dataeval 0.69.0__py3-none-any.whl → 0.69.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- dataeval/__init__.py +1 -1
- dataeval/_internal/detectors/drift/base.py +7 -1
- dataeval/_internal/detectors/drift/mmd.py +2 -2
- dataeval/_internal/detectors/outliers.py +3 -3
- dataeval/_internal/flags.py +9 -2
- dataeval/_internal/metrics/stats.py +56 -31
- {dataeval-0.69.0.dist-info → dataeval-0.69.2.dist-info}/METADATA +1 -1
- {dataeval-0.69.0.dist-info → dataeval-0.69.2.dist-info}/RECORD +10 -10
- {dataeval-0.69.0.dist-info → dataeval-0.69.2.dist-info}/LICENSE.txt +0 -0
- {dataeval-0.69.0.dist-info → dataeval-0.69.2.dist-info}/WHEEL +0 -0
dataeval/__init__.py
CHANGED
@@ -35,6 +35,8 @@ class DriftBaseOutput(OutputMetadata):
|
|
35
35
|
|
36
36
|
is_drift: bool
|
37
37
|
threshold: float
|
38
|
+
p_val: float
|
39
|
+
distance: float
|
38
40
|
|
39
41
|
|
40
42
|
@dataclass(frozen=True)
|
@@ -60,6 +62,8 @@ class DriftOutput(DriftBaseOutput):
|
|
60
62
|
|
61
63
|
# is_drift: bool
|
62
64
|
# threshold: float
|
65
|
+
# p_val: float
|
66
|
+
# distance: float
|
63
67
|
feature_drift: NDArray[np.bool_]
|
64
68
|
feature_threshold: float
|
65
69
|
p_vals: NDArray[np.float32]
|
@@ -462,4 +466,6 @@ class BaseDriftUnivariate(BaseDrift):
|
|
462
466
|
|
463
467
|
feature_drift = (p_vals < self.p_val).astype(np.bool_)
|
464
468
|
drift_pred, threshold = self._apply_correction(p_vals)
|
465
|
-
return DriftOutput(
|
469
|
+
return DriftOutput(
|
470
|
+
drift_pred, threshold, float(np.mean(p_vals)), float(np.mean(dist)), feature_drift, self.p_val, p_vals, dist
|
471
|
+
)
|
@@ -119,7 +119,7 @@ class Outliers:
|
|
119
119
|
|
120
120
|
Specifying an outlier method and threshold:
|
121
121
|
|
122
|
-
>>> outliers = Outliers(outlier_method="zscore", outlier_threshold=2.
|
122
|
+
>>> outliers = Outliers(outlier_method="zscore", outlier_threshold=2.75)
|
123
123
|
"""
|
124
124
|
|
125
125
|
def __init__(
|
@@ -167,8 +167,8 @@ class Outliers:
|
|
167
167
|
Evaluate the dataset:
|
168
168
|
|
169
169
|
>>> outliers.evaluate(images)
|
170
|
-
OutliersOutput(issues={
|
171
|
-
"""
|
170
|
+
OutliersOutput(issues={10: {'blurriness': 1.26, 'contrast': 1.06, 'zeros': 0.05}, 12: {'blurriness': 1.51, 'contrast': 1.06, 'zeros': 0.05}})
|
171
|
+
""" # noqa: E501
|
172
172
|
stats, dataset_steps = combine_stats(data)
|
173
173
|
|
174
174
|
if isinstance(stats, StatsOutput):
|
dataeval/_internal/flags.py
CHANGED
@@ -15,6 +15,7 @@ class ImageStat(IntFlag):
|
|
15
15
|
# HASHES
|
16
16
|
XXHASH = auto()
|
17
17
|
PCHASH = auto()
|
18
|
+
|
18
19
|
# PROPERTIES
|
19
20
|
WIDTH = auto()
|
20
21
|
HEIGHT = auto()
|
@@ -22,11 +23,15 @@ class ImageStat(IntFlag):
|
|
22
23
|
ASPECT_RATIO = auto()
|
23
24
|
CHANNELS = auto()
|
24
25
|
DEPTH = auto()
|
26
|
+
|
25
27
|
# VISUALS
|
26
28
|
BRIGHTNESS = auto()
|
27
29
|
BLURRINESS = auto()
|
30
|
+
CONTRAST = auto()
|
31
|
+
DARKNESS = auto()
|
28
32
|
MISSING = auto()
|
29
|
-
|
33
|
+
ZEROS = auto()
|
34
|
+
|
30
35
|
# PIXEL STATS
|
31
36
|
MEAN = auto()
|
32
37
|
STD = auto()
|
@@ -36,11 +41,13 @@ class ImageStat(IntFlag):
|
|
36
41
|
ENTROPY = auto()
|
37
42
|
PERCENTILES = auto()
|
38
43
|
HISTOGRAM = auto()
|
44
|
+
|
39
45
|
# JOINT FLAGS
|
40
46
|
ALL_HASHES = XXHASH | PCHASH
|
41
47
|
ALL_PROPERTIES = WIDTH | HEIGHT | SIZE | ASPECT_RATIO | CHANNELS | DEPTH
|
42
|
-
ALL_VISUALS = BRIGHTNESS | BLURRINESS | MISSING |
|
48
|
+
ALL_VISUALS = BRIGHTNESS | BLURRINESS | CONTRAST | DARKNESS | MISSING | ZEROS
|
43
49
|
ALL_PIXELSTATS = MEAN | STD | VAR | SKEW | KURTOSIS | ENTROPY | PERCENTILES | HISTOGRAM
|
50
|
+
ALL_CHANNEL_STATS = BRIGHTNESS | CONTRAST | DARKNESS | ZEROS | ALL_PIXELSTATS
|
44
51
|
ALL_STATS = ALL_PROPERTIES | ALL_VISUALS | ALL_PIXELSTATS
|
45
52
|
ALL = ALL_HASHES | ALL_STATS
|
46
53
|
|
@@ -24,43 +24,47 @@ class StatsOutput(OutputMetadata):
|
|
24
24
|
xxHash hash of the images as a hex string
|
25
25
|
pchash : List[str]
|
26
26
|
Perception hash of the images as a hex string
|
27
|
-
width: NDArray[np.uint16]
|
27
|
+
width : NDArray[np.uint16]
|
28
28
|
Width of the images in pixels
|
29
|
-
height: NDArray[np.uint16]
|
29
|
+
height : NDArray[np.uint16]
|
30
30
|
Height of the images in pixels
|
31
|
-
channels: NDArray[np.uint8]
|
31
|
+
channels : NDArray[np.uint8]
|
32
32
|
Channel count of the images in pixels
|
33
|
-
size: NDArray[np.uint32]
|
33
|
+
size : NDArray[np.uint32]
|
34
34
|
Size of the images in pixels
|
35
|
-
aspect_ratio: NDArray[np.float16]
|
35
|
+
aspect_ratio : NDArray[np.float16]
|
36
36
|
Aspect ratio of the images (width/height)
|
37
|
-
depth: NDArray[np.uint8]
|
37
|
+
depth : NDArray[np.uint8]
|
38
38
|
Color depth of the images in bits
|
39
|
-
brightness: NDArray[np.float16]
|
39
|
+
brightness : NDArray[np.float16]
|
40
40
|
Brightness of the images
|
41
|
-
blurriness: NDArray[np.float16]
|
41
|
+
blurriness : NDArray[np.float16]
|
42
42
|
Blurriness of the images
|
43
|
-
|
43
|
+
contrast : NDArray[np.float16]
|
44
|
+
Image contrast ratio
|
45
|
+
darkness : NDArray[np.float16]
|
46
|
+
Darkness of the images
|
47
|
+
missing : NDArray[np.float16]
|
44
48
|
Percentage of the images with missing pixels
|
45
|
-
|
49
|
+
zeros : NDArray[np.float16]
|
46
50
|
Percentage of the images with zero value pixels
|
47
|
-
mean: NDArray[np.float16]
|
51
|
+
mean : NDArray[np.float16]
|
48
52
|
Mean of the pixel values of the images
|
49
|
-
std: NDArray[np.float16]
|
53
|
+
std : NDArray[np.float16]
|
50
54
|
Standard deviation of the pixel values of the images
|
51
|
-
var: NDArray[np.float16]
|
55
|
+
var : NDArray[np.float16]
|
52
56
|
Variance of the pixel values of the images
|
53
|
-
skew: NDArray[np.float16]
|
57
|
+
skew : NDArray[np.float16]
|
54
58
|
Skew of the pixel values of the images
|
55
|
-
kurtosis: NDArray[np.float16]
|
59
|
+
kurtosis : NDArray[np.float16]
|
56
60
|
Kurtosis of the pixel values of the images
|
57
|
-
percentiles: NDArray[np.float16]
|
61
|
+
percentiles : NDArray[np.float16]
|
58
62
|
Percentiles of the pixel values of the images with quartiles of (0, 25, 50, 75, 100)
|
59
|
-
histogram: NDArray[np.uint32]
|
63
|
+
histogram : NDArray[np.uint32]
|
60
64
|
Histogram of the pixel values of the images across 256 bins scaled between 0 and 1
|
61
|
-
entropy: NDArray[np.float16]
|
65
|
+
entropy : NDArray[np.float16]
|
62
66
|
Entropy of the pixel values of the images
|
63
|
-
ch_idx_map: Dict[int, List[int]]
|
67
|
+
ch_idx_map : Dict[int, List[int]]
|
64
68
|
Per-channel mapping of indices for each metric
|
65
69
|
"""
|
66
70
|
|
@@ -74,8 +78,10 @@ class StatsOutput(OutputMetadata):
|
|
74
78
|
depth: NDArray[np.uint8]
|
75
79
|
brightness: NDArray[np.float16]
|
76
80
|
blurriness: NDArray[np.float16]
|
81
|
+
contrast: NDArray[np.float16]
|
82
|
+
darkness: NDArray[np.float16]
|
77
83
|
missing: NDArray[np.float16]
|
78
|
-
|
84
|
+
zeros: NDArray[np.float16]
|
79
85
|
mean: NDArray[np.float16]
|
80
86
|
std: NDArray[np.float16]
|
81
87
|
var: NDArray[np.float16]
|
@@ -111,27 +117,33 @@ IMAGESTATS_FN_MAP: dict[ImageStat, Callable[[NDArray], Any]] = {
|
|
111
117
|
ImageStat.SIZE: lambda x: np.uint32(np.prod(x.shape[-2:])),
|
112
118
|
ImageStat.ASPECT_RATIO: lambda x: np.float16(x.shape[-1] / x.shape[-2]),
|
113
119
|
ImageStat.DEPTH: lambda x: np.uint8(get_bitdepth(x).depth),
|
114
|
-
ImageStat.BRIGHTNESS: lambda x:
|
120
|
+
ImageStat.BRIGHTNESS: lambda x: x[-2],
|
115
121
|
ImageStat.BLURRINESS: lambda x: np.float16(np.std(edge_filter(np.mean(x, axis=0)))),
|
122
|
+
ImageStat.CONTRAST: lambda x: np.float16((np.max(x) - np.min(x)) / np.mean(x)),
|
123
|
+
ImageStat.DARKNESS: lambda x: x[1],
|
116
124
|
ImageStat.MISSING: lambda x: np.float16(np.sum(np.isnan(x)) / np.prod(x.shape[-2:])),
|
117
|
-
ImageStat.
|
125
|
+
ImageStat.ZEROS: lambda x: np.float16(np.count_nonzero(x == 0) / np.prod(x.shape[-2:])),
|
118
126
|
ImageStat.MEAN: lambda x: np.float16(np.mean(x)),
|
119
127
|
ImageStat.STD: lambda x: np.float16(np.std(x)),
|
120
128
|
ImageStat.VAR: lambda x: np.float16(np.var(x)),
|
121
129
|
ImageStat.SKEW: lambda x: np.float16(skew(x.ravel())),
|
122
130
|
ImageStat.KURTOSIS: lambda x: np.float16(kurtosis(x.ravel())),
|
123
|
-
ImageStat.PERCENTILES: lambda x: np.float16(np.
|
131
|
+
ImageStat.PERCENTILES: lambda x: np.float16(np.nanpercentile(x, q=QUARTILES)),
|
124
132
|
ImageStat.HISTOGRAM: lambda x: np.uint32(np.histogram(x, 256, (0, 1))[0]),
|
125
133
|
ImageStat.ENTROPY: lambda x: np.float16(entropy(x)),
|
126
134
|
}
|
127
135
|
|
128
136
|
CHANNELSTATS_FN_MAP: dict[ImageStat, Callable[[NDArray], Any]] = {
|
137
|
+
ImageStat.BRIGHTNESS: lambda x: np.float16((np.max(x, axis=1) - np.mean(x, axis=1)) / np.var(x, axis=1)),
|
138
|
+
ImageStat.CONTRAST: lambda x: np.float16((np.max(x, axis=1) - np.min(x, axis=1)) / np.mean(x, axis=1)),
|
139
|
+
ImageStat.DARKNESS: lambda x: np.float16((np.mean(x, axis=1) - np.min(x, axis=1)) / np.var(x, axis=1)),
|
140
|
+
ImageStat.ZEROS: lambda x: np.float16(np.count_nonzero(x == 0, axis=(1, 2)) / np.prod(x.shape[-2:])),
|
129
141
|
ImageStat.MEAN: lambda x: np.float16(np.mean(x, axis=1)),
|
130
142
|
ImageStat.STD: lambda x: np.float16(np.std(x, axis=1)),
|
131
143
|
ImageStat.VAR: lambda x: np.float16(np.var(x, axis=1)),
|
132
144
|
ImageStat.SKEW: lambda x: np.float16(skew(x, axis=1)),
|
133
145
|
ImageStat.KURTOSIS: lambda x: np.float16(kurtosis(x, axis=1)),
|
134
|
-
ImageStat.PERCENTILES: lambda x: np.float16(np.
|
146
|
+
ImageStat.PERCENTILES: lambda x: np.float16(np.nanpercentile(x, q=QUARTILES, axis=1).T),
|
135
147
|
ImageStat.HISTOGRAM: lambda x: np.uint32(np.apply_along_axis(lambda y: np.histogram(y, 256, (0, 1))[0], 1, x)),
|
136
148
|
ImageStat.ENTROPY: lambda x: np.float16(entropy(x, axis=1)),
|
137
149
|
}
|
@@ -195,15 +207,20 @@ def run_stats(
|
|
195
207
|
normalized = normalize_image_shape(image)
|
196
208
|
scaled = None
|
197
209
|
hist = None
|
210
|
+
percentiles = None
|
198
211
|
output: dict[str, NDArray] = {}
|
199
212
|
for flag, stat in flag_dict.items():
|
200
|
-
if flag & (ImageStat.ALL_PIXELSTATS | ImageStat.BRIGHTNESS):
|
213
|
+
if flag & (ImageStat.ALL_PIXELSTATS | ImageStat.BRIGHTNESS | ImageStat.CONTRAST | ImageStat.DARKNESS):
|
201
214
|
if scaled is None:
|
202
215
|
scaled = rescale(normalized).reshape(image.shape[0], -1) if flatten else rescale(normalized)
|
203
216
|
if flag & (ImageStat.HISTOGRAM | ImageStat.ENTROPY):
|
204
217
|
if hist is None:
|
205
218
|
hist = fn_map[ImageStat.HISTOGRAM](scaled)
|
206
219
|
output[stat] = hist if flag & ImageStat.HISTOGRAM else fn_map[flag](hist)
|
220
|
+
elif flag & (ImageStat.BRIGHTNESS | ImageStat.DARKNESS | ImageStat.PERCENTILES):
|
221
|
+
if percentiles is None:
|
222
|
+
percentiles = fn_map[ImageStat.PERCENTILES](scaled)
|
223
|
+
output[stat] = percentiles if flag & ImageStat.PERCENTILES else fn_map[flag](percentiles)
|
207
224
|
else:
|
208
225
|
output[stat] = fn_map[flag](scaled)
|
209
226
|
else:
|
@@ -236,6 +253,10 @@ def imagestats(images: Iterable[ArrayLike], flags: ImageStat = ImageStat.ALL_STA
|
|
236
253
|
to the names of the statistics (e.g., 'mean', 'std'), and the values are lists of results for
|
237
254
|
each image or numpy arrays when the results are multi-dimensional.
|
238
255
|
|
256
|
+
See Also
|
257
|
+
--------
|
258
|
+
ImageStat, channelstats, Outliers, Duplicates
|
259
|
+
|
239
260
|
Notes
|
240
261
|
-----
|
241
262
|
- All metrics in the ImageStat.ALL_PIXELSTATS flag are scaled based on the perceived bit depth
|
@@ -256,7 +277,7 @@ def imagestats(images: Iterable[ArrayLike], flags: ImageStat = ImageStat.ALL_STA
|
|
256
277
|
0.56152344 0.58837891 0.61230469 0.63671875 0.65771484 0.68505859
|
257
278
|
0.70947266 0.73388672 0.75488281 0.78271484 0.80712891 0.83203125
|
258
279
|
0.85302734 0.88134766 0.90625 0.93115234]
|
259
|
-
>>> print(results.
|
280
|
+
>>> print(results.zeros)
|
260
281
|
[0.12561035 0. 0. 0. 0.11730957 0.
|
261
282
|
0. 0. 0.10986328 0. 0. 0.
|
262
283
|
0.10266113 0. 0. 0. 0.09570312 0.
|
@@ -279,7 +300,7 @@ def imagestats(images: Iterable[ArrayLike], flags: ImageStat = ImageStat.ALL_STA
|
|
279
300
|
|
280
301
|
|
281
302
|
@set_metadata("dataeval.metrics")
|
282
|
-
def channelstats(images: Iterable[ArrayLike], flags=ImageStat.
|
303
|
+
def channelstats(images: Iterable[ArrayLike], flags=ImageStat.ALL_CHANNEL_STATS) -> StatsOutput:
|
283
304
|
"""
|
284
305
|
Calculates pixel statistics for each image per channel
|
285
306
|
|
@@ -291,9 +312,9 @@ def channelstats(images: Iterable[ArrayLike], flags=ImageStat.ALL_PIXELSTATS) ->
|
|
291
312
|
----------
|
292
313
|
images : ArrayLike
|
293
314
|
Images to run statistical tests on
|
294
|
-
flags: ImageStat, default ImageStat.
|
315
|
+
flags: ImageStat, default ImageStat.ALL_CHANNEL_STATS
|
295
316
|
Metric(s) to calculate for each image per channel.
|
296
|
-
Only flags within the ``ImageStat.
|
317
|
+
Only flags within the ``ImageStat.ALL_CHANNEL_STATS`` category are supported.
|
297
318
|
|
298
319
|
Returns
|
299
320
|
-------
|
@@ -302,9 +323,14 @@ def channelstats(images: Iterable[ArrayLike], flags=ImageStat.ALL_PIXELSTATS) ->
|
|
302
323
|
correspond to the names of the statistics (e.g., 'mean', 'variance'), and the values are numpy arrays
|
303
324
|
with results for each channel of each image.
|
304
325
|
|
326
|
+
See Also
|
327
|
+
--------
|
328
|
+
ImageStat, imagestats, Outliers, Duplicates
|
329
|
+
|
305
330
|
Notes
|
306
331
|
-----
|
307
|
-
- All metrics in the ImageStat.ALL_PIXELSTATS flag
|
332
|
+
- All metrics in the ImageStat.ALL_PIXELSTATS flag along with ImageStat.Brightness,
|
333
|
+
ImageStat.Contrast and ImageStat.Darkness are scaled based on the perceived bit depth
|
308
334
|
(which is derived from the largest pixel value) to allow for better comparison
|
309
335
|
between images stored in different formats and different resolutions.
|
310
336
|
|
@@ -351,7 +377,6 @@ def channelstats(images: Iterable[ArrayLike], flags=ImageStat.ALL_PIXELSTATS) ->
|
|
351
377
|
dtype=float16)}
|
352
378
|
"""
|
353
379
|
stats = run_stats(images, flags, CHANNELSTATS_FN_MAP, True)
|
354
|
-
|
355
380
|
output = {}
|
356
381
|
for i, results in enumerate(stats):
|
357
382
|
for stat, result in results.items():
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: dataeval
|
3
|
-
Version: 0.69.
|
3
|
+
Version: 0.69.2
|
4
4
|
Summary: DataEval provides a simple interface to characterize image data and its impact on model performance across classification and object-detection tasks
|
5
5
|
Home-page: https://dataeval.ai/
|
6
6
|
License: MIT
|
@@ -1,11 +1,11 @@
|
|
1
|
-
dataeval/__init__.py,sha256=
|
1
|
+
dataeval/__init__.py,sha256=NUQixSNyEc0GiI7YgbfY9IL0OEkIN9kdbrOGAB041Ig,590
|
2
2
|
dataeval/_internal/detectors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
3
|
dataeval/_internal/detectors/clusterer.py,sha256=hJwELUeAdZZ3OVLIfwalw2P7Zz13q2ZqrV6gx90s44E,20695
|
4
4
|
dataeval/_internal/detectors/drift/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
|
-
dataeval/_internal/detectors/drift/base.py,sha256=
|
5
|
+
dataeval/_internal/detectors/drift/base.py,sha256=XSX1VVUxvFFKVFQVsc2WWeaRRmIxuYaIgD_c5H4OraA,15930
|
6
6
|
dataeval/_internal/detectors/drift/cvm.py,sha256=xiyZlf0rAQGG8Z6ZBLPVri805aPRkERrUySwRN8cTZQ,4010
|
7
7
|
dataeval/_internal/detectors/drift/ks.py,sha256=aoDx7ps-5vrSI8Q9ii6cwmKnAyaD8tjG69wI-7R3MVQ,4098
|
8
|
-
dataeval/_internal/detectors/drift/mmd.py,sha256=
|
8
|
+
dataeval/_internal/detectors/drift/mmd.py,sha256=j85bwzCiFLNS27WlUFlgpHDMD9yga41ILt-yAr-LABc,7493
|
9
9
|
dataeval/_internal/detectors/drift/torch.py,sha256=YhIN85MbUV3C4IJcRvqYdXSWLj5lUeEOb05T5DgB3xo,11552
|
10
10
|
dataeval/_internal/detectors/drift/uncertainty.py,sha256=Ot8L42AnFbkij4J3Tis7VzXLv3hfBxoOWBP4UoCEnVs,5125
|
11
11
|
dataeval/_internal/detectors/duplicates.py,sha256=qkzbdWuJuUozFLqpnD6CYAGXQb7-aWw2mHr_cxXAfPo,4922
|
@@ -17,8 +17,8 @@ dataeval/_internal/detectors/ood/base.py,sha256=Pw34uFEWOJZiG4ciM0ArUkqhiM8WCGl2
|
|
17
17
|
dataeval/_internal/detectors/ood/llr.py,sha256=tCo8G7V8VaVuIZ09rg0ZXZmdE0N_zGm7vCfFUnGbGvo,10102
|
18
18
|
dataeval/_internal/detectors/ood/vae.py,sha256=WbQugS-bBUTTqQ9PRLHBmSUtk7O2_PN4PBLJE9ieMjw,2921
|
19
19
|
dataeval/_internal/detectors/ood/vaegmm.py,sha256=pVUSlVF2jo8uokyks2QzfBJnNtcFWmcF8EQl-azs2Bg,2832
|
20
|
-
dataeval/_internal/detectors/outliers.py,sha256=
|
21
|
-
dataeval/_internal/flags.py,sha256=
|
20
|
+
dataeval/_internal/detectors/outliers.py,sha256=oS8lsCPIM6WtLzUjpMZDfiopZA2fJhsHakmSzZUhqHU,7614
|
21
|
+
dataeval/_internal/flags.py,sha256=5hZ5AHXjXRKbWtFC45-J7M9NvJHsT4LKRsPzPMksgfQ,2323
|
22
22
|
dataeval/_internal/interop.py,sha256=x4qj4EiBt5NthSxe8prSLrPDAEcipAdyyLwbNyCBaFk,1059
|
23
23
|
dataeval/_internal/metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
24
24
|
dataeval/_internal/metrics/balance.py,sha256=eAHvgjiGCH893XSQLqh9j9wgvAECoNPVT8k0u_9Ijzg,6097
|
@@ -27,7 +27,7 @@ dataeval/_internal/metrics/coverage.py,sha256=EZVES1rbZW2j_CtQv1VFfSO-UmWcrt5nmq
|
|
27
27
|
dataeval/_internal/metrics/divergence.py,sha256=nmMUfr9FGnH798eb6xzEiMj4C42rQVthh5HeexiY6EE,4119
|
28
28
|
dataeval/_internal/metrics/diversity.py,sha256=nGjYQ-NLjb8mPt1PAYnvkWH4D58kjM39IPs2FULfis4,7503
|
29
29
|
dataeval/_internal/metrics/parity.py,sha256=suv1Pf7gPj0_NxsS0_M6ewfUndsFJyEhbt5NPp6ktMI,15457
|
30
|
-
dataeval/_internal/metrics/stats.py,sha256
|
30
|
+
dataeval/_internal/metrics/stats.py,sha256=ILKteVMGjrp1s2CECPL_hbLsijIKR2d6II2-8w9oxW8,18105
|
31
31
|
dataeval/_internal/metrics/uap.py,sha256=w-wvXXnX16kUq-weaZD2SrJi22LJ8EjOFbOhPxeGejI,2043
|
32
32
|
dataeval/_internal/metrics/utils.py,sha256=mSYa-3cHGcsQwPr7zbdpzrnK_8jIXCiAcu2HCcvrtaY,13007
|
33
33
|
dataeval/_internal/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -67,7 +67,7 @@ dataeval/torch/models/__init__.py,sha256=YnDnePYpRIKHyYn3F5qR1OObMSb-g0FGvI8X-uT
|
|
67
67
|
dataeval/torch/trainer/__init__.py,sha256=Te-qElt8h-Zv8NN0r-VJOEdCPHTQ2yO3rd2MhRiZGZs,93
|
68
68
|
dataeval/utils/__init__.py,sha256=ExQ1xj62MjcM9uIu1-g1P2fW0EPJpcIofnvxjQ908c4,172
|
69
69
|
dataeval/workflows/__init__.py,sha256=gkU2B6yUiefexcYrBwqfZKNl8BvX8abUjfeNvVBXF4E,186
|
70
|
-
dataeval-0.69.
|
71
|
-
dataeval-0.69.
|
72
|
-
dataeval-0.69.
|
73
|
-
dataeval-0.69.
|
70
|
+
dataeval-0.69.2.dist-info/LICENSE.txt,sha256=Kpzcfobf1HlqafF-EX6dQLw9TlJiaJzfgvLQFukyXYw,1060
|
71
|
+
dataeval-0.69.2.dist-info/METADATA,sha256=_9rVrbIh4EPYStZtOUYnB-Xo3cZ5JMUAf06TqDKvrZs,4217
|
72
|
+
dataeval-0.69.2.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
73
|
+
dataeval-0.69.2.dist-info/RECORD,,
|
File without changes
|
File without changes
|