dataeval 0.72.2__py3-none-any.whl → 0.73.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. dataeval/__init__.py +3 -3
  2. dataeval/detectors/__init__.py +1 -1
  3. dataeval/detectors/drift/__init__.py +1 -1
  4. dataeval/detectors/drift/base.py +2 -2
  5. dataeval/detectors/linters/clusterer.py +1 -1
  6. dataeval/detectors/ood/__init__.py +1 -1
  7. dataeval/detectors/ood/ae.py +14 -6
  8. dataeval/detectors/ood/aegmm.py +14 -6
  9. dataeval/detectors/ood/base.py +9 -3
  10. dataeval/detectors/ood/llr.py +22 -16
  11. dataeval/detectors/ood/vae.py +14 -6
  12. dataeval/detectors/ood/vaegmm.py +14 -6
  13. dataeval/interop.py +9 -7
  14. dataeval/metrics/bias/balance.py +50 -44
  15. dataeval/metrics/bias/coverage.py +38 -6
  16. dataeval/metrics/bias/diversity.py +117 -65
  17. dataeval/metrics/bias/metadata.py +225 -60
  18. dataeval/metrics/bias/parity.py +68 -54
  19. dataeval/utils/__init__.py +4 -3
  20. dataeval/utils/lazy.py +26 -0
  21. dataeval/utils/metadata.py +258 -0
  22. dataeval/utils/shared.py +1 -1
  23. dataeval/utils/split_dataset.py +12 -6
  24. dataeval/utils/tensorflow/_internal/gmm.py +8 -2
  25. dataeval/utils/tensorflow/_internal/loss.py +20 -11
  26. dataeval/utils/tensorflow/_internal/{pixelcnn.py → models.py} +371 -77
  27. dataeval/utils/tensorflow/_internal/trainer.py +12 -5
  28. dataeval/utils/tensorflow/_internal/utils.py +70 -71
  29. dataeval/utils/torch/datasets.py +2 -2
  30. dataeval/workflows/__init__.py +1 -1
  31. {dataeval-0.72.2.dist-info → dataeval-0.73.1.dist-info}/METADATA +3 -3
  32. {dataeval-0.72.2.dist-info → dataeval-0.73.1.dist-info}/RECORD +34 -33
  33. dataeval/utils/tensorflow/_internal/autoencoder.py +0 -316
  34. {dataeval-0.72.2.dist-info → dataeval-0.73.1.dist-info}/LICENSE.txt +0 -0
  35. {dataeval-0.72.2.dist-info → dataeval-0.73.1.dist-info}/WHEEL +0 -0
@@ -8,18 +8,27 @@ Licensed under Apache Software License (Apache 2.0)
8
8
 
9
9
  from __future__ import annotations
10
10
 
11
- from typing import Literal, cast
11
+ from typing import TYPE_CHECKING, Literal, cast
12
12
 
13
13
  import numpy as np
14
- import tensorflow as tf
15
14
  from numpy.typing import NDArray
16
- from tensorflow_probability.python.distributions.mvn_diag import MultivariateNormalDiag
17
- from tensorflow_probability.python.distributions.mvn_tril import MultivariateNormalTriL
18
- from tensorflow_probability.python.stats import covariance
19
- from tf_keras.layers import Flatten
20
15
 
16
+ from dataeval.utils.lazy import lazyload
21
17
  from dataeval.utils.tensorflow._internal.gmm import gmm_energy, gmm_params
22
18
 
19
+ if TYPE_CHECKING:
20
+ import tensorflow as tf
21
+ import tensorflow_probability.python.distributions.mvn_diag as mvn_diag
22
+ import tensorflow_probability.python.distributions.mvn_tril as mvn_tril
23
+ import tensorflow_probability.python.stats as tfp_stats
24
+ import tf_keras as keras
25
+ else:
26
+ tf = lazyload("tensorflow")
27
+ keras = lazyload("tf_keras")
28
+ mvn_diag = lazyload("tensorflow_probability.python.distributions.mvn_diag")
29
+ mvn_tril = lazyload("tensorflow_probability.python.distributions.mvn_tril")
30
+ tfp_stats = lazyload("tensorflow_probability.python.stats")
31
+
23
32
 
24
33
  class Elbo:
25
34
  """
@@ -46,7 +55,7 @@ class Elbo:
46
55
  self._cov = ("sim", cov_type)
47
56
  elif cov_type in ["cov_full", "cov_diag"]:
48
57
  x_np: NDArray[np.float32] = x.numpy().astype(np.float32) if tf.is_tensor(x) else x # type: ignore
49
- cov = covariance(x_np.reshape(x_np.shape[0], -1)) # type: ignore py38
58
+ cov = tfp_stats.covariance(x_np.reshape(x_np.shape[0], -1)) # type: ignore py38
50
59
  if cov_type == "cov_diag": # infer standard deviation from covariance matrix
51
60
  cov = tf.math.sqrt(tf.linalg.diag_part(cov))
52
61
  self._cov = (cov_type, cov)
@@ -54,15 +63,15 @@ class Elbo:
54
63
  raise ValueError("Only cov_full, cov_diag or sim value should be specified.")
55
64
 
56
65
  def __call__(self, y_true: tf.Tensor, y_pred: tf.Tensor) -> tf.Tensor:
57
- y_pred_flat = cast(tf.Tensor, Flatten()(y_pred))
66
+ y_pred_flat = cast(tf.Tensor, keras.layers.Flatten()(y_pred))
58
67
 
59
68
  if self._cov[0] == "cov_full":
60
- y_mn = MultivariateNormalTriL(y_pred_flat, scale_tril=tf.linalg.cholesky(self._cov[1]))
69
+ y_mn = mvn_tril.MultivariateNormalTriL(y_pred_flat, scale_tril=tf.linalg.cholesky(self._cov[1]))
61
70
  else: # cov_diag and sim
62
71
  cov_diag = self._cov[1] if self._cov[0] == "cov_diag" else self._cov[1] * tf.ones(y_pred_flat.shape[-1])
63
- y_mn = MultivariateNormalDiag(y_pred_flat, scale_diag=cov_diag)
72
+ y_mn = mvn_diag.MultivariateNormalDiag(y_pred_flat, scale_diag=cov_diag)
64
73
 
65
- loss = -tf.reduce_mean(y_mn.log_prob(Flatten()(y_true)))
74
+ loss = -tf.reduce_mean(y_mn.log_prob(keras.layers.Flatten()(y_true)))
66
75
  return loss
67
76
 
68
77