dataeval 0.69.4__py3-none-any.whl → 0.70.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (34) hide show
  1. dataeval/__init__.py +3 -3
  2. dataeval/_internal/detectors/drift/base.py +5 -6
  3. dataeval/_internal/detectors/drift/mmd.py +3 -3
  4. dataeval/_internal/detectors/duplicates.py +62 -45
  5. dataeval/_internal/detectors/merged_stats.py +23 -54
  6. dataeval/_internal/detectors/ood/ae.py +3 -3
  7. dataeval/_internal/detectors/outliers.py +133 -61
  8. dataeval/_internal/interop.py +11 -7
  9. dataeval/_internal/metrics/balance.py +9 -9
  10. dataeval/_internal/metrics/ber.py +3 -3
  11. dataeval/_internal/metrics/divergence.py +3 -3
  12. dataeval/_internal/metrics/diversity.py +6 -6
  13. dataeval/_internal/metrics/parity.py +24 -16
  14. dataeval/_internal/metrics/stats/base.py +231 -0
  15. dataeval/_internal/metrics/stats/boxratiostats.py +159 -0
  16. dataeval/_internal/metrics/stats/datasetstats.py +97 -0
  17. dataeval/_internal/metrics/stats/dimensionstats.py +111 -0
  18. dataeval/_internal/metrics/stats/hashstats.py +73 -0
  19. dataeval/_internal/metrics/stats/labelstats.py +125 -0
  20. dataeval/_internal/metrics/stats/pixelstats.py +117 -0
  21. dataeval/_internal/metrics/stats/visualstats.py +122 -0
  22. dataeval/_internal/metrics/uap.py +2 -2
  23. dataeval/_internal/metrics/utils.py +28 -13
  24. dataeval/_internal/output.py +3 -18
  25. dataeval/_internal/workflows/sufficiency.py +123 -133
  26. dataeval/metrics/stats/__init__.py +14 -3
  27. dataeval/workflows/__init__.py +2 -2
  28. {dataeval-0.69.4.dist-info → dataeval-0.70.0.dist-info}/METADATA +3 -3
  29. {dataeval-0.69.4.dist-info → dataeval-0.70.0.dist-info}/RECORD +31 -26
  30. {dataeval-0.69.4.dist-info → dataeval-0.70.0.dist-info}/WHEEL +1 -1
  31. dataeval/_internal/flags.py +0 -77
  32. dataeval/_internal/metrics/stats.py +0 -397
  33. dataeval/flags/__init__.py +0 -3
  34. {dataeval-0.69.4.dist-info → dataeval-0.70.0.dist-info}/LICENSE.txt +0 -0
dataeval/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = "0.69.4"
1
+ __version__ = "0.70.0"
2
2
 
3
3
  from importlib.util import find_spec
4
4
 
@@ -7,9 +7,9 @@ _IS_TENSORFLOW_AVAILABLE = find_spec("tensorflow") is not None and find_spec("te
7
7
 
8
8
  del find_spec
9
9
 
10
- from . import detectors, flags, metrics # noqa: E402
10
+ from . import detectors, metrics # noqa: E402
11
11
 
12
- __all__ = ["detectors", "flags", "metrics"]
12
+ __all__ = ["detectors", "metrics"]
13
13
 
14
14
  if _IS_TORCH_AVAILABLE: # pragma: no cover
15
15
  from . import torch, utils, workflows
@@ -16,7 +16,7 @@ from typing import Callable, Literal
16
16
  import numpy as np
17
17
  from numpy.typing import ArrayLike, NDArray
18
18
 
19
- from dataeval._internal.interop import to_numpy
19
+ from dataeval._internal.interop import as_numpy, to_numpy
20
20
  from dataeval._internal.output import OutputMetadata, set_metadata
21
21
 
22
22
 
@@ -234,7 +234,7 @@ class BaseDrift:
234
234
  if correction not in ["bonferroni", "fdr"]:
235
235
  raise ValueError("`correction` must be `bonferroni` or `fdr`.")
236
236
 
237
- self._x_ref = x_ref
237
+ self._x_ref = to_numpy(x_ref)
238
238
  self.x_ref_preprocessed = x_ref_preprocessed
239
239
 
240
240
  # Other attributes
@@ -242,7 +242,7 @@ class BaseDrift:
242
242
  self.update_x_ref = update_x_ref
243
243
  self.preprocess_fn = preprocess_fn
244
244
  self.correction = correction
245
- self.n = len(self._x_ref) # type: ignore
245
+ self.n = len(self._x_ref)
246
246
 
247
247
  # Ref counter for preprocessed x
248
248
  self._x_refcount = 0
@@ -260,9 +260,8 @@ class BaseDrift:
260
260
  if not self.x_ref_preprocessed:
261
261
  self.x_ref_preprocessed = True
262
262
  if self.preprocess_fn is not None:
263
- self._x_ref = self.preprocess_fn(self._x_ref)
263
+ self._x_ref = as_numpy(self.preprocess_fn(self._x_ref))
264
264
 
265
- self._x_ref = to_numpy(self._x_ref)
266
265
  return self._x_ref
267
266
 
268
267
  def _preprocess(self, x: ArrayLike) -> ArrayLike:
@@ -380,7 +379,7 @@ class BaseDriftUnivariate(BaseDrift):
380
379
  self._n_features = self.x_ref.reshape(self.x_ref.shape[0], -1).shape[-1]
381
380
  else:
382
381
  # infer number of features after applying preprocessing step
383
- x = to_numpy(self.preprocess_fn(self._x_ref[0:1])) # type: ignore
382
+ x = as_numpy(self.preprocess_fn(self._x_ref[0:1])) # type: ignore
384
383
  self._n_features = x.reshape(x.shape[0], -1).shape[-1]
385
384
 
386
385
  return self._n_features
@@ -14,7 +14,7 @@ from typing import Callable
14
14
  import torch
15
15
  from numpy.typing import ArrayLike
16
16
 
17
- from dataeval._internal.interop import to_numpy
17
+ from dataeval._internal.interop import as_numpy
18
18
  from dataeval._internal.output import set_metadata
19
19
 
20
20
  from .base import BaseDrift, DriftBaseOutput, UpdateStrategy, preprocess_x, update_x_ref
@@ -110,7 +110,7 @@ class DriftMMD(BaseDrift):
110
110
  self.device = get_device(device)
111
111
 
112
112
  # initialize kernel
113
- sigma_tensor = torch.from_numpy(to_numpy(sigma)).to(self.device) if sigma is not None else None
113
+ sigma_tensor = torch.from_numpy(as_numpy(sigma)).to(self.device) if sigma is not None else None
114
114
  self.kernel = kernel(sigma_tensor).to(self.device) if kernel == GaussianRBF else kernel
115
115
 
116
116
  # compute kernel matrix for the reference data
@@ -147,7 +147,7 @@ class DriftMMD(BaseDrift):
147
147
  p-value obtained from the permutation test, MMD^2 between the reference and test set,
148
148
  and MMD^2 threshold above which drift is flagged
149
149
  """
150
- x = to_numpy(x)
150
+ x = as_numpy(x)
151
151
  x_ref = torch.from_numpy(self.x_ref).to(self.device)
152
152
  n = x.shape[0]
153
153
  kernel_mat = self._kernel_matrix(x_ref, torch.from_numpy(x).to(self.device))
@@ -1,13 +1,12 @@
1
1
  from __future__ import annotations
2
2
 
3
3
  from dataclasses import dataclass
4
- from typing import Generic, Iterable, Sequence, TypeVar, cast
4
+ from typing import Generic, Iterable, Sequence, TypeVar
5
5
 
6
6
  from numpy.typing import ArrayLike
7
7
 
8
8
  from dataeval._internal.detectors.merged_stats import combine_stats, get_dataset_step_from_idx
9
- from dataeval._internal.flags import ImageStat
10
- from dataeval._internal.metrics.stats import StatsOutput, imagestats
9
+ from dataeval._internal.metrics.stats.hashstats import HashStatsOutput, hashstats
11
10
  from dataeval._internal.output import OutputMetadata, set_metadata
12
11
 
13
12
  DuplicateGroup = list[int]
@@ -53,26 +52,23 @@ class Duplicates:
53
52
  -------
54
53
  Initialize the Duplicates class:
55
54
 
56
- >>> dups = Duplicates()
55
+ >>> all_dupes = Duplicates()
56
+ >>> exact_dupes = Duplicates(only_exact=True)
57
57
  """
58
58
 
59
59
  def __init__(self, only_exact: bool = False):
60
- self.stats: StatsOutput
60
+ self.stats: HashStatsOutput
61
61
  self.only_exact = only_exact
62
62
 
63
- def _get_duplicates(self) -> dict[str, list[list[int]]]:
64
- stats_dict = self.stats.dict()
65
- if "xxhash" in stats_dict:
66
- exact_dict: dict[int, list] = {}
67
- for i, value in enumerate(stats_dict["xxhash"]):
68
- exact_dict.setdefault(value, []).append(i)
69
- exact = [sorted(v) for v in exact_dict.values() if len(v) > 1]
70
- else:
71
- exact = []
63
+ def _get_duplicates(self, stats: dict) -> dict[str, list[list[int]]]:
64
+ exact_dict: dict[int, list] = {}
65
+ for i, value in enumerate(stats["xxhash"]):
66
+ exact_dict.setdefault(value, []).append(i)
67
+ exact = [sorted(v) for v in exact_dict.values() if len(v) > 1]
72
68
 
73
- if "pchash" in stats_dict and not self.only_exact:
69
+ if not self.only_exact:
74
70
  near_dict: dict[int, list] = {}
75
- for i, value in enumerate(stats_dict["pchash"]):
71
+ for i, value in enumerate(stats["pchash"]):
76
72
  near_dict.setdefault(value, []).append(i)
77
73
  near = [sorted(v) for v in near_dict.values() if len(v) > 1 and not any(set(v).issubset(x) for x in exact)]
78
74
  else:
@@ -84,14 +80,14 @@ class Duplicates:
84
80
  }
85
81
 
86
82
  @set_metadata("dataeval.detectors", ["only_exact"])
87
- def evaluate(self, data: Iterable[ArrayLike] | StatsOutput | Sequence[StatsOutput]) -> DuplicatesOutput:
83
+ def from_stats(self, hashes: HashStatsOutput | Sequence[HashStatsOutput]) -> DuplicatesOutput:
88
84
  """
89
85
  Returns duplicate image indices for both exact matches and near matches
90
86
 
91
87
  Parameters
92
88
  ----------
93
- data : Iterable[ArrayLike], shape - (N, C, H, W) | StatsOutput | Sequence[StatsOutput]
94
- A dataset of images in an ArrayLike format or the output(s) from an imagestats metric analysis
89
+ data : HashStatsOutput | Sequence[HashStatsOutput]
90
+ The output(s) from a hashstats analysis
95
91
 
96
92
  Returns
97
93
  -------
@@ -100,39 +96,60 @@ class Duplicates:
100
96
 
101
97
  See Also
102
98
  --------
103
- imagestats
99
+ hashstats
104
100
 
105
101
  Example
106
102
  -------
107
- >>> dups.evaluate(images)
108
- DuplicatesOutput(exact=[[3, 20], [16, 37]], near=[[3, 20, 22], [12, 18], [13, 36], [14, 31], [17, 27], [19, 38, 47]])
109
- """ # noqa: E501
103
+ >>> exact_dupes.from_stats([hashes1, hashes2])
104
+ DuplicatesOutput(exact=[{0: [3, 20]}, {0: [16], 1: [12]}], near=[])
105
+ """
110
106
 
111
- stats, dataset_steps = combine_stats(data)
107
+ if isinstance(hashes, HashStatsOutput):
108
+ return DuplicatesOutput(**self._get_duplicates(hashes.dict()))
112
109
 
113
- if isinstance(stats, StatsOutput):
114
- if not stats.xxhash:
115
- raise ValueError("StatsOutput must include xxhash information of the images.")
116
- if not self.only_exact and not stats.pchash:
117
- raise ValueError("StatsOutput must include pchash information of the images for near matches.")
118
- self.stats = stats
119
- else:
120
- flags = ImageStat.XXHASH | (ImageStat(0) if self.only_exact else ImageStat.PCHASH)
121
- self.stats = imagestats(cast(Iterable[ArrayLike], data), flags)
110
+ if not isinstance(hashes, Sequence):
111
+ raise TypeError("Invalid stats output type; only use output from hashstats.")
122
112
 
123
- duplicates = self._get_duplicates()
113
+ combined, dataset_steps = combine_stats(hashes)
114
+ duplicates = self._get_duplicates(combined.dict())
124
115
 
125
116
  # split up results from combined dataset into individual dataset buckets
126
- if dataset_steps:
127
- dup_list: list[list[int]]
128
- for dup_type, dup_list in duplicates.items():
129
- dup_list_dict = []
130
- for idxs in dup_list:
131
- dup_dict = {}
132
- for idx in idxs:
133
- k, v = get_dataset_step_from_idx(idx, dataset_steps)
134
- dup_dict.setdefault(k, []).append(v)
135
- dup_list_dict.append(dup_dict)
136
- duplicates[dup_type] = dup_list_dict
117
+ for dup_type, dup_list in duplicates.items():
118
+ dup_list_dict = []
119
+ for idxs in dup_list:
120
+ dup_dict = {}
121
+ for idx in idxs:
122
+ k, v = get_dataset_step_from_idx(idx, dataset_steps)
123
+ dup_dict.setdefault(k, []).append(v)
124
+ dup_list_dict.append(dup_dict)
125
+ duplicates[dup_type] = dup_list_dict
126
+
127
+ return DuplicatesOutput(**duplicates)
128
+
129
+ @set_metadata("dataeval.detectors", ["only_exact"])
130
+ def evaluate(self, data: Iterable[ArrayLike]) -> DuplicatesOutput:
131
+ """
132
+ Returns duplicate image indices for both exact matches and near matches
133
+
134
+ Parameters
135
+ ----------
136
+ data : Iterable[ArrayLike], shape - (N, C, H, W) | StatsOutput | Sequence[StatsOutput]
137
+ A dataset of images in an ArrayLike format or the output(s) from a hashstats analysis
138
+
139
+ Returns
140
+ -------
141
+ DuplicatesOutput
142
+ List of groups of indices that are exact and near matches
137
143
 
144
+ See Also
145
+ --------
146
+ hashstats
147
+
148
+ Example
149
+ -------
150
+ >>> all_dupes.evaluate(images)
151
+ DuplicatesOutput(exact=[[3, 20], [16, 37]], near=[[3, 20, 22], [12, 18], [13, 36], [14, 31], [17, 27], [19, 38, 47]])
152
+ """ # noqa: E501
153
+ self.stats = hashstats(data)
154
+ duplicates = self._get_duplicates(self.stats.dict())
138
155
  return DuplicatesOutput(**duplicates)
@@ -1,71 +1,40 @@
1
1
  from __future__ import annotations
2
2
 
3
- from typing import Sequence, cast
4
- from warnings import warn
3
+ from copy import deepcopy
4
+ from typing import Sequence, TypeVar
5
5
 
6
6
  import numpy as np
7
7
 
8
- from dataeval._internal.metrics.stats import StatsOutput
9
- from dataeval._internal.output import populate_defaults
8
+ from dataeval._internal.metrics.stats.base import BaseStatsOutput
10
9
 
10
+ TStatsOutput = TypeVar("TStatsOutput", bound=BaseStatsOutput)
11
11
 
12
- def add_stats(a: StatsOutput, b: StatsOutput) -> StatsOutput:
13
- if not isinstance(a, StatsOutput) or not isinstance(b, StatsOutput):
14
- raise TypeError(f"Cannot add object of type {type(a)} and type {type(b)}.")
15
12
 
16
- a_dict = a.dict()
17
- b_dict = b.dict()
18
- a_keys = set(a_dict)
19
- b_keys = set(b_dict)
13
+ def add_stats(a: TStatsOutput, b: TStatsOutput) -> TStatsOutput:
14
+ if type(a) is not type(b):
15
+ raise TypeError(f"Types {type(a)} and {type(b)} cannot be added.")
20
16
 
21
- missing_keys = a_keys - b_keys
22
- if missing_keys:
23
- raise ValueError(f"Required keys are missing: {missing_keys}.")
17
+ sum_dict = deepcopy(a.dict())
24
18
 
25
- extra_keys = b_keys - a_keys
26
- if extra_keys:
27
- warn(f"Extraneous keys will be dropped: {extra_keys}.")
19
+ for k in sum_dict:
20
+ if isinstance(sum_dict[k], list):
21
+ sum_dict[k].extend(b.dict()[k])
22
+ else:
23
+ sum_dict[k] = np.concatenate((sum_dict[k], b.dict()[k]))
28
24
 
29
- # perform add of multi-channel stats
30
- if "ch_idx_map" in a_dict:
31
- for k, v in a_dict.items():
32
- if k == "ch_idx_map":
33
- offset = sum([len(idxs) for idxs in v.values()])
34
- for ch_k, ch_v in b_dict[k].items():
35
- if ch_k not in v:
36
- v[ch_k] = []
37
- a_dict[k][ch_k].extend([idx + offset for idx in ch_v])
38
- else:
39
- for ch_k in b_dict[k]:
40
- if ch_k not in v:
41
- v[ch_k] = b_dict[k][ch_k]
42
- else:
43
- v[ch_k] = np.concatenate((v[ch_k], b_dict[k][ch_k]), axis=1)
44
- else:
45
- for k in a_dict:
46
- if isinstance(a_dict[k], list):
47
- a_dict[k].extend(b_dict[k])
48
- else:
49
- a_dict[k] = np.concatenate((a_dict[k], b_dict[k]))
25
+ return type(a)(**sum_dict)
50
26
 
51
- return StatsOutput(**populate_defaults(a_dict, StatsOutput))
52
-
53
-
54
- def combine_stats(stats) -> tuple[StatsOutput | None, list[int]]:
55
- dataset_steps = []
56
-
57
- if isinstance(stats, StatsOutput):
58
- return stats, dataset_steps
59
27
 
28
+ def combine_stats(stats: Sequence[TStatsOutput]) -> tuple[TStatsOutput, list[int]]:
60
29
  output = None
61
- if isinstance(stats, Sequence) and isinstance(stats[0], StatsOutput):
62
- stats = cast(Sequence[StatsOutput], stats)
63
- cur_len = 0
64
- for s in stats:
65
- output = s if output is None else add_stats(output, s)
66
- cur_len += len(s)
67
- dataset_steps.append(cur_len)
68
-
30
+ dataset_steps = []
31
+ cur_len = 0
32
+ for s in stats:
33
+ output = s if output is None else add_stats(output, s)
34
+ cur_len += len(s)
35
+ dataset_steps.append(cur_len)
36
+ if output is None:
37
+ raise TypeError("Cannot combine empty sequence of stats.")
69
38
  return output, dataset_steps
70
39
 
71
40
 
@@ -16,7 +16,7 @@ import tensorflow as tf
16
16
  from numpy.typing import ArrayLike
17
17
 
18
18
  from dataeval._internal.detectors.ood.base import OODBase, OODScore
19
- from dataeval._internal.interop import to_numpy
19
+ from dataeval._internal.interop import as_numpy
20
20
  from dataeval._internal.models.tensorflow.autoencoder import AE
21
21
  from dataeval._internal.models.tensorflow.utils import predict_batch
22
22
 
@@ -46,10 +46,10 @@ class OOD_AE(OODBase):
46
46
  ) -> None:
47
47
  if loss_fn is None:
48
48
  loss_fn = keras.losses.MeanSquaredError()
49
- super().fit(to_numpy(x_ref), threshold_perc, loss_fn, optimizer, epochs, batch_size, verbose)
49
+ super().fit(as_numpy(x_ref), threshold_perc, loss_fn, optimizer, epochs, batch_size, verbose)
50
50
 
51
51
  def score(self, X: ArrayLike, batch_size: int = int(1e10)) -> OODScore:
52
- self._validate(X := to_numpy(X))
52
+ self._validate(X := as_numpy(X))
53
53
 
54
54
  # reconstruct instances
55
55
  X_recon = predict_batch(X, self.model, batch_size=batch_size)
@@ -1,39 +1,45 @@
1
1
  from __future__ import annotations
2
2
 
3
3
  from dataclasses import dataclass
4
- from typing import Iterable, Literal, Sequence, cast
5
- from warnings import warn
4
+ from typing import Generic, Iterable, Literal, Sequence, TypeVar, Union, overload
6
5
 
7
6
  import numpy as np
8
7
  from numpy.typing import ArrayLike, NDArray
9
8
 
10
9
  from dataeval._internal.detectors.merged_stats import combine_stats, get_dataset_step_from_idx
11
- from dataeval._internal.flags import ImageStat, to_distinct, verify_supported
12
- from dataeval._internal.metrics.stats import StatsOutput, imagestats
10
+ from dataeval._internal.metrics.stats.base import BOX_COUNT, SOURCE_INDEX
11
+ from dataeval._internal.metrics.stats.datasetstats import DatasetStatsOutput, datasetstats
12
+ from dataeval._internal.metrics.stats.dimensionstats import DimensionStatsOutput
13
+ from dataeval._internal.metrics.stats.pixelstats import PixelStatsOutput
14
+ from dataeval._internal.metrics.stats.visualstats import VisualStatsOutput
13
15
  from dataeval._internal.output import OutputMetadata, set_metadata
14
16
 
15
17
  IndexIssueMap = dict[int, dict[str, float]]
16
- DatasetIndexIssueMap = dict[int, IndexIssueMap]
17
- """
18
- Mapping of image indices to a dictionary of issue types and calculated values
19
- """
18
+ OutlierStatsOutput = Union[DimensionStatsOutput, PixelStatsOutput, VisualStatsOutput]
19
+ TIndexIssueMap = TypeVar("TIndexIssueMap", IndexIssueMap, list[IndexIssueMap])
20
20
 
21
21
 
22
22
  @dataclass(frozen=True)
23
- class OutliersOutput(OutputMetadata):
23
+ class OutliersOutput(Generic[TIndexIssueMap], OutputMetadata):
24
24
  """
25
25
  Attributes
26
26
  ----------
27
- issues : dict[int, dict[str, float]] | dict[int, dict[int, dict[str, float]]]
27
+ issues : dict[int, dict[str, float]] | list[dict[int, dict[str, float]]]
28
28
  Indices of image outliers with their associated issue type and calculated values.
29
29
 
30
30
  - For a single dataset, a dictionary containing the indices of outliers and
31
31
  a dictionary showing the issues and calculated values for the given index.
32
- - For multiple datasets, a map of dataset indices to the indices of outliers
33
- and their associated issues and calculated values.
32
+ - For multiple stats outputs, a list of dictionaries containing the indices of
33
+ outliers and their associated issues and calculated values.
34
34
  """
35
35
 
36
- issues: IndexIssueMap | DatasetIndexIssueMap
36
+ issues: TIndexIssueMap
37
+
38
+ def __len__(self):
39
+ if isinstance(self.issues, dict):
40
+ return len(self.issues)
41
+ else:
42
+ return sum(len(d) for d in self.issues)
37
43
 
38
44
 
39
45
  def _get_outlier_mask(
@@ -43,7 +49,7 @@ def _get_outlier_mask(
43
49
  threshold = threshold if threshold else 3.0
44
50
  std = np.std(values)
45
51
  abs_diff = np.abs(values - np.mean(values))
46
- return (abs_diff / std) > threshold
52
+ return std != 0 and (abs_diff / std) > threshold
47
53
  elif method == "modzscore":
48
54
  threshold = threshold if threshold else 3.5
49
55
  abs_diff = np.abs(values - np.median(values))
@@ -65,9 +71,6 @@ class Outliers:
65
71
 
66
72
  Parameters
67
73
  ----------
68
- flags : ImageStat, default ImageStat.ALL_PROPERTIES | ImageStat.ALL_VISUALS
69
- Metric(s) to calculate for each image - calculates all metrics if None
70
- Only supports ImageStat.ALL_STATS
71
74
  outlier_method : ["modzscore" | "zscore" | "iqr"], optional - default "modzscore"
72
75
  Statistical method used to identify outliers
73
76
  outlier_threshold : float, optional - default None
@@ -76,8 +79,8 @@ class Outliers:
76
79
 
77
80
  Attributes
78
81
  ----------
79
- stats : dict[str, Any]
80
- Dictionary to hold the value of each metric for each image
82
+ stats : tuple[DimensionStatsOutput, PixelStatsOutput, VisualStatsOutput]
83
+ Various stats output classes that hold the value of each metric for each image
81
84
 
82
85
  See Also
83
86
  --------
@@ -109,52 +112,61 @@ class Outliers:
109
112
 
110
113
  >>> outliers = Outliers()
111
114
 
112
- Specifying specific metrics to analyze:
113
-
114
- >>> outliers = Outliers(flags=ImageStat.SIZE | ImageStat.ALL_VISUALS)
115
-
116
115
  Specifying an outlier method:
117
116
 
118
117
  >>> outliers = Outliers(outlier_method="iqr")
119
118
 
120
119
  Specifying an outlier method and threshold:
121
120
 
122
- >>> outliers = Outliers(outlier_method="zscore", outlier_threshold=2.75)
121
+ >>> outliers = Outliers(outlier_method="zscore", outlier_threshold=3.5)
123
122
  """
124
123
 
125
124
  def __init__(
126
125
  self,
127
- flags: ImageStat = ImageStat.ALL_PROPERTIES | ImageStat.ALL_VISUALS,
126
+ use_dimension: bool = True,
127
+ use_pixel: bool = True,
128
+ use_visual: bool = True,
128
129
  outlier_method: Literal["zscore", "modzscore", "iqr"] = "modzscore",
129
130
  outlier_threshold: float | None = None,
130
131
  ):
131
- verify_supported(flags, ImageStat.ALL_STATS)
132
- self.flags = flags
132
+ self.stats: DatasetStatsOutput
133
+ self.use_dimension = use_dimension
134
+ self.use_pixel = use_pixel
135
+ self.use_visual = use_visual
133
136
  self.outlier_method: Literal["zscore", "modzscore", "iqr"] = outlier_method
134
137
  self.outlier_threshold = outlier_threshold
135
138
 
136
- def _get_outliers(self) -> dict:
137
- flagged_images = {}
138
- stats_dict = self.stats.dict()
139
- supported = to_distinct(ImageStat.ALL_STATS)
140
- for stat, values in stats_dict.items():
141
- if stat in supported.values() and values.ndim == 1 and np.std(values) != 0:
142
- mask = _get_outlier_mask(values, self.outlier_method, self.outlier_threshold)
139
+ def _get_outliers(self, stats: dict) -> dict[int, dict[str, float]]:
140
+ flagged_images: dict[int, dict[str, float]] = {}
141
+ for stat, values in stats.items():
142
+ if stat in (SOURCE_INDEX, BOX_COUNT):
143
+ continue
144
+ if values.ndim == 1:
145
+ mask = _get_outlier_mask(values.astype(np.float64), self.outlier_method, self.outlier_threshold)
143
146
  indices = np.flatnonzero(mask)
144
147
  for i, value in zip(indices, values[mask]):
145
- flagged_images.setdefault(i, {}).update({stat: np.round(value, 2)})
148
+ flagged_images.setdefault(i, {}).update({stat: value})
146
149
 
147
150
  return dict(sorted(flagged_images.items()))
148
151
 
149
- @set_metadata("dataeval.detectors", ["flags", "outlier_method", "outlier_threshold"])
150
- def evaluate(self, data: Iterable[ArrayLike] | StatsOutput | Sequence[StatsOutput]) -> OutliersOutput:
152
+ @overload
153
+ def from_stats(self, stats: OutlierStatsOutput | DatasetStatsOutput) -> OutliersOutput[IndexIssueMap]: ...
154
+
155
+ @overload
156
+ def from_stats(self, stats: Sequence[OutlierStatsOutput]) -> OutliersOutput[list[IndexIssueMap]]: ...
157
+
158
+ @set_metadata("dataeval.detectors", ["outlier_method", "outlier_threshold"])
159
+ def from_stats(
160
+ self, stats: OutlierStatsOutput | DatasetStatsOutput | Sequence[OutlierStatsOutput]
161
+ ) -> OutliersOutput:
151
162
  """
152
163
  Returns indices of outliers with the issues identified for each
153
164
 
154
165
  Parameters
155
166
  ----------
156
- data : Iterable[ArrayLike], shape - (C, H, W) | StatsOutput | Sequence[StatsOutput]
157
- A dataset of images in an ArrayLike format or the output(s) from an imagestats metric analysis
167
+ stats : OutlierStatsOutput | DatasetStatsOutput | Sequence[OutlierStatsOutput]
168
+ The output(s) from a dimensionstats, pixelstats, or visualstats metric
169
+ analysis or an aggregate DatasetStatsOutput
158
170
 
159
171
  Returns
160
172
  -------
@@ -162,36 +174,96 @@ class Outliers:
162
174
  Output class containing the indices of outliers and a dictionary showing
163
175
  the issues and calculated values for the given index.
164
176
 
177
+ See Also
178
+ --------
179
+ dimensionstats
180
+ pixelstats
181
+ visualstats
182
+
165
183
  Example
166
184
  -------
167
185
  Evaluate the dataset:
168
186
 
169
- >>> outliers.evaluate(images)
170
- OutliersOutput(issues={10: {'blurriness': 1.26, 'contrast': 1.06, 'zeros': 0.05}, 12: {'blurriness': 1.51, 'contrast': 1.06, 'zeros': 0.05}})
187
+ >>> results = outliers.from_stats([stats1, stats2])
188
+ >>> len(results)
189
+ 2
190
+ >>> results.issues[0]
191
+ {10: {'skew': -3.906, 'kurtosis': 13.266, 'entropy': 0.2128}, 12: {'std': 0.00536, 'var': 2.87e-05, 'skew': -3.906, 'kurtosis': 13.266, 'entropy': 0.2128}}
192
+ >>> results.issues[1]
193
+ {}
171
194
  """ # noqa: E501
172
- stats, dataset_steps = combine_stats(data)
173
-
174
- if isinstance(stats, StatsOutput):
175
- selected_flags = set(to_distinct(self.flags).values())
176
- provided = set(stats.dict())
177
- missing = selected_flags - provided
178
- if missing:
179
- warn(
180
- f"StatsOutput provided {provided} and is missing {missing} \
181
- from the selected stat flags: {selected_flags}."
195
+ if isinstance(stats, DatasetStatsOutput):
196
+ outliers = self._get_outliers({k: v for o in stats.outputs() for k, v in o.dict().items()})
197
+ return OutliersOutput(outliers)
198
+
199
+ if isinstance(stats, (DimensionStatsOutput, PixelStatsOutput, VisualStatsOutput)):
200
+ return OutliersOutput(self._get_outliers(stats.dict()))
201
+
202
+ if not isinstance(stats, Sequence):
203
+ raise TypeError(
204
+ "Invalid stats output type; only use output from dimensionstats, pixelstats or visualstats."
205
+ )
206
+
207
+ stats_map: dict[type, list[int]] = {}
208
+ for i, stats_output in enumerate(stats):
209
+ if not isinstance(
210
+ stats_output, (DatasetStatsOutput, DimensionStatsOutput, PixelStatsOutput, VisualStatsOutput)
211
+ ):
212
+ raise TypeError(
213
+ "Invalid stats output type; only use output from dimensionstats, pixelstats or visualstats."
182
214
  )
183
- self.stats = stats
184
- else:
185
- self.stats = imagestats(cast(Iterable[ArrayLike], data), self.flags)
186
-
187
- outliers = self._get_outliers()
215
+ stats_map.setdefault(type(stats_output), []).append(i)
188
216
 
189
- # split up results from combined dataset into individual dataset buckets
190
- if dataset_steps:
191
- out_dict = {}
217
+ output_list: list[dict[int, dict[str, float]]] = [{} for _ in stats]
218
+ for _, indices in stats_map.items():
219
+ substats, dataset_steps = combine_stats([stats[i] for i in indices])
220
+ outliers = self._get_outliers(substats.dict())
192
221
  for idx, issue in outliers.items():
193
222
  k, v = get_dataset_step_from_idx(idx, dataset_steps)
194
- out_dict.setdefault(k, {})[v] = issue
195
- outliers = out_dict
223
+ output_list[indices[k]][v] = issue
224
+
225
+ return OutliersOutput(output_list)
226
+
227
+ @set_metadata(
228
+ "dataeval.detectors",
229
+ [
230
+ "use_dimension",
231
+ "use_pixel",
232
+ "use_visual",
233
+ "outlier_method",
234
+ "outlier_threshold",
235
+ ],
236
+ )
237
+ def evaluate(self, data: Iterable[ArrayLike]) -> OutliersOutput[IndexIssueMap]:
238
+ """
239
+ Returns indices of outliers with the issues identified for each
196
240
 
241
+ Parameters
242
+ ----------
243
+ data : Iterable[ArrayLike], shape - (C, H, W)
244
+ A dataset of images in an ArrayLike format
245
+
246
+ Returns
247
+ -------
248
+ OutliersOutput
249
+ Output class containing the indices of outliers and a dictionary showing
250
+ the issues and calculated values for the given index.
251
+
252
+ Example
253
+ -------
254
+ Evaluate the dataset:
255
+
256
+ >>> results = outliers.evaluate(images)
257
+ >>> list(results.issues)
258
+ [10, 12]
259
+ >>> results.issues[10]
260
+ {'skew': -3.906, 'kurtosis': 13.266, 'entropy': 0.2128, 'contrast': 1.25, 'zeros': 0.05493}
261
+ """
262
+ self.stats = datasetstats(
263
+ images=data,
264
+ use_dimension=self.use_dimension,
265
+ use_pixel=self.use_pixel,
266
+ use_visual=self.use_visual,
267
+ )
268
+ outliers = self._get_outliers({k: v for o in self.stats.outputs() for k, v in o.dict().items()})
197
269
  return OutliersOutput(outliers)