datacontract-cli 0.10.28__py3-none-any.whl → 0.10.29__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of datacontract-cli might be problematic. Click here for more details.

datacontract/api.py CHANGED
@@ -10,7 +10,7 @@ from fastapi.security.api_key import APIKeyHeader
10
10
  from datacontract.data_contract import DataContract, ExportFormat
11
11
  from datacontract.model.run import Run
12
12
 
13
- DATA_CONTRACT_EXAMPLE_PAYLOAD = """dataContractSpecification: 1.1.0
13
+ DATA_CONTRACT_EXAMPLE_PAYLOAD = """dataContractSpecification: 1.2.0
14
14
  id: urn:datacontract:checkout:orders-latest
15
15
  info:
16
16
  title: Orders Latest
datacontract/cli.py CHANGED
@@ -469,8 +469,26 @@ def diff(
469
469
  console.print(result.changelog_str())
470
470
 
471
471
 
472
- @app.command()
472
+ def _get_uvicorn_arguments(port: int, host: str, context: typer.Context) -> dict:
473
+ """
474
+ Take the default datacontract uvicorn arguments and merge them with the
475
+ extra arguments passed to the command to start the API.
476
+ """
477
+ default_args = {
478
+ "app": "datacontract.api:app",
479
+ "port": port,
480
+ "host": host,
481
+ "reload": True,
482
+ }
483
+
484
+ # Create a list of the extra arguments, remove the leading -- from the cli arguments
485
+ trimmed_keys = list(map(lambda x : str(x).replace("--", ""),context.args[::2]))
486
+ # Merge the two dicts and return them as one dict
487
+ return default_args | dict(zip(trimmed_keys, context.args[1::2]))
488
+
489
+ @app.command(context_settings={"allow_extra_args": True, "ignore_unknown_options": True})
473
490
  def api(
491
+ ctx: Annotated[typer.Context, typer.Option(help="Extra arguments to pass to uvicorn.run().")],
474
492
  port: Annotated[int, typer.Option(help="Bind socket to this port.")] = 4242,
475
493
  host: Annotated[
476
494
  str, typer.Option(help="Bind socket to this host. Hint: For running in docker, set it to 0.0.0.0")
@@ -488,6 +506,9 @@ def api(
488
506
 
489
507
  To connect to servers (such as a Snowflake data source), set the credentials as environment variables as documented in
490
508
  https://cli.datacontract.com/#test
509
+
510
+ It is possible to run the API with extra arguments for `uvicorn.run()` as keyword arguments, e.g.:
511
+ `datacontract api --port 1234 --root_path /datacontract`.
491
512
  """
492
513
  import uvicorn
493
514
  from uvicorn.config import LOGGING_CONFIG
@@ -495,7 +516,11 @@ def api(
495
516
  log_config = LOGGING_CONFIG
496
517
  log_config["root"] = {"level": "INFO"}
497
518
 
498
- uvicorn.run(app="datacontract.api:app", port=port, host=host, reload=True, log_config=LOGGING_CONFIG)
519
+ uvicorn_args = _get_uvicorn_arguments(port, host, ctx)
520
+ # Add the log config
521
+ uvicorn_args["log_config"] = log_config
522
+ # Run uvicorn
523
+ uvicorn.run(**uvicorn_args)
499
524
 
500
525
 
501
526
  def _print_logs(run):
@@ -132,10 +132,10 @@ def setup_s3_connection(con, server):
132
132
  use_ssl = "true"
133
133
  url_style = "vhost"
134
134
  if server.endpointUrl is not None:
135
+ url_style = "path"
135
136
  s3_endpoint = server.endpointUrl.removeprefix("http://").removeprefix("https://")
136
137
  if server.endpointUrl.startswith("http://"):
137
138
  use_ssl = "false"
138
- url_style = "path"
139
139
 
140
140
  if s3_access_key_id is not None:
141
141
  if s3_session_token is not None:
@@ -57,8 +57,8 @@ def to_rdf(data_contract_spec: DataContractSpecification, base) -> Graph:
57
57
  else:
58
58
  g = Graph(base=Namespace(""))
59
59
 
60
- dc = Namespace("https://datacontract.com/DataContractSpecification/1.1.0/")
61
- dcx = Namespace("https://datacontract.com/DataContractSpecification/1.1.0/Extension/")
60
+ dc = Namespace("https://datacontract.com/DataContractSpecification/1.2.0/")
61
+ dcx = Namespace("https://datacontract.com/DataContractSpecification/1.2.0/Extension/")
62
62
 
63
63
  g.bind("dc", dc)
64
64
  g.bind("dcx", dcx)
@@ -194,8 +194,8 @@ def convert_to_databricks(field: Field) -> None | str:
194
194
  nested_fields = []
195
195
  for nested_field_name, nested_field in field.fields.items():
196
196
  nested_field_type = convert_to_databricks(nested_field)
197
- nested_fields.append(f"{nested_field_name} {nested_field_type}")
198
- return f"STRUCT<{', '.join(nested_fields)}>"
197
+ nested_fields.append(f"{nested_field_name}:{nested_field_type}")
198
+ return f"STRUCT<{','.join(nested_fields)}>"
199
199
  if type.lower() in ["bytes"]:
200
200
  return "BINARY"
201
201
  if type.lower() in ["array"]:
@@ -568,6 +568,8 @@ def import_roles(workbook: Workbook) -> Optional[List[Role]]:
568
568
 
569
569
  roles_list = []
570
570
  for row_idx in range(roles_range[0], roles_range[1]):
571
+ if len(list(roles_sheet.rows)) < row_idx + 1:
572
+ break
571
573
  row = list(roles_sheet.rows)[row_idx]
572
574
 
573
575
  role_name = get_cell_value(row, headers.get("role"))
@@ -26,6 +26,7 @@ class ImportFormat(str, Enum):
26
26
  dbml = "dbml"
27
27
  glue = "glue"
28
28
  jsonschema = "jsonschema"
29
+ json = "json"
29
30
  bigquery = "bigquery"
30
31
  odcs = "odcs"
31
32
  unity = "unity"
@@ -119,3 +119,10 @@ importer_factory.register_lazy_importer(
119
119
  module_path="datacontract.imports.excel_importer",
120
120
  class_name="ExcelImporter",
121
121
  )
122
+
123
+
124
+ importer_factory.register_lazy_importer(
125
+ name=ImportFormat.json,
126
+ module_path="datacontract.imports.json_importer",
127
+ class_name="JsonImporter",
128
+ )
@@ -0,0 +1,325 @@
1
+ import json
2
+ import os
3
+ import re
4
+ from typing import Any, Dict, List, Optional, Tuple
5
+
6
+ from datacontract.imports.importer import Importer
7
+ from datacontract.model.data_contract_specification import DataContractSpecification, Model, Server
8
+
9
+
10
+ class JsonImporter(Importer):
11
+ def import_source(
12
+ self, data_contract_specification: DataContractSpecification, source: str, import_args: dict
13
+ ) -> DataContractSpecification:
14
+ return import_json(data_contract_specification, source)
15
+
16
+
17
+ def is_ndjson(file_path: str) -> bool:
18
+ """Check if a file contains newline-delimited JSON."""
19
+ with open(file_path, "r", encoding="utf-8") as file:
20
+ for _ in range(5):
21
+ line = file.readline().strip()
22
+ if not line:
23
+ continue
24
+ try:
25
+ json.loads(line)
26
+ return True
27
+ except json.JSONDecodeError:
28
+ break
29
+ return False
30
+
31
+
32
+ def import_json(
33
+ data_contract_specification: DataContractSpecification, source: str, include_examples: bool = False
34
+ ) -> DataContractSpecification:
35
+ # use the file name as base model name
36
+ base_model_name = os.path.splitext(os.path.basename(source))[0]
37
+
38
+ # check if file is newline-delimited JSON
39
+ if is_ndjson(source):
40
+ # load NDJSON data
41
+ json_data = []
42
+ with open(source, "r", encoding="utf-8") as file:
43
+ for line in file:
44
+ line = line.strip()
45
+ if line:
46
+ try:
47
+ json_data.append(json.loads(line))
48
+ except json.JSONDecodeError:
49
+ continue
50
+ else:
51
+ # load regular JSON data
52
+ with open(source, "r", encoding="utf-8") as file:
53
+ json_data = json.load(file)
54
+
55
+ if data_contract_specification.servers is None:
56
+ data_contract_specification.servers = {}
57
+
58
+ data_contract_specification.servers["production"] = Server(type="local", path=source, format="json")
59
+
60
+ # initialisation
61
+ models = {}
62
+
63
+ if isinstance(json_data, list) and json_data:
64
+ # Array of items
65
+ if all(isinstance(item, dict) for item in json_data[:5]):
66
+ # Array of objects, as table
67
+ fields = {}
68
+ for item in json_data[:20]:
69
+ for key, value in item.items():
70
+ field_def = generate_field_definition(value, key, base_model_name, models)
71
+ if key in fields:
72
+ fields[key] = merge_field_definitions(fields[key], field_def)
73
+ else:
74
+ fields[key] = field_def
75
+
76
+ models[base_model_name] = {
77
+ "type": "table",
78
+ "description": f"Generated from JSON array in {source}",
79
+ "fields": fields,
80
+ "examples": json_data[:3] if include_examples else None,
81
+ }
82
+ else:
83
+ # Simple array
84
+ item_type, item_format = infer_array_type(json_data[:20])
85
+ models[base_model_name] = {
86
+ "type": "array",
87
+ "description": f"Generated from JSON array in {source}",
88
+ "items": {"type": item_type, "format": item_format} if item_format else {"type": item_type},
89
+ "examples": [json_data[:5]] if include_examples else None,
90
+ }
91
+ elif isinstance(json_data, dict):
92
+ # Single object
93
+ fields = {}
94
+ for key, value in json_data.items():
95
+ fields[key] = generate_field_definition(value, key, base_model_name, models)
96
+
97
+ models[base_model_name] = {
98
+ "type": "object",
99
+ "description": f"Generated from JSON object in {source}",
100
+ "fields": fields,
101
+ "examples": [json_data] if include_examples else None,
102
+ }
103
+ else:
104
+ # Primitive value
105
+ field_type, field_format = determine_type_and_format(json_data)
106
+ models[base_model_name] = {
107
+ "type": field_type,
108
+ "description": f"Generated from JSON primitive in {source}",
109
+ "format": field_format,
110
+ "examples": [json_data] if include_examples and field_type != "boolean" else None,
111
+ }
112
+
113
+ for model_name, model_def in models.items():
114
+ model_type = model_def.pop("type")
115
+ data_contract_specification.models[model_name] = Model(type=model_type, **model_def)
116
+
117
+ return data_contract_specification
118
+
119
+
120
+ def generate_field_definition(
121
+ value: Any, field_name: str, parent_model: str, models: Dict[str, Dict[str, Any]]
122
+ ) -> Dict[str, Any]:
123
+ """Generate a field definition for a JSON value, creating nested models."""
124
+
125
+ if isinstance(value, dict):
126
+ # Handle object fields
127
+ fields = {}
128
+ for key, nested_value in value.items():
129
+ fields[key] = generate_field_definition(nested_value, key, parent_model, models)
130
+
131
+ return {"type": "object", "fields": fields}
132
+
133
+ elif isinstance(value, list):
134
+ # Handle array fields
135
+ if not value:
136
+ return {"type": "array", "items": {"type": "string"}}
137
+
138
+ if all(isinstance(item, dict) for item in value):
139
+ # Array of objects
140
+ fields = {}
141
+ for item in value:
142
+ for key, nested_value in item.items():
143
+ field_def = generate_field_definition(nested_value, key, parent_model, models)
144
+ if key in fields:
145
+ fields[key] = merge_field_definitions(fields[key], field_def)
146
+ else:
147
+ fields[key] = field_def
148
+
149
+ return {"type": "array", "items": {"type": "object", "fields": fields}}
150
+
151
+ elif all(isinstance(item, list) for item in value):
152
+ # Array of arrays
153
+ inner_type, inner_format = infer_array_type(value[0])
154
+ return {
155
+ "type": "array",
156
+ "items": {
157
+ "type": "array",
158
+ "items": {"type": inner_type, "format": inner_format} if inner_format else {"type": inner_type},
159
+ },
160
+ "examples": value[:5], # Include examples for nested arrays
161
+ }
162
+
163
+ else:
164
+ # Array of simple or mixed types
165
+ item_type, item_format = infer_array_type(value)
166
+ items_def = {"type": item_type}
167
+ if item_format:
168
+ items_def["format"] = item_format
169
+
170
+ field_def = {"type": "array", "items": items_def}
171
+
172
+ # Add examples if appropriate
173
+ sample_values = [item for item in value[:5] if item is not None]
174
+ if sample_values:
175
+ field_def["examples"] = sample_values
176
+
177
+ return field_def
178
+
179
+ else:
180
+ # Handle primitive types
181
+ field_type, field_format = determine_type_and_format(value)
182
+ field_def = {"type": field_type}
183
+ if field_format:
184
+ field_def["format"] = field_format
185
+
186
+ # Add examples
187
+ if value is not None and field_type != "boolean":
188
+ field_def["examples"] = [value]
189
+
190
+ return field_def
191
+
192
+
193
+ def infer_array_type(array: List) -> Tuple[str, Optional[str]]:
194
+ """Infer the common type of items in an array."""
195
+ if not array:
196
+ return "string", None
197
+
198
+ # if all items are dictionaries with the same structure
199
+ if all(isinstance(item, dict) for item in array):
200
+ return "object", None
201
+
202
+ # if all items are of the same primitive type
203
+ non_null_items = [item for item in array if item is not None]
204
+ if not non_null_items:
205
+ return "null", None
206
+
207
+ types_and_formats = [determine_type_and_format(item) for item in non_null_items]
208
+ types = {t for t, _ in types_and_formats}
209
+ formats = {f for _, f in types_and_formats if f is not None}
210
+
211
+ # simplify type combinations
212
+ if types == {"integer", "number"}:
213
+ return "number", None
214
+ if len(types) == 1:
215
+ type_name = next(iter(types))
216
+ format_name = next(iter(formats)) if len(formats) == 1 else None
217
+ return type_name, format_name
218
+ if all(t in {"string", "integer", "number", "boolean", "null"} for t in types):
219
+ # If all string values have the same format, keep it
220
+ if len(formats) == 1 and "string" in types:
221
+ return "string", next(iter(formats))
222
+ return "string", None
223
+
224
+ # Mixed types
225
+ return "string", None
226
+
227
+
228
+ def determine_type_and_format(value: Any) -> Tuple[str, Optional[str]]:
229
+ """determine the datacontract type and format for a JSON value."""
230
+ if value is None:
231
+ return "null", None
232
+ elif isinstance(value, bool):
233
+ return "boolean", None
234
+ elif isinstance(value, int):
235
+ return "integer", None
236
+ elif isinstance(value, float):
237
+ return "number", None
238
+ elif isinstance(value, str):
239
+ try:
240
+ if re.match(r"^\d{4}-\d{2}-\d{2}$", value):
241
+ return "string", "date"
242
+ elif re.match(r"^\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2}(\.\d+)?(Z|[+-]\d{2}:\d{2})?$", value):
243
+ return "string", "date-time"
244
+ elif re.match(r"^[\w\.-]+@([\w-]+\.)+[\w-]{2,4}$", value):
245
+ return "string", "email"
246
+ elif re.match(r"^[a-f0-9]{8}-?[a-f0-9]{4}-?[a-f0-9]{4}-?[a-f0-9]{4}-?[a-f0-9]{12}$", value.lower()):
247
+ return "string", "uuid"
248
+ else:
249
+ return "string", None
250
+ except re.error:
251
+ return "string", None
252
+ elif isinstance(value, dict):
253
+ return "object", None
254
+ elif isinstance(value, list):
255
+ return "array", None
256
+ else:
257
+ return "string", None
258
+
259
+
260
+ def merge_field_definitions(field1: Dict[str, Any], field2: Dict[str, Any]) -> Dict[str, Any]:
261
+ """Merge two field definitions."""
262
+ result = field1.copy()
263
+ if field1.get("type") == "object" and field2.get("type") != "object":
264
+ return field1
265
+ if field2.get("type") == "object" and field1.get("type") != "object":
266
+ return field2
267
+ # Handle type differences
268
+ if field1.get("type") != field2.get("type"):
269
+ type1, _ = field1.get("type", "string"), field1.get("format")
270
+ type2, _ = field2.get("type", "string"), field2.get("format")
271
+
272
+ if type1 == "integer" and type2 == "number" or type1 == "number" and type2 == "integer":
273
+ common_type = "number"
274
+ common_format = None
275
+ elif "string" in [type1, type2]:
276
+ common_type = "string"
277
+ common_format = None
278
+ elif all(t in ["string", "integer", "number", "boolean", "null"] for t in [type1, type2]):
279
+ common_type = "string"
280
+ common_format = None
281
+ elif type1 == "array" and type2 == "array":
282
+ # Handle mixed array types
283
+ items1 = field1.get("items", {})
284
+ items2 = field2.get("items", {})
285
+ if items1.get("type") == "object" or items2.get("type") == "object":
286
+ if items1.get("type") == "object" and items2.get("type") == "object":
287
+ merged_items = merge_field_definitions(items1, items2)
288
+ else:
289
+ merged_items = items1 if items1.get("type") == "object" else items2
290
+ return {"type": "array", "items": merged_items}
291
+ else:
292
+ merged_items = merge_field_definitions(items1, items2)
293
+ return {"type": "array", "items": merged_items}
294
+ else:
295
+ common_type = "array" if "array" in [type1, type2] else "object"
296
+ common_format = None
297
+
298
+ result["type"] = common_type
299
+ if common_format:
300
+ result["format"] = common_format
301
+ elif "format" in result:
302
+ del result["format"]
303
+
304
+ # Merge examples
305
+ if "examples" in field2:
306
+ if "examples" in result:
307
+ combined = result["examples"] + [ex for ex in field2["examples"] if ex not in result["examples"]]
308
+ result["examples"] = combined[:5] # Limit to 5 examples
309
+ else:
310
+ result["examples"] = field2["examples"]
311
+
312
+ # Handle nested structures
313
+ if result.get("type") == "array" and "items" in field1 and "items" in field2:
314
+ result["items"] = merge_field_definitions(field1["items"], field2["items"])
315
+ elif result.get("type") == "object" and "fields" in field1 and "fields" in field2:
316
+ # Merge fields from both objects
317
+ merged_fields = field1["fields"].copy()
318
+ for key, field_def in field2["fields"].items():
319
+ if key in merged_fields:
320
+ merged_fields[key] = merge_field_definitions(merged_fields[key], field_def)
321
+ else:
322
+ merged_fields[key] = field_def
323
+ result["fields"] = merged_fields
324
+
325
+ return result
@@ -3,7 +3,7 @@ import logging
3
3
 
4
4
  import requests
5
5
 
6
- DEFAULT_DATA_CONTRACT_INIT_TEMPLATE = "datacontract-1.1.0.init.yaml"
6
+ DEFAULT_DATA_CONTRACT_INIT_TEMPLATE = "datacontract-1.2.0.init.yaml"
7
7
 
8
8
 
9
9
  def get_init_template(location: str = None) -> str:
@@ -303,7 +303,7 @@ def _resolve_data_contract_from_str(
303
303
  # if ODCS, then validate the ODCS schema and import to DataContractSpecification directly
304
304
  odcs = parse_odcs_v3_from_str(data_contract_str)
305
305
 
306
- data_contract_specification = DataContractSpecification(dataContractSpecification="1.1.0")
306
+ data_contract_specification = DataContractSpecification(dataContractSpecification="1.2.0")
307
307
  return import_from_odcs(data_contract_specification, odcs)
308
308
 
309
309
  logging.info("Importing DCS")
@@ -8,7 +8,7 @@ import requests
8
8
 
9
9
  from datacontract.model.exceptions import DataContractException
10
10
 
11
- DEFAULT_DATA_CONTRACT_SCHEMA = "datacontract-1.1.0.schema.json"
11
+ DEFAULT_DATA_CONTRACT_SCHEMA = "datacontract-1.2.0.schema.json"
12
12
 
13
13
 
14
14
  def fetch_schema(location: str = None) -> Dict[str, Any]:
@@ -1,4 +1,4 @@
1
- dataContractSpecification: 1.1.0
1
+ dataContractSpecification: 1.2.0
2
2
  id: my-data-contract-id
3
3
  info:
4
4
  title: My Data Contract
@@ -0,0 +1,91 @@
1
+ dataContractSpecification: 1.2.0
2
+ id: my-data-contract-id
3
+ info:
4
+ title: My Data Contract
5
+ version: 0.0.1
6
+ # description:
7
+ # owner:
8
+ # contact:
9
+ # name:
10
+ # url:
11
+ # email:
12
+
13
+
14
+ ### servers
15
+
16
+ #servers:
17
+ # production:
18
+ # type: s3
19
+ # location: s3://
20
+ # format: parquet
21
+ # delimiter: new_line
22
+
23
+ ### terms
24
+
25
+ #terms:
26
+ # usage:
27
+ # limitations:
28
+ # billing:
29
+ # noticePeriod:
30
+
31
+
32
+ ### models
33
+
34
+ # models:
35
+ # my_model:
36
+ # description:
37
+ # type:
38
+ # fields:
39
+ # my_field:
40
+ # type:
41
+ # description:
42
+
43
+
44
+ ### definitions
45
+
46
+ # definitions:
47
+ # my_field:
48
+ # domain:
49
+ # name:
50
+ # title:
51
+ # type:
52
+ # description:
53
+ # example:
54
+ # pii:
55
+ # classification:
56
+
57
+
58
+ ### servicelevels
59
+
60
+ #servicelevels:
61
+ # availability:
62
+ # description: The server is available during support hours
63
+ # percentage: 99.9%
64
+ # retention:
65
+ # description: Data is retained for one year because!
66
+ # period: P1Y
67
+ # unlimited: false
68
+ # latency:
69
+ # description: Data is available within 25 hours after the order was placed
70
+ # threshold: 25h
71
+ # sourceTimestampField: orders.order_timestamp
72
+ # processedTimestampField: orders.processed_timestamp
73
+ # freshness:
74
+ # description: The age of the youngest row in a table.
75
+ # threshold: 25h
76
+ # timestampField: orders.order_timestamp
77
+ # frequency:
78
+ # description: Data is delivered once a day
79
+ # type: batch # or streaming
80
+ # interval: daily # for batch, either or cron
81
+ # cron: 0 0 * * * # for batch, either or interval
82
+ # support:
83
+ # description: The data is available during typical business hours at headquarters
84
+ # time: 9am to 5pm in EST on business days
85
+ # responseTime: 1h
86
+ # backup:
87
+ # description: Data is backed up once a week, every Sunday at 0:00 UTC.
88
+ # interval: weekly
89
+ # cron: 0 0 * * 0
90
+ # recoveryTime: 24 hours
91
+ # recoveryPoint: 1 week