datachain 0.6.8__py3-none-any.whl → 0.6.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of datachain might be problematic. Click here for more details.
- datachain/catalog/catalog.py +20 -3
- datachain/client/fsspec.py +1 -1
- datachain/data_storage/metastore.py +4 -0
- datachain/data_storage/sqlite.py +6 -2
- datachain/dataset.py +5 -0
- datachain/lib/dataset_info.py +3 -0
- datachain/lib/dc.py +79 -6
- datachain/lib/meta_formats.py +1 -0
- datachain/lib/models/__init__.py +4 -3
- datachain/lib/models/bbox.py +96 -25
- datachain/lib/models/pose.py +79 -8
- datachain/lib/models/segment.py +53 -0
- datachain/lib/models/ultralytics/__init__.py +14 -0
- datachain/lib/models/ultralytics/bbox.py +189 -0
- datachain/lib/models/ultralytics/pose.py +126 -0
- datachain/lib/models/ultralytics/segment.py +121 -0
- datachain/lib/signal_schema.py +1 -1
- datachain/listing.py +24 -7
- datachain/toolkit/__init__.py +3 -0
- datachain/toolkit/split.py +67 -0
- {datachain-0.6.8.dist-info → datachain-0.6.10.dist-info}/METADATA +42 -22
- {datachain-0.6.8.dist-info → datachain-0.6.10.dist-info}/RECORD +26 -20
- {datachain-0.6.8.dist-info → datachain-0.6.10.dist-info}/WHEEL +1 -1
- datachain/lib/models/yolo.py +0 -39
- {datachain-0.6.8.dist-info → datachain-0.6.10.dist-info}/LICENSE +0 -0
- {datachain-0.6.8.dist-info → datachain-0.6.10.dist-info}/entry_points.txt +0 -0
- {datachain-0.6.8.dist-info → datachain-0.6.10.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: datachain
|
|
3
|
-
Version: 0.6.
|
|
3
|
+
Version: 0.6.10
|
|
4
4
|
Summary: Wrangle unstructured AI data at scale
|
|
5
5
|
Author-email: Dmitry Petrov <support@dvc.org>
|
|
6
6
|
License: Apache-2.0
|
|
@@ -82,7 +82,7 @@ Requires-Dist: pytest <9,>=8 ; extra == 'tests'
|
|
|
82
82
|
Requires-Dist: pytest-sugar >=0.9.6 ; extra == 'tests'
|
|
83
83
|
Requires-Dist: pytest-cov >=4.1.0 ; extra == 'tests'
|
|
84
84
|
Requires-Dist: pytest-mock >=3.12.0 ; extra == 'tests'
|
|
85
|
-
Requires-Dist: pytest-servers[all] >=0.5.
|
|
85
|
+
Requires-Dist: pytest-servers[all] >=0.5.8 ; extra == 'tests'
|
|
86
86
|
Requires-Dist: pytest-benchmark[histogram] ; extra == 'tests'
|
|
87
87
|
Requires-Dist: pytest-xdist >=3.3.1 ; extra == 'tests'
|
|
88
88
|
Requires-Dist: virtualenv ; extra == 'tests'
|
|
@@ -120,33 +120,41 @@ Requires-Dist: usearch ; extra == 'vector'
|
|
|
120
120
|
:target: https://github.com/iterative/datachain/actions/workflows/tests.yml
|
|
121
121
|
:alt: Tests
|
|
122
122
|
|
|
123
|
-
DataChain is a
|
|
124
|
-
|
|
125
|
-
|
|
123
|
+
DataChain is a Python-based AI-data warehouse for transforming and analyzing unstructured
|
|
124
|
+
data like images, audio, videos, text and PDFs. It integrates with external storage
|
|
125
|
+
(e.g., S3) to process data efficiently without data duplication and manages metadata
|
|
126
|
+
in an internal database for easy and efficient querying.
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
Use Cases
|
|
130
|
+
=========
|
|
131
|
+
|
|
132
|
+
1. **Multimodal Dataset Preparation and Curation**: ideal for organizing and
|
|
133
|
+
refining data in pre-training, finetuning or LLM evaluating stages.
|
|
134
|
+
2. **GenAI Data Analytics**: Enables advanced analytics for multimodal data and
|
|
135
|
+
ad-hoc analytics using LLMs.
|
|
126
136
|
|
|
127
137
|
Key Features
|
|
128
138
|
============
|
|
129
139
|
|
|
130
|
-
📂 **
|
|
131
|
-
-
|
|
132
|
-
file systems.
|
|
133
|
-
- Multimodal data support: images, video, text, PDFs, JSONs, CSVs, parquet.
|
|
140
|
+
📂 **Multimodal Dataset Versioning.**
|
|
141
|
+
- Version unstructured data without redundant data copies, by supporitng
|
|
142
|
+
references to S3, GCP, Azure, and local file systems.
|
|
143
|
+
- Multimodal data support: images, video, text, PDFs, JSONs, CSVs, parquet, etc.
|
|
134
144
|
- Unite files and metadata together into persistent, versioned, columnar datasets.
|
|
135
145
|
|
|
136
|
-
🐍 **Python-friendly
|
|
137
|
-
- Operate on Python objects and object fields
|
|
138
|
-
|
|
146
|
+
🐍 **Python-friendly.**
|
|
147
|
+
- Operate on Python objects and object fields: float scores, strings, matrixes,
|
|
148
|
+
LLM response objects.
|
|
149
|
+
- Run Python code in a high-scale, terabytes size datasets, with built-in
|
|
150
|
+
parallelization and memory-efficient computing — no SQL or Spark required.
|
|
139
151
|
|
|
140
152
|
🧠 **Data Enrichment and Processing.**
|
|
141
153
|
- Generate metadata using local AI models and LLM APIs.
|
|
142
|
-
- Filter, join, and group by metadata. Search by vector embeddings.
|
|
154
|
+
- Filter, join, and group datasets by metadata. Search by vector embeddings.
|
|
155
|
+
- High-performance vectorized operations on Python objects: sum, count, avg, etc.
|
|
143
156
|
- Pass datasets to Pytorch and Tensorflow, or export them back into storage.
|
|
144
157
|
|
|
145
|
-
🚀 **Efficiency.**
|
|
146
|
-
- Parallelization, out-of-memory workloads and data caching.
|
|
147
|
-
- Vectorized operations on Python object fields: sum, count, avg, etc.
|
|
148
|
-
- Optimized vector search.
|
|
149
|
-
|
|
150
158
|
|
|
151
159
|
Quick Start
|
|
152
160
|
-----------
|
|
@@ -196,7 +204,7 @@ Batch inference with a simple sentiment model using the `transformers` library:
|
|
|
196
204
|
|
|
197
205
|
pip install transformers
|
|
198
206
|
|
|
199
|
-
The code below downloads files the cloud, and applies a user-defined function
|
|
207
|
+
The code below downloads files from the cloud, and applies a user-defined function
|
|
200
208
|
to each one of them. All files with a positive sentiment
|
|
201
209
|
detected are then copied to the local directory.
|
|
202
210
|
|
|
@@ -429,6 +437,19 @@ name suffix, the following code will do it:
|
|
|
429
437
|
loader = DataLoader(chain, batch_size=1)
|
|
430
438
|
|
|
431
439
|
|
|
440
|
+
DataChain Studio Platform
|
|
441
|
+
-------------------------
|
|
442
|
+
|
|
443
|
+
`DataChain Studio`_ is a proprietary solution for teams that offers:
|
|
444
|
+
|
|
445
|
+
- **Centralized dataset registry** to manage data, code and dependency
|
|
446
|
+
dependencies in one place.
|
|
447
|
+
- **Data Lineage** for data sources as well as direvative dataset.
|
|
448
|
+
- **UI for Multimodal Data** like images, videos, and PDFs.
|
|
449
|
+
- **Scalable Compute** to handle large datasets (100M+ files) and in-house
|
|
450
|
+
AI model inference.
|
|
451
|
+
- **Access control** including SSO and team based collaboration.
|
|
452
|
+
|
|
432
453
|
Tutorials
|
|
433
454
|
---------
|
|
434
455
|
|
|
@@ -462,6 +483,5 @@ Community and Support
|
|
|
462
483
|
.. _Pydantic: https://github.com/pydantic/pydantic
|
|
463
484
|
.. _publicly available: https://radar.kit.edu/radar/en/dataset/FdJmclKpjHzLfExE.ExpBot%2B-%2BA%2Bdataset%2Bof%2B79%2Bdialogs%2Bwith%2Ban%2Bexperimental%2Bcustomer%2Bservice%2Bchatbot
|
|
464
485
|
.. _SQLite: https://www.sqlite.org/
|
|
465
|
-
.. _Getting Started: https://datachain.
|
|
466
|
-
..
|
|
467
|
-
:alt: DataChain FlowChart
|
|
486
|
+
.. _Getting Started: https://docs.datachain.ai/
|
|
487
|
+
.. _DataChain Studio: https://studio.datachain.ai/
|
|
@@ -5,10 +5,10 @@ datachain/cache.py,sha256=s0YHN7qurmQv-eC265TjeureK84TebWWAnL07cxchZQ,2997
|
|
|
5
5
|
datachain/cli.py,sha256=hdVt_HJumQVgtaBAtBVJm-uPyYVogMXNVLmRcZyWHgk,36677
|
|
6
6
|
datachain/cli_utils.py,sha256=jrn9ejGXjybeO1ur3fjdSiAyCHZrX0qsLLbJzN9ErPM,2418
|
|
7
7
|
datachain/config.py,sha256=g8qbNV0vW2VEKpX-dGZ9pAn0DAz6G2ZFcr7SAV3PoSM,4272
|
|
8
|
-
datachain/dataset.py,sha256=
|
|
8
|
+
datachain/dataset.py,sha256=0IN-5y723y-bnFlieKtOFZLCjwX_yplFo3q0DV7LRPw,14821
|
|
9
9
|
datachain/error.py,sha256=bxAAL32lSeMgzsQDEHbGTGORj-mPzzpCRvWDPueJNN4,1092
|
|
10
10
|
datachain/job.py,sha256=Jt4sNutMHJReaGsj3r3scueN5aESLGfhimAa8pUP7Is,1271
|
|
11
|
-
datachain/listing.py,sha256=
|
|
11
|
+
datachain/listing.py,sha256=TgKg25ZWAP5enzKgw2_2GUPJVdnQUh6uySHB5SJrUY4,7773
|
|
12
12
|
datachain/node.py,sha256=i7_jC8VcW6W5VYkDszAOu0H-rNBuqXB4UnLEh4wFzjc,5195
|
|
13
13
|
datachain/nodes_fetcher.py,sha256=F-73-h19HHNGtHFBGKk7p3mc0ALm4a9zGnzhtuUjnp4,1107
|
|
14
14
|
datachain/nodes_thread_pool.py,sha256=uPo-xl8zG5m9YgODjPFBpbcqqHjI-dcxH87yAbj_qco,3192
|
|
@@ -18,13 +18,13 @@ datachain/studio.py,sha256=6kxF7VxPAbh9D7_Bk8_SghS5OXrwUwSpDaw19eNCTP4,4083
|
|
|
18
18
|
datachain/telemetry.py,sha256=0A4IOPPp9VlP5pyW9eBfaTK3YhHGzHl7dQudQjUAx9A,994
|
|
19
19
|
datachain/utils.py,sha256=-mSFowjIidJ4_sMXInvNHLn4rK_QnHuIlLuH1_lMGmI,13897
|
|
20
20
|
datachain/catalog/__init__.py,sha256=g2iAAFx_gEIrqshXlhSEbrc8qDaEH11cjU40n3CHDz4,409
|
|
21
|
-
datachain/catalog/catalog.py,sha256=
|
|
21
|
+
datachain/catalog/catalog.py,sha256=J1nUWLI4RYCvvR6fB4neQBtB7V-CTh4PM71irhNmJc4,57817
|
|
22
22
|
datachain/catalog/datasource.py,sha256=D-VWIVDCM10A8sQavLhRXdYSCG7F4o4ifswEF80_NAQ,1412
|
|
23
23
|
datachain/catalog/loader.py,sha256=-6VelNfXUdgUnwInVyA8g86Boxv2xqhTh9xNS-Zlwig,8242
|
|
24
24
|
datachain/client/__init__.py,sha256=T4wiYL9KIM0ZZ_UqIyzV8_ufzYlewmizlV4iymHNluE,86
|
|
25
25
|
datachain/client/azure.py,sha256=ffxs26zm6KLAL1aUWJm-vtzuZP3LSNha7UDGXynMBKo,2234
|
|
26
26
|
datachain/client/fileslice.py,sha256=bT7TYco1Qe3bqoc8aUkUZcPdPofJDHlryL5BsTn9xsY,3021
|
|
27
|
-
datachain/client/fsspec.py,sha256=
|
|
27
|
+
datachain/client/fsspec.py,sha256=Ai5m7alkAnv-RWXuLbZ95SKEPaQ3Pyk5ujDy50JDX5w,12692
|
|
28
28
|
datachain/client/gcs.py,sha256=cnTIr5GS6dbYOEYfqehhyQu3dr6XNjPHSg5U3FkivUk,4124
|
|
29
29
|
datachain/client/hf.py,sha256=XeVJVbiNViZCpn3sfb90Fr8SYO3BdLmfE3hOWMoqInE,951
|
|
30
30
|
datachain/client/local.py,sha256=vwbgCwZ7IqY2voj2l7tLJjgov7Dp--fEUvUwUBsMbls,4457
|
|
@@ -33,27 +33,27 @@ datachain/data_storage/__init__.py,sha256=cEOJpyu1JDZtfUupYucCDNFI6e5Wmp_Oyzq6rZ
|
|
|
33
33
|
datachain/data_storage/db_engine.py,sha256=81Ol1of9TTTzD97ORajCnP366Xz2mEJt6C-kTUCaru4,3406
|
|
34
34
|
datachain/data_storage/id_generator.py,sha256=lCEoU0BM37Ai2aRpSbwo5oQT0GqZnSpYwwvizathRMQ,4292
|
|
35
35
|
datachain/data_storage/job.py,sha256=w-7spowjkOa1P5fUVtJou3OltT0L48P0RYWZ9rSJ9-s,383
|
|
36
|
-
datachain/data_storage/metastore.py,sha256
|
|
36
|
+
datachain/data_storage/metastore.py,sha256=5b7o_CSHC2djottebYn-Hq5q0yaSLOKPIRCnaVRvjsU,36056
|
|
37
37
|
datachain/data_storage/schema.py,sha256=scANMQqozita3HjEtq7eupMgh6yYkrZHoXtfuL2RoQg,9879
|
|
38
38
|
datachain/data_storage/serializer.py,sha256=6G2YtOFqqDzJf1KbvZraKGXl2XHZyVml2krunWUum5o,927
|
|
39
|
-
datachain/data_storage/sqlite.py,sha256=
|
|
39
|
+
datachain/data_storage/sqlite.py,sha256=CspRUlYsIcubgzvcQxTACnmcuKESSLZcqCl0dcrtRiA,27471
|
|
40
40
|
datachain/data_storage/warehouse.py,sha256=xwMaR4jBpR13vjG3zrhphH4z2_CFLNj0KPF0LJCXCJ8,30727
|
|
41
41
|
datachain/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
42
42
|
datachain/lib/arrow.py,sha256=-hu9tic79a01SY2UBqkA3U6wUr6tnE3T3q5q_BnO93A,9156
|
|
43
43
|
datachain/lib/clip.py,sha256=lm5CzVi4Cj1jVLEKvERKArb-egb9j1Ls-fwTItT6vlI,6150
|
|
44
44
|
datachain/lib/data_model.py,sha256=dau4AlZBhOFvF7pEKMeqCeRkcFFg5KFvTBWW_2CdH5g,2371
|
|
45
|
-
datachain/lib/dataset_info.py,sha256=
|
|
46
|
-
datachain/lib/dc.py,sha256=
|
|
45
|
+
datachain/lib/dataset_info.py,sha256=q0EW9tj5jXGSD9Lzct9zbH4P1lfIGd_cIWqhnMxv7Q0,2464
|
|
46
|
+
datachain/lib/dc.py,sha256=BmRgCt5fXvBqlFV07KN-nWszueRyCkC7td1x7T4BZ7k,87688
|
|
47
47
|
datachain/lib/file.py,sha256=lHxE1wOGR4QJBQ3AYjhPLwpX72dOi06vkcwA-WSAGlg,14817
|
|
48
48
|
datachain/lib/hf.py,sha256=BW2NPpqxkpPwkSaGlppT8Rbs8zPpyYC-tR6htY08c-0,5817
|
|
49
49
|
datachain/lib/image.py,sha256=AMXYwQsmarZjRbPCZY3M1jDsM2WAB_b3cTY4uOIuXNU,2675
|
|
50
50
|
datachain/lib/listing.py,sha256=cVkCp7TRVpcZKSx-Bbk9t51bQI9Mw0o86W6ZPhAsuzM,3667
|
|
51
51
|
datachain/lib/listing_info.py,sha256=9ua40Hw0aiQByUw3oAEeNzMavJYfW0Uhe8YdCTK-m_g,1110
|
|
52
|
-
datachain/lib/meta_formats.py,sha256=
|
|
52
|
+
datachain/lib/meta_formats.py,sha256=anK2bDVbaeCCh0yvKUBaW2MVos3zRgdaSV8uSduzPcU,6680
|
|
53
53
|
datachain/lib/model_store.py,sha256=DNIv8Y6Jtk1_idNLzIpsThOsdW2BMAudyUCbPUcgcxk,2515
|
|
54
54
|
datachain/lib/pytorch.py,sha256=W-ARi2xH1f1DUkVfRuerW-YWYgSaJASmNCxtz2lrJGI,6072
|
|
55
55
|
datachain/lib/settings.py,sha256=39thOpYJw-zPirzeNO6pmRC2vPrQvt4eBsw1xLWDFsw,2344
|
|
56
|
-
datachain/lib/signal_schema.py,sha256=
|
|
56
|
+
datachain/lib/signal_schema.py,sha256=xwkE5bxJxUhZTjrA6jqN87XbSXPikCbL6eOPL9WyrKM,24556
|
|
57
57
|
datachain/lib/tar.py,sha256=3WIzao6yD5fbLqXLTt9GhPGNonbFIs_fDRu-9vgLgsA,1038
|
|
58
58
|
datachain/lib/text.py,sha256=UNHm8fhidk7wdrWqacEWaA6I9ykfYqarQ2URby7jc7M,1261
|
|
59
59
|
datachain/lib/udf.py,sha256=4CqK51n3bntXCmkwoOQIrX34wMKOknkC23HtR4D_2vM,12705
|
|
@@ -71,10 +71,14 @@ datachain/lib/convert/values_to_tuples.py,sha256=varRCnSMT_pZmHznrd2Yi05qXLLz_v9
|
|
|
71
71
|
datachain/lib/func/__init__.py,sha256=wlAKhGV0QDg9y7reSwoUF8Vicfqh_YOUNIXLzxICGz4,403
|
|
72
72
|
datachain/lib/func/aggregate.py,sha256=H1ziFQdaK9zvnxvttfnEzkkyGvEEmMAvmgCsBV6nfm8,10917
|
|
73
73
|
datachain/lib/func/func.py,sha256=HAJZ_tpiRG2R-et7pr0WnoyNZYtpbPn3_HBuL3RQpbU,4800
|
|
74
|
-
datachain/lib/models/__init__.py,sha256=
|
|
75
|
-
datachain/lib/models/bbox.py,sha256=
|
|
76
|
-
datachain/lib/models/pose.py,sha256=
|
|
77
|
-
datachain/lib/models/
|
|
74
|
+
datachain/lib/models/__init__.py,sha256=6iwqXWcybyELKdLEe59yUPl8R8ZHDY4lA-xCHVYPdOA,191
|
|
75
|
+
datachain/lib/models/bbox.py,sha256=UJ_64D8TQglX2B_ueseILPoT3cGIWr9McVg0mv2YdmE,3717
|
|
76
|
+
datachain/lib/models/pose.py,sha256=KC-OpLC7-3v6qg4YN6pXlfAgtg88VLQoRc75JCEmbfY,3931
|
|
77
|
+
datachain/lib/models/segment.py,sha256=ergCFnEzLDzaU75p1_KvWgal1LSv4VuFmkWLkRJeaVk,1862
|
|
78
|
+
datachain/lib/models/ultralytics/__init__.py,sha256=g8mgII0k_RJiOG9kd4k_ECfCgDhT_iPh3vCC_5OiDD4,305
|
|
79
|
+
datachain/lib/models/ultralytics/bbox.py,sha256=LAaezAnnugfBiczWZ63NTo65kX2BegR5WGXjQTOTE28,5784
|
|
80
|
+
datachain/lib/models/ultralytics/pose.py,sha256=nMoEeeY_Zi7Iiu7vIo9ZTq8ARUdg_BcZMQIA_WgRNk4,3488
|
|
81
|
+
datachain/lib/models/ultralytics/segment.py,sha256=IHnthsq6uQ6DSdHLK2akbdd0Eq8wW7oaAK6pUG8nxJc,3818
|
|
78
82
|
datachain/query/__init__.py,sha256=7DhEIjAA8uZJfejruAVMZVcGFmvUpffuZJwgRqNwe-c,263
|
|
79
83
|
datachain/query/batch.py,sha256=5fEhORFe7li12SdYddaSK3LyqksMfCHhwN1_A6TfsA4,3485
|
|
80
84
|
datachain/query/dataset.py,sha256=MGArYxioeGvm8w7hQtQAjEI6wsZN_XAoh4-jO4d0U5Q,53926
|
|
@@ -103,10 +107,12 @@ datachain/sql/sqlite/__init__.py,sha256=TAdJX0Bg28XdqPO-QwUVKy8rg78cgMileHvMNot7
|
|
|
103
107
|
datachain/sql/sqlite/base.py,sha256=aHSZVvh4XSVkvZ07h3jMoRlHI4sWD8y3SnmGs9xMG9Y,14375
|
|
104
108
|
datachain/sql/sqlite/types.py,sha256=yzvp0sXSEoEYXs6zaYC_2YubarQoZH-MiUNXcpuEP4s,1573
|
|
105
109
|
datachain/sql/sqlite/vector.py,sha256=ncW4eu2FlJhrP_CIpsvtkUabZlQdl2D5Lgwy_cbfqR0,469
|
|
110
|
+
datachain/toolkit/__init__.py,sha256=eQ58Q5Yf_Fgv1ZG0IO5dpB4jmP90rk8YxUWmPc1M2Bo,68
|
|
111
|
+
datachain/toolkit/split.py,sha256=6FcEJgUsJsUcCqKW5aXuJy4DvbcQ7_dFbsfNPhn8EVg,2377
|
|
106
112
|
datachain/torch/__init__.py,sha256=gIS74PoEPy4TB3X6vx9nLO0Y3sLJzsA8ckn8pRWihJM,579
|
|
107
|
-
datachain-0.6.
|
|
108
|
-
datachain-0.6.
|
|
109
|
-
datachain-0.6.
|
|
110
|
-
datachain-0.6.
|
|
111
|
-
datachain-0.6.
|
|
112
|
-
datachain-0.6.
|
|
113
|
+
datachain-0.6.10.dist-info/LICENSE,sha256=8DnqK5yoPI_E50bEg_zsHKZHY2HqPy4rYN338BHQaRA,11344
|
|
114
|
+
datachain-0.6.10.dist-info/METADATA,sha256=AgQuuefAhZRIL1jDJWz-q4daqA5ZmnQN8dafqnt01XA,18038
|
|
115
|
+
datachain-0.6.10.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
|
|
116
|
+
datachain-0.6.10.dist-info/entry_points.txt,sha256=0GMJS6B_KWq0m3VT98vQI2YZodAMkn4uReZ_okga9R4,49
|
|
117
|
+
datachain-0.6.10.dist-info/top_level.txt,sha256=lZPpdU_2jJABLNIg2kvEOBi8PtsYikbN1OdMLHk8bTg,10
|
|
118
|
+
datachain-0.6.10.dist-info/RECORD,,
|
datachain/lib/models/yolo.py
DELETED
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
This module contains the YOLO models.
|
|
3
|
-
|
|
4
|
-
YOLO stands for "You Only Look Once", a family of object detection models that
|
|
5
|
-
are designed to be fast and accurate. The models are trained to detect objects
|
|
6
|
-
in images by dividing the image into a grid and predicting the bounding boxes
|
|
7
|
-
and class probabilities for each grid cell.
|
|
8
|
-
|
|
9
|
-
More information about YOLO can be found here:
|
|
10
|
-
- https://pjreddie.com/darknet/yolo/
|
|
11
|
-
- https://docs.ultralytics.com/
|
|
12
|
-
"""
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
class PoseBodyPart:
|
|
16
|
-
"""
|
|
17
|
-
An enumeration of body parts for YOLO pose keypoints.
|
|
18
|
-
|
|
19
|
-
More information about the body parts can be found here:
|
|
20
|
-
https://docs.ultralytics.com/tasks/pose/
|
|
21
|
-
"""
|
|
22
|
-
|
|
23
|
-
nose = 0
|
|
24
|
-
left_eye = 1
|
|
25
|
-
right_eye = 2
|
|
26
|
-
left_ear = 3
|
|
27
|
-
right_ear = 4
|
|
28
|
-
left_shoulder = 5
|
|
29
|
-
right_shoulder = 6
|
|
30
|
-
left_elbow = 7
|
|
31
|
-
right_elbow = 8
|
|
32
|
-
left_wrist = 9
|
|
33
|
-
right_wrist = 10
|
|
34
|
-
left_hip = 11
|
|
35
|
-
right_hip = 12
|
|
36
|
-
left_knee = 13
|
|
37
|
-
right_knee = 14
|
|
38
|
-
left_ankle = 15
|
|
39
|
-
right_ankle = 16
|
|
File without changes
|
|
File without changes
|
|
File without changes
|