors/ood/metadata_ood_mi.py,sha256=7_Sdzf7-x1TlrIQvSyOIB98C8_UQhUwmwFQmZ9_q1Uc,4042
|
22
|
-
dataeval/detectors/ood/mixin.py,sha256=Ia-rJF6rtGhE8uavijdbzOha3ueFk2CFfA0Ah_mnF40,4976
|
23
|
-
dataeval/detectors/ood/output.py,sha256=8UQbtudQ0gSeq_hQV67IE5SfHednaiGUHv9MideETdk,1710
|
24
|
-
dataeval/interop.py,sha256=GLziERWQQGwUO4Nb-uHpbLlvBOT2WF2GVilTHmsDq8w,2279
|
25
|
-
dataeval/log.py,sha256=Mn5bRWO0cgtAYd5VGYSFiPgu57ta3zoktrtHAZ1m3dU,357
|
26
|
-
dataeval/metrics/__init__.py,sha256=p-lRjm0oVHD3cXZeEajTfuGTuQOCCVHbJ8CqAI_GHVY,238
|
27
|
-
dataeval/metrics/bias/__init__.py,sha256=knYgCdeHredaHI6KGdjiYM6ViPfDf8NW35xkKiiGlVM,599
|
28
|
-
dataeval/metrics/bias/balance.py,sha256=od3gcejOqJDDymy09OWSxzqkBNyh7Vf3aXN9o6IPKHY,9151
|
29
|
-
dataeval/metrics/bias/coverage.py,sha256=k8TJAsUWlLgn_-JEtRWIOwhtMRwXmyGzLDndGxNTsAU,5745
|
30
|
-
dataeval/metrics/bias/diversity.py,sha256=upj-Gx_4-bBF-4dDaUSuURIbP98Ghk-BSCK5ZJNGMEg,8318
|
31
|
-
dataeval/metrics/bias/parity.py,sha256=wVMfzKFqzHkp3SNUJFjRH_Eej9DIg-xAhHkShIAek68,12755
|
32
|
-
dataeval/metrics/estimators/__init__.py,sha256=oY_9jX7V-Kg7-4KpvMNB4rUhsk8QTA0DIoM8d2VtVIg,380
|
33
|
-
dataeval/metrics/estimators/ber.py,sha256=p3KaY-rnK45CUDaqx-55wWG6yHcDnH6Kkkt9r6FkmZY,5003
|
34
|
-
dataeval/metrics/estimators/divergence.py,sha256=QYkOs7In9un0tYHztwZ5kNqiWVNS3Lgmxn1716H8HG4,4243
|
35
|
-
dataeval/metrics/estimators/uap.py,sha256=ELa5MixMOJZoW5rUuVLOXynfLMbVjxb-r7VYF5qqXrw,2139
|
36
|
-
dataeval/metrics/stats/__init__.py,sha256=Js_mklHJbHwOXJtMFo9NIyePZLwLZL-jruwmcjoLsZc,1086
|
37
|
-
dataeval/metrics/stats/base.py,sha256=U0yPaRSHuPGZk3A7hl8ghJCki7iBtW5wM1eZvElu1_w,12038
|
38
|
-
dataeval/metrics/stats/boxratiostats.py,sha256=fNzHT_nZX0MYeHkWRdcfEz2mtRC2d1JxpoK3l4EBrQc,6301
|
39
|
-
dataeval/metrics/stats/datasetstats.py,sha256=krOm48yjyzYOWKLaWFqHAQPmuhiN4manif7ZXh2Ohhg,5828
|
40
|
-
dataeval/metrics/stats/dimensionstats.py,sha256=_mN7wHencHh4UNd9XUflhq0sIa9yLPk3yHqmossDEGk,3985
|
41
|
-
dataeval/metrics/stats/hashstats.py,sha256=_zZOwnQDlpMoPyqbOV2v9V_Uqox0c4vX2Khv5u_fAk8,5068
|
42
|
-
dataeval/metrics/stats/labelstats.py,sha256=mLH02Xy_uT-qN7HXuXEgs786T2Xr0BMudweBDeEWd5I,4065
|
43
|
-
dataeval/metrics/stats/pixelstats.py,sha256=t8abfenA79x87CMqPuKtddglD3l_LA6nXS4K_FlL4-k,4148
|
44
|
-
dataeval/metrics/stats/visualstats.py,sha256=UU0oa5BWuIOTDM1H1ZnlhYyu8ruVEnaLPCDOsbm-q1c,4546
|
45
|
-
dataeval/output.py,sha256=hR5TJ67f7FgrZO9Du46aw-jvRpMjOimSgJSau4ZNK44,3565
|
46
|
-
dataeval/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
47
|
-
dataeval/utils/__init__.py,sha256=fBpXVWzNaXySTuZWsD8Jg9LLHzb23nz_PfdxPD_gc8c,279
|
48
|
-
dataeval/utils/dataset/__init__.py,sha256=IvRauQaa0CzJ5nZrfTSjGoaaKelyJcQDe3OPRw0-NXs,332
|
49
|
-
dataeval/utils/dataset/datasets.py,sha256=7tSqN3d8UncqmXh4eiEwarXgVxc4sMuIKPTqBCE0pN8,15080
|
50
|
-
dataeval/utils/dataset/read.py,sha256=tt-9blXzYLRb4Vgv6DrFj2ikUSvBF0-qTSnvvYec_2U,1523
|
51
|
-
dataeval/utils/dataset/split.py,sha256=FpxHxmewjqIj6hikCsamNQTq877qu4HfKnzArOyvmyY,18957
|
52
|
-
dataeval/utils/image.py,sha256=AQljELyMFkYsf2AoNOH5dZG8DYE4hPw0MCk85eIXqAw,1926
|
53
|
-
dataeval/utils/metadata.py,sha256=mhMhBgb7nAIIljDdecOqiZ1zsYagE6h8DKxE_DFDW-E,22270
|
54
|
-
dataeval/utils/plot.py,sha256=jQSiqDArFOlKZaIbv4Viso_ShU3LnZE-Y2qXKuKsa8M,3790
|
55
|
-
dataeval/utils/shared.py,sha256=xvF3VLfyheVwJtdtDrneOobkKf7t-JTmf_w91FWXmqo,3616
|
56
|
-
dataeval/utils/torch/__init__.py,sha256=dn5mjCrFp0b1aL_UEURhONU0Ag0cmXoTOBSGagpkTiA,325
|
57
|
-
dataeval/utils/torch/blocks.py,sha256=HVhBTMMD5NA4qheMUgyol1KWiKZDIuc8k5j4RcMKmhk,1466
|
58
|
-
dataeval/utils/torch/gmm.py,sha256=fQ8CBO4Bf6i9N1CZdeJ8VJP25fsPjgMextQkondwgvo,3693
|
59
|
-
dataeval/utils/torch/internal.py,sha256=qAzQTwTI9Qy6f01Olw3d1TIJ4HoWGf0gQzgWVcdD2x4,6653
|
60
|
-
dataeval/utils/torch/models.py,sha256=Df3B_9x5uu-Y5ZOyhRZYpKJnDvxt0hgMeJLy1E4oxpU,8519
|
61
|
-
dataeval/utils/torch/trainer.py,sha256=Qay0LK63RuyoGYiJ5zI2C5BVym309ORvp6shhpcrIU4,5589
|
62
|
-
dataeval/workflows/__init__.py,sha256=L9yfBipNFGnYuN2JbMknIHDvziwfa2XAGFnOwifZbls,216
|
63
|
-
dataeval/workflows/sufficiency.py,sha256=nL99iDlu2bF_9VGu3ioLFDJBgBBJEdwEXROxXm_0sfY,18673
|
64
|
-
dataeval-0.75.0.dist-info/LICENSE.txt,sha256=Kpzcfobf1HlqafF-EX6dQLw9TlJiaJzfgvLQFukyXYw,1060
|
65
|
-
dataeval-0.75.0.dist-info/METADATA,sha256=6m2O6vreJR3Lq1_BXEU6DHnK2C5L_q5YAPofIl4kxCw,5410
|
66
|
-
dataeval-0.75.0.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
|
67
|
-
dataeval-0.75.0.dist-info/RECORD,,
|
File without changes
|