dataeval 0.73.1__py3-none-any.whl → 0.74.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. dataeval/__init__.py +3 -9
  2. dataeval/detectors/__init__.py +2 -10
  3. dataeval/detectors/drift/base.py +3 -3
  4. dataeval/detectors/drift/mmd.py +1 -1
  5. dataeval/detectors/drift/torch.py +1 -101
  6. dataeval/detectors/linters/clusterer.py +3 -3
  7. dataeval/detectors/linters/duplicates.py +4 -4
  8. dataeval/detectors/linters/outliers.py +4 -4
  9. dataeval/detectors/ood/__init__.py +9 -9
  10. dataeval/detectors/ood/{ae.py → ae_torch.py} +22 -27
  11. dataeval/detectors/ood/base.py +63 -113
  12. dataeval/detectors/ood/base_torch.py +109 -0
  13. dataeval/detectors/ood/metadata_ks_compare.py +52 -14
  14. dataeval/interop.py +1 -1
  15. dataeval/metrics/bias/__init__.py +3 -0
  16. dataeval/metrics/bias/balance.py +73 -70
  17. dataeval/metrics/bias/coverage.py +4 -4
  18. dataeval/metrics/bias/diversity.py +67 -136
  19. dataeval/metrics/bias/metadata_preprocessing.py +285 -0
  20. dataeval/metrics/bias/metadata_utils.py +229 -0
  21. dataeval/metrics/bias/parity.py +51 -161
  22. dataeval/metrics/estimators/ber.py +3 -3
  23. dataeval/metrics/estimators/divergence.py +3 -3
  24. dataeval/metrics/estimators/uap.py +3 -3
  25. dataeval/metrics/stats/base.py +2 -2
  26. dataeval/metrics/stats/boxratiostats.py +1 -1
  27. dataeval/metrics/stats/datasetstats.py +6 -6
  28. dataeval/metrics/stats/dimensionstats.py +1 -1
  29. dataeval/metrics/stats/hashstats.py +1 -1
  30. dataeval/metrics/stats/labelstats.py +3 -3
  31. dataeval/metrics/stats/pixelstats.py +1 -1
  32. dataeval/metrics/stats/visualstats.py +1 -1
  33. dataeval/output.py +77 -53
  34. dataeval/utils/__init__.py +1 -7
  35. dataeval/utils/gmm.py +26 -0
  36. dataeval/utils/metadata.py +29 -9
  37. dataeval/utils/torch/gmm.py +98 -0
  38. dataeval/utils/torch/models.py +192 -0
  39. dataeval/utils/torch/trainer.py +84 -5
  40. dataeval/utils/torch/utils.py +107 -1
  41. dataeval/workflows/sufficiency.py +4 -4
  42. {dataeval-0.73.1.dist-info → dataeval-0.74.1.dist-info}/METADATA +3 -9
  43. dataeval-0.74.1.dist-info/RECORD +65 -0
  44. dataeval/detectors/ood/aegmm.py +0 -66
  45. dataeval/detectors/ood/llr.py +0 -302
  46. dataeval/detectors/ood/vae.py +0 -97
  47. dataeval/detectors/ood/vaegmm.py +0 -75
  48. dataeval/metrics/bias/metadata.py +0 -440
  49. dataeval/utils/lazy.py +0 -26
  50. dataeval/utils/tensorflow/__init__.py +0 -19
  51. dataeval/utils/tensorflow/_internal/gmm.py +0 -123
  52. dataeval/utils/tensorflow/_internal/loss.py +0 -121
  53. dataeval/utils/tensorflow/_internal/models.py +0 -1394
  54. dataeval/utils/tensorflow/_internal/trainer.py +0 -114
  55. dataeval/utils/tensorflow/_internal/utils.py +0 -256
  56. dataeval/utils/tensorflow/loss/__init__.py +0 -11
  57. dataeval-0.73.1.dist-info/RECORD +0 -73
  58. {dataeval-0.73.1.dist-info → dataeval-0.74.1.dist-info}/LICENSE.txt +0 -0
  59. {dataeval-0.73.1.dist-info → dataeval-0.74.1.dist-info}/WHEEL +0 -0
@@ -1,302 +0,0 @@
1
- """
2
- Source code derived from Alibi-Detect 0.11.4
3
- https://github.com/SeldonIO/alibi-detect/tree/v0.11.4
4
-
5
- Original code Copyright (c) 2023 Seldon Technologies Ltd
6
- Licensed under Apache Software License (Apache 2.0)
7
- """
8
-
9
- from __future__ import annotations
10
-
11
- __all__ = ["OOD_LLR"]
12
-
13
- from functools import partial
14
- from typing import TYPE_CHECKING, Callable
15
-
16
- import numpy as np
17
- from numpy.typing import ArrayLike, NDArray
18
-
19
- from dataeval.detectors.ood.base import OODBase, OODScoreOutput
20
- from dataeval.interop import to_numpy
21
- from dataeval.utils.lazy import lazyload
22
- from dataeval.utils.tensorflow._internal.trainer import trainer
23
- from dataeval.utils.tensorflow._internal.utils import predict_batch
24
-
25
- if TYPE_CHECKING:
26
- import tensorflow as tf
27
- import tf_keras as keras
28
-
29
- import dataeval.utils.tensorflow._internal.models as tf_models
30
- else:
31
- tf = lazyload("tensorflow")
32
- keras = lazyload("tf_keras")
33
- tf_models = lazyload("dataeval.utils.tensorflow._internal.models")
34
-
35
-
36
- def _build_model(
37
- dist: tf_models.PixelCNN, input_shape: tuple | None = None, filepath: str | None = None
38
- ) -> tuple[keras.Model, tf_models.PixelCNN]:
39
- """
40
- Create keras.Model from TF distribution.
41
-
42
- Parameters
43
- ----------
44
- dist
45
- :term:`TensorFlow` distribution.
46
- input_shape
47
- Input shape of the model.
48
- filepath
49
- File to load model weights from.
50
-
51
- Returns
52
- -------
53
- TensorFlow model.
54
- """
55
- x_in = keras.layers.Input(shape=input_shape)
56
- log_prob = dist.log_prob(x_in)
57
- model = keras.models.Model(inputs=x_in, outputs=log_prob)
58
- model.add_loss(-tf.reduce_mean(log_prob))
59
- if isinstance(filepath, str):
60
- model.load_weights(filepath)
61
- return model, dist
62
-
63
-
64
- def _mutate_categorical(
65
- X: NDArray,
66
- rate: float,
67
- seed: int = 0,
68
- feature_range: tuple[int, int] = (0, 255),
69
- ) -> tf.Tensor:
70
- """
71
- Randomly change integer feature values to values within a set range
72
- with a specified permutation rate.
73
-
74
- Parameters
75
- ----------
76
- X
77
- Batch of data to be perturbed.
78
- rate
79
- Permutation rate (between 0 and 1).
80
- seed
81
- Random seed.
82
- feature_range
83
- Min and max range for perturbed features.
84
-
85
- Returns
86
- -------
87
- Array with perturbed data.
88
- """
89
- frange = (feature_range[0] + 1, feature_range[1] + 1)
90
- shape = X.shape
91
- n_samples = np.prod(shape)
92
- mask = tf.random.categorical(tf.math.log([[1.0 - rate, rate]]), n_samples, seed=seed, dtype=tf.int32)
93
- mask = tf.reshape(mask, shape)
94
- possible_mutations = tf.random.uniform(shape, minval=frange[0], maxval=frange[1], dtype=tf.int32, seed=seed + 1)
95
- X = tf.math.floormod(tf.cast(X, tf.int32) + mask * possible_mutations, frange[1]) # type: ignore py38
96
- return tf.cast(X, tf.float32) # type: ignore
97
-
98
-
99
- class OOD_LLR(OODBase):
100
- """
101
- Likelihood Ratios based outlier detector.
102
-
103
- Parameters
104
- ----------
105
- model : PixelCNN
106
- Generative distribution model.
107
- model_background : Optional[PixelCNN], default None
108
- Optional model for the background. Only needed if it is different from `model`.
109
- log_prob : Optional[Callable], default None
110
- Function used to evaluate log probabilities under the model
111
- if the model does not have a `log_prob` function.
112
- sequential : bool, default False
113
- Whether the data is sequential. Used to create targets during training.
114
- """
115
-
116
- def __init__(
117
- self,
118
- model: tf_models.PixelCNN,
119
- model_background: tf_models.PixelCNN | None = None,
120
- log_prob: Callable | None = None,
121
- sequential: bool = False,
122
- ) -> None:
123
- self.dist_s: tf_models.PixelCNN = model
124
- self.dist_b: tf_models.PixelCNN = (
125
- model.copy()
126
- if hasattr(model, "copy")
127
- else keras.models.clone_model(model)
128
- if model_background is None
129
- else model_background
130
- )
131
- self.has_log_prob: bool = hasattr(model, "log_prob")
132
- self.sequential: bool = sequential
133
- self.log_prob: Callable | None = log_prob
134
-
135
- self._ref_score: OODScoreOutput
136
- self._threshold_perc: float
137
- self._data_info: tuple[tuple, type] | None = None
138
-
139
- def fit(
140
- self,
141
- x_ref: ArrayLike,
142
- threshold_perc: float = 100.0,
143
- loss_fn: Callable | None = None,
144
- optimizer: keras.optimizers.Optimizer | None = None,
145
- epochs: int = 20,
146
- batch_size: int = 64,
147
- verbose: bool = True,
148
- mutate_fn: Callable = _mutate_categorical,
149
- mutate_fn_kwargs: dict[str, float | int | tuple[int, int]] = {
150
- "rate": 0.2,
151
- "seed": 0,
152
- "feature_range": (0, 255),
153
- },
154
- mutate_batch_size: int = int(1e10),
155
- ) -> None:
156
- """
157
- Train semantic and background generative models.
158
-
159
- Parameters
160
- ----------
161
- x_ref : ArrayLike
162
- Training data.
163
- threshold_perc : float, default 100.0
164
- Percentage of reference data that is normal.
165
- loss_fn : Callable | None, default None
166
- Loss function used for training.
167
- optimizer : keras.optimizers.Optimizer, default keras.optimizers.Adam
168
- Optimizer used for training.
169
- epochs : int, default 20
170
- Number of training epochs.
171
- batch_size : int, default 64
172
- Batch size used for training.
173
- verbose : bool, default True
174
- Whether to print training progress.
175
- mutate_fn : Callable, default mutate_categorical
176
- Mutation function used to generate the background dataset.
177
- mutate_fn_kwargs : dict, default {"rate": 0.2, "seed": 0, "feature_range": (0, 255)}
178
- Kwargs for the mutation function used to generate the background dataset.
179
- Default values set for an image dataset.
180
- mutate_batch_size: int, default int(1e10)
181
- Batch size used to generate the mutations for the background dataset.
182
- """
183
- x_ref = to_numpy(x_ref)
184
- input_shape = x_ref.shape[1:]
185
- optimizer = keras.optimizers.Adam() if optimizer is None else optimizer
186
- # Separate into two separate optimizers, one for semantic model and one for background model
187
- optimizer_s = optimizer
188
- optimizer_b = optimizer.__class__.from_config(optimizer.get_config())
189
-
190
- # training arguments
191
- kwargs = {
192
- "epochs": epochs,
193
- "batch_size": batch_size,
194
- "verbose": verbose,
195
- }
196
-
197
- # create background data
198
- mutate_fn = partial(mutate_fn, **mutate_fn_kwargs)
199
- X_back = predict_batch(x_ref, mutate_fn, batch_size=mutate_batch_size, dtype=x_ref.dtype) # type: ignore
200
-
201
- # prepare sequential data
202
- if self.sequential and not self.has_log_prob:
203
- y, y_back = x_ref[:, 1:], X_back[:, 1:] # type: ignore
204
- X, X_back = x_ref[:, :-1], X_back[:, :-1] # type: ignore
205
- else:
206
- X = x_ref
207
- y, y_back = None, None
208
-
209
- # check if model needs to be built
210
- use_build = self.has_log_prob and not isinstance(self.dist_s, keras.Model)
211
-
212
- if use_build:
213
- # build and train semantic model
214
- self.model_s: keras.Model = _build_model(self.dist_s, input_shape)[0]
215
- self.model_s.compile(optimizer=optimizer_s)
216
- self.model_s.fit(X, **kwargs)
217
- # build and train background model
218
- self.model_b: keras.Model = _build_model(self.dist_b, input_shape)[0]
219
- self.model_b.compile(optimizer=optimizer_b)
220
- self.model_b.fit(X_back, **kwargs)
221
- else:
222
- # train semantic model
223
- args = [self.dist_s, X]
224
- kwargs.update({"y_train": y, "loss_fn": loss_fn, "optimizer": optimizer_s})
225
- trainer(*args, **kwargs)
226
-
227
- # train background model
228
- args = [self.dist_b, X_back]
229
- kwargs.update({"y_train": y_back, "loss_fn": loss_fn, "optimizer": optimizer_b})
230
- trainer(*args, **kwargs)
231
-
232
- self._datainfo = self._get_data_info(x_ref)
233
- self._ref_score = self.score(x_ref, batch_size=batch_size)
234
- self._threshold_perc = threshold_perc
235
-
236
- def _logp(
237
- self,
238
- dist,
239
- X: NDArray,
240
- return_per_feature: bool = False,
241
- batch_size: int = int(1e10),
242
- ) -> NDArray:
243
- """
244
- Compute log probability of a batch of instances under the :term:`generative model<Generative Model>`.
245
- """
246
- logp_fn = partial(dist.log_prob, return_per_feature=return_per_feature)
247
- # TODO: TBD: can this be any of the other types from predict_batch? i.e. tf.Tensor or tuple
248
- return predict_batch(X, logp_fn, batch_size=batch_size) # type: ignore[return-value]
249
-
250
- def _logp_alt(
251
- self,
252
- model: keras.Model,
253
- X: NDArray,
254
- return_per_feature: bool = False,
255
- batch_size: int = int(1e10),
256
- ) -> NDArray:
257
- """
258
- Compute log probability of a batch of instances with the user defined log_prob function.
259
- """
260
- if self.sequential:
261
- y, X = X[:, 1:], X[:, :-1]
262
- else:
263
- y = X.copy()
264
- y_preds = predict_batch(X, model, batch_size=batch_size)
265
- logp = self.log_prob(y, y_preds).numpy() # type: ignore
266
- if return_per_feature:
267
- return logp
268
- else:
269
- axis = tuple(np.arange(len(logp.shape))[1:])
270
- return np.mean(logp, axis=axis)
271
-
272
- def _llr(self, X: NDArray, return_per_feature: bool, batch_size: int = int(1e10)) -> NDArray:
273
- """
274
- Compute likelihood ratios.
275
-
276
- Parameters
277
- ----------
278
- X
279
- Batch of instances.
280
- return_per_feature
281
- Return likelihood ratio per feature.
282
- batch_size
283
- Batch size for the :term:`generative model<Generative Model>` evaluations.
284
-
285
- Returns
286
- -------
287
- Likelihood ratios.
288
- """
289
- logp_fn = self._logp if not isinstance(self.log_prob, Callable) else self._logp_alt # type: ignore
290
- logp_s = logp_fn(self.dist_s, X, return_per_feature=return_per_feature, batch_size=batch_size)
291
- logp_b = logp_fn(self.dist_b, X, return_per_feature=return_per_feature, batch_size=batch_size)
292
- return logp_s - logp_b
293
-
294
- def _score(
295
- self,
296
- X: ArrayLike,
297
- batch_size: int = int(1e10),
298
- ) -> OODScoreOutput:
299
- self._validate(X := to_numpy(X))
300
- fscore = -self._llr(X, True, batch_size=batch_size)
301
- iscore = -self._llr(X, False, batch_size=batch_size)
302
- return OODScoreOutput(iscore, fscore)
@@ -1,97 +0,0 @@
1
- """
2
- Source code derived from Alibi-Detect 0.11.4
3
- https://github.com/SeldonIO/alibi-detect/tree/v0.11.4
4
-
5
- Original code Copyright (c) 2023 Seldon Technologies Ltd
6
- Licensed under Apache Software License (Apache 2.0)
7
- """
8
-
9
- from __future__ import annotations
10
-
11
- __all__ = ["OOD_VAE"]
12
-
13
- from typing import TYPE_CHECKING, Callable
14
-
15
- import numpy as np
16
- from numpy.typing import ArrayLike
17
-
18
- from dataeval.detectors.ood.base import OODBase, OODScoreOutput
19
- from dataeval.interop import to_numpy
20
- from dataeval.utils.lazy import lazyload
21
- from dataeval.utils.tensorflow._internal.loss import Elbo
22
- from dataeval.utils.tensorflow._internal.utils import predict_batch
23
-
24
- if TYPE_CHECKING:
25
- import tensorflow as tf
26
- import tf_keras as keras
27
-
28
- import dataeval.utils.tensorflow._internal.models as tf_models
29
- else:
30
- tf = lazyload("tensorflow")
31
- keras = lazyload("tf_keras")
32
- tf_models = lazyload("dataeval.utils.tensorflow._internal.models")
33
-
34
-
35
- class OOD_VAE(OODBase):
36
- """
37
- VAE based outlier detector.
38
-
39
- Parameters
40
- ----------
41
- model : VAE
42
- A VAE model.
43
- samples : int, default 10
44
- Number of samples sampled to evaluate each instance.
45
-
46
- Examples
47
- --------
48
- Instantiate an OOD detector metric with a generic dataset - batch of images with shape (3,25,25)
49
-
50
- >>> metric = OOD_VAE(create_model("VAE", dataset[0].shape))
51
-
52
- Adjusting fit parameters,
53
- including setting the fit threshold at 85% for a training set with about 15% out-of-distribution
54
-
55
- >>> metric.fit(dataset, threshold_perc=85, batch_size=128, verbose=False)
56
-
57
- Detect :term:`out of distribution<Out-of-Distribution (OOD)>` samples at the 'feature' level
58
-
59
- >>> result = metric.predict(dataset, ood_type="feature")
60
- """
61
-
62
- def __init__(self, model: tf_models.VAE, samples: int = 10) -> None:
63
- super().__init__(model)
64
- self.samples = samples
65
-
66
- def fit(
67
- self,
68
- x_ref: ArrayLike,
69
- threshold_perc: float = 100.0,
70
- loss_fn: Callable[..., tf.Tensor] = Elbo(0.05),
71
- optimizer: keras.optimizers.Optimizer | None = None,
72
- epochs: int = 20,
73
- batch_size: int = 64,
74
- verbose: bool = True,
75
- ) -> None:
76
- super().fit(x_ref, threshold_perc, loss_fn, optimizer, epochs, batch_size, verbose)
77
-
78
- def _score(self, X: ArrayLike, batch_size: int = int(1e10)) -> OODScoreOutput:
79
- self._validate(X := to_numpy(X))
80
-
81
- # sample reconstructed instances
82
- X_samples = np.repeat(X, self.samples, axis=0)
83
- X_recon = predict_batch(X_samples, model=self.model, batch_size=batch_size)
84
-
85
- # compute feature scores
86
- fscore = np.power(X_samples - X_recon, 2)
87
- fscore = fscore.reshape((-1, self.samples) + X_samples.shape[1:])
88
- fscore = np.mean(fscore, axis=1)
89
-
90
- # compute instance scores
91
- fscore_flat = fscore.reshape(fscore.shape[0], -1).copy()
92
- n_score_features = int(np.ceil(fscore_flat.shape[1]))
93
- sorted_fscore = np.sort(fscore_flat, axis=1)
94
- sorted_fscore_perc = sorted_fscore[:, -n_score_features:]
95
- iscore = np.mean(sorted_fscore_perc, axis=1)
96
-
97
- return OODScoreOutput(iscore, fscore)
@@ -1,75 +0,0 @@
1
- """
2
- Source code derived from Alibi-Detect 0.11.4
3
- https://github.com/SeldonIO/alibi-detect/tree/v0.11.4
4
-
5
- Original code Copyright (c) 2023 Seldon Technologies Ltd
6
- Licensed under Apache Software License (Apache 2.0)
7
- """
8
-
9
- from __future__ import annotations
10
-
11
- __all__ = ["OOD_VAEGMM"]
12
-
13
- from typing import TYPE_CHECKING, Callable
14
-
15
- import numpy as np
16
- from numpy.typing import ArrayLike
17
-
18
- from dataeval.detectors.ood.base import OODGMMBase, OODScoreOutput
19
- from dataeval.interop import to_numpy
20
- from dataeval.utils.lazy import lazyload
21
- from dataeval.utils.tensorflow._internal.gmm import gmm_energy
22
- from dataeval.utils.tensorflow._internal.loss import Elbo, LossGMM
23
- from dataeval.utils.tensorflow._internal.utils import predict_batch
24
-
25
- if TYPE_CHECKING:
26
- import tensorflow as tf
27
- import tf_keras as keras
28
-
29
- import dataeval.utils.tensorflow._internal.models as tf_models
30
- else:
31
- tf = lazyload("tensorflow")
32
- keras = lazyload("tf_keras")
33
- tf_models = lazyload("dataeval.utils.tensorflow._internal.models")
34
-
35
-
36
- class OOD_VAEGMM(OODGMMBase):
37
- """
38
- VAE with Gaussian Mixture Model based outlier detector.
39
-
40
- Parameters
41
- ----------
42
- model : VAEGMM
43
- A VAEGMM model.
44
- samples
45
- Number of samples sampled to evaluate each instance.
46
- """
47
-
48
- def __init__(self, model: tf_models.VAEGMM, samples: int = 10) -> None:
49
- super().__init__(model)
50
- self.samples = samples
51
-
52
- def fit(
53
- self,
54
- x_ref: ArrayLike,
55
- threshold_perc: float = 100.0,
56
- loss_fn: Callable[..., tf.Tensor] = LossGMM(elbo=Elbo(0.05)),
57
- optimizer: keras.optimizers.Optimizer | None = None,
58
- epochs: int = 20,
59
- batch_size: int = 64,
60
- verbose: bool = True,
61
- ) -> None:
62
- super().fit(x_ref, threshold_perc, loss_fn, optimizer, epochs, batch_size, verbose)
63
-
64
- def _score(self, X: ArrayLike, batch_size: int = int(1e10)) -> OODScoreOutput:
65
- self._validate(X := to_numpy(X))
66
-
67
- # draw samples from latent space
68
- X_samples = np.repeat(X, self.samples, axis=0)
69
- _, z, _ = predict_batch(X_samples, self.model, batch_size=batch_size)
70
-
71
- # compute average energy for samples
72
- energy, _ = gmm_energy(z, self.gmm_params, return_mean=False)
73
- energy_samples = energy.numpy().reshape((-1, self.samples)) # type: ignore
74
- iscore = np.mean(energy_samples, axis=-1)
75
- return OODScoreOutput(iscore)