datachain 0.6.10__py3-none-any.whl → 0.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of datachain might be problematic. Click here for more details.

datachain/asyn.py CHANGED
@@ -1,5 +1,13 @@
1
1
  import asyncio
2
- from collections.abc import AsyncIterable, Awaitable, Coroutine, Iterable, Iterator
2
+ import threading
3
+ from collections.abc import (
4
+ AsyncIterable,
5
+ Awaitable,
6
+ Coroutine,
7
+ Generator,
8
+ Iterable,
9
+ Iterator,
10
+ )
3
11
  from concurrent.futures import ThreadPoolExecutor
4
12
  from heapq import heappop, heappush
5
13
  from typing import Any, Callable, Generic, Optional, TypeVar
@@ -47,6 +55,7 @@ class AsyncMapper(Generic[InputT, ResultT]):
47
55
  self.loop = get_loop() if loop is None else loop
48
56
  self.pool = ThreadPoolExecutor(workers)
49
57
  self._tasks: set[asyncio.Task] = set()
58
+ self._shutdown_producer = threading.Event()
50
59
 
51
60
  def start_task(self, coro: Coroutine) -> asyncio.Task:
52
61
  task = self.loop.create_task(coro)
@@ -54,9 +63,31 @@ class AsyncMapper(Generic[InputT, ResultT]):
54
63
  task.add_done_callback(self._tasks.discard)
55
64
  return task
56
65
 
57
- async def produce(self) -> None:
66
+ def _produce(self) -> None:
58
67
  for item in self.iterable:
59
- await self.work_queue.put(item)
68
+ if self._shutdown_producer.is_set():
69
+ return
70
+ fut = asyncio.run_coroutine_threadsafe(self.work_queue.put(item), self.loop)
71
+ fut.result() # wait until the item is in the queue
72
+
73
+ async def produce(self) -> None:
74
+ await self.to_thread(self._produce)
75
+
76
+ def shutdown_producer(self) -> None:
77
+ """
78
+ Signal the producer to stop and drain any remaining items from the work_queue.
79
+
80
+ This method sets an internal event, `_shutdown_producer`, which tells the
81
+ producer that it should stop adding items to the queue. To ensure that the
82
+ producer notices this signal promptly, we also attempt to drain any items
83
+ currently in the queue, clearing it so that the event can be checked without
84
+ delay.
85
+ """
86
+ self._shutdown_producer.set()
87
+ q = self.work_queue
88
+ while not q.empty():
89
+ q.get_nowait()
90
+ q.task_done()
60
91
 
61
92
  async def worker(self) -> None:
62
93
  while (item := await self.work_queue.get()) is not None:
@@ -132,7 +163,7 @@ class AsyncMapper(Generic[InputT, ResultT]):
132
163
  self.result_queue.get_nowait()
133
164
  await self.result_queue.put(None)
134
165
 
135
- def iterate(self, timeout=None) -> Iterable[ResultT]:
166
+ def iterate(self, timeout=None) -> Generator[ResultT, None, None]:
136
167
  init = asyncio.run_coroutine_threadsafe(self.init(), self.loop)
137
168
  init.result(timeout=1)
138
169
  async_run = asyncio.run_coroutine_threadsafe(self.run(), self.loop)
@@ -145,6 +176,7 @@ class AsyncMapper(Generic[InputT, ResultT]):
145
176
  if exc := async_run.exception():
146
177
  raise exc
147
178
  finally:
179
+ self.shutdown_producer()
148
180
  if not async_run.done():
149
181
  async_run.cancel()
150
182
 
@@ -232,7 +232,10 @@ class AbstractWarehouse(ABC, Serializable):
232
232
  if limit < page_size:
233
233
  paginated_query = paginated_query.limit(None).limit(limit)
234
234
 
235
- results = self.dataset_rows_select(paginated_query.offset(offset))
235
+ # Ensure we're using a thread-local connection
236
+ with self.clone() as wh:
237
+ # Cursor results are not thread-safe, so we convert them to a list
238
+ results = list(wh.dataset_rows_select(paginated_query.offset(offset)))
236
239
 
237
240
  processed = False
238
241
  for row in results:
datachain/lib/dc.py CHANGED
@@ -334,6 +334,7 @@ class DataChain:
334
334
  parallel=None,
335
335
  workers=None,
336
336
  min_task_size=None,
337
+ prefetch: Optional[int] = None,
337
338
  sys: Optional[bool] = None,
338
339
  ) -> "Self":
339
340
  """Change settings for chain.
@@ -360,7 +361,7 @@ class DataChain:
360
361
  if sys is None:
361
362
  sys = self._sys
362
363
  settings = copy.copy(self._settings)
363
- settings.add(Settings(cache, parallel, workers, min_task_size))
364
+ settings.add(Settings(cache, parallel, workers, min_task_size, prefetch))
364
365
  return self._evolve(settings=settings, _sys=sys)
365
366
 
366
367
  def reset_settings(self, settings: Optional[Settings] = None) -> "Self":
@@ -882,6 +883,8 @@ class DataChain:
882
883
  ```
883
884
  """
884
885
  udf_obj = self._udf_to_obj(Mapper, func, params, output, signal_map)
886
+ if (prefetch := self._settings.prefetch) is not None:
887
+ udf_obj.prefetch = prefetch
885
888
 
886
889
  return self._evolve(
887
890
  query=self._query.add_signals(
@@ -919,6 +922,8 @@ class DataChain:
919
922
  ```
920
923
  """
921
924
  udf_obj = self._udf_to_obj(Generator, func, params, output, signal_map)
925
+ if (prefetch := self._settings.prefetch) is not None:
926
+ udf_obj.prefetch = prefetch
922
927
  return self._evolve(
923
928
  query=self._query.generate(
924
929
  udf_obj.to_udf_wrapper(),
datachain/lib/file.py CHANGED
@@ -268,6 +268,11 @@ class File(DataModel):
268
268
  client = self._catalog.get_client(self.source)
269
269
  client.download(self, callback=self._download_cb)
270
270
 
271
+ async def _prefetch(self) -> None:
272
+ if self._caching_enabled:
273
+ client = self._catalog.get_client(self.source)
274
+ await client._download(self, callback=self._download_cb)
275
+
271
276
  def get_local_path(self) -> Optional[str]:
272
277
  """Return path to a file in a local cache.
273
278
 
@@ -1,6 +1,5 @@
1
- from . import ultralytics
2
- from .bbox import BBox, OBBox
1
+ from . import yolo
2
+ from .bbox import BBox
3
3
  from .pose import Pose, Pose3D
4
- from .segment import Segments
5
4
 
6
- __all__ = ["BBox", "OBBox", "Pose", "Pose3D", "Segments", "ultralytics"]
5
+ __all__ = ["BBox", "Pose", "Pose3D", "yolo"]
@@ -1,3 +1,5 @@
1
+ from typing import Optional
2
+
1
3
  from pydantic import Field
2
4
 
3
5
  from datachain.lib.data_model import DataModel
@@ -9,7 +11,10 @@ class BBox(DataModel):
9
11
 
10
12
  Attributes:
11
13
  title (str): The title of the bounding box.
12
- coords (list[int]): The coordinates of the bounding box.
14
+ x1 (float): The x-coordinate of the top-left corner of the bounding box.
15
+ y1 (float): The y-coordinate of the top-left corner of the bounding box.
16
+ x2 (float): The x-coordinate of the bottom-right corner of the bounding box.
17
+ y2 (float): The y-coordinate of the bottom-right corner of the bounding box.
13
18
 
14
19
  The bounding box is defined by two points:
15
20
  - (x1, y1): The top-left corner of the box.
@@ -17,100 +22,24 @@ class BBox(DataModel):
17
22
  """
18
23
 
19
24
  title: str = Field(default="")
20
- coords: list[int] = Field(default=None)
21
-
22
- @staticmethod
23
- def from_list(coords: list[float], title: str = "") -> "BBox":
24
- assert len(coords) == 4, "Bounding box coordinates must be a list of 4 floats."
25
- assert all(
26
- isinstance(value, (int, float)) for value in coords
27
- ), "Bounding box coordinates must be integers or floats."
28
- return BBox(
29
- title=title,
30
- coords=[round(c) for c in coords],
31
- )
32
-
33
- @staticmethod
34
- def from_dict(coords: dict[str, float], title: str = "") -> "BBox":
35
- assert (
36
- len(coords) == 4
37
- ), "Bounding box coordinates must be a dictionary of 4 floats."
38
- assert set(coords) == {
39
- "x1",
40
- "y1",
41
- "x2",
42
- "y2",
43
- }, "Bounding box coordinates must contain keys with coordinates."
44
- assert all(
45
- isinstance(value, (int, float)) for value in coords.values()
46
- ), "Bounding box coordinates must be integers or floats."
47
- return BBox(
48
- title=title,
49
- coords=[
50
- round(coords["x1"]),
51
- round(coords["y1"]),
52
- round(coords["x2"]),
53
- round(coords["y2"]),
54
- ],
55
- )
56
-
57
-
58
- class OBBox(DataModel):
59
- """
60
- A data model for representing oriented bounding boxes.
61
-
62
- Attributes:
63
- title (str): The title of the oriented bounding box.
64
- coords (list[int]): The coordinates of the oriented bounding box.
65
-
66
- The oriented bounding box is defined by four points:
67
- - (x1, y1): The first corner of the box.
68
- - (x2, y2): The second corner of the box.
69
- - (x3, y3): The third corner of the box.
70
- - (x4, y4): The fourth corner of the box.
71
- """
72
-
73
- title: str = Field(default="")
74
- coords: list[int] = Field(default=None)
75
-
76
- @staticmethod
77
- def from_list(coords: list[float], title: str = "") -> "OBBox":
78
- assert (
79
- len(coords) == 8
80
- ), "Oriented bounding box coordinates must be a list of 8 floats."
81
- assert all(
82
- isinstance(value, (int, float)) for value in coords
83
- ), "Oriented bounding box coordinates must be integers or floats."
84
- return OBBox(
85
- title=title,
86
- coords=[round(c) for c in coords],
87
- )
25
+ x1: float = Field(default=0)
26
+ y1: float = Field(default=0)
27
+ x2: float = Field(default=0)
28
+ y2: float = Field(default=0)
88
29
 
89
30
  @staticmethod
90
- def from_dict(coords: dict[str, float], title: str = "") -> "OBBox":
91
- assert set(coords) == {
92
- "x1",
93
- "y1",
94
- "x2",
95
- "y2",
96
- "x3",
97
- "y3",
98
- "x4",
99
- "y4",
100
- }, "Oriented bounding box coordinates must contain keys with coordinates."
101
- assert all(
102
- isinstance(value, (int, float)) for value in coords.values()
103
- ), "Oriented bounding box coordinates must be integers or floats."
104
- return OBBox(
105
- title=title,
106
- coords=[
107
- round(coords["x1"]),
108
- round(coords["y1"]),
109
- round(coords["x2"]),
110
- round(coords["y2"]),
111
- round(coords["x3"]),
112
- round(coords["y3"]),
113
- round(coords["x4"]),
114
- round(coords["y4"]),
115
- ],
116
- )
31
+ def from_xywh(bbox: list[float], title: Optional[str] = None) -> "BBox":
32
+ """
33
+ Converts a bounding box in (x, y, width, height) format
34
+ to a BBox data model instance.
35
+
36
+ Args:
37
+ bbox (list[float]): A bounding box, represented as a list
38
+ of four floats [x, y, width, height].
39
+
40
+ Returns:
41
+ BBox2D: An instance of the BBox data model.
42
+ """
43
+ assert len(bbox) == 4, f"Bounding box must have 4 elements, got f{len(bbox)}"
44
+ x, y, w, h = bbox
45
+ return BBox(title=title or "", x1=x, y1=y, x2=x + w, y2=y + h)
@@ -8,48 +8,15 @@ class Pose(DataModel):
8
8
  A data model for representing pose keypoints.
9
9
 
10
10
  Attributes:
11
- x (list[int]): The x-coordinates of the keypoints.
12
- y (list[int]): The y-coordinates of the keypoints.
11
+ x (list[float]): The x-coordinates of the keypoints.
12
+ y (list[float]): The y-coordinates of the keypoints.
13
13
 
14
14
  The keypoints are represented as lists of x and y coordinates, where each index
15
15
  corresponds to a specific body part.
16
16
  """
17
17
 
18
- x: list[int] = Field(default=None)
19
- y: list[int] = Field(default=None)
20
-
21
- @staticmethod
22
- def from_list(points: list[list[float]]) -> "Pose":
23
- assert len(points) == 2, "Pose coordinates must be a list of 2 lists."
24
- points_x, points_y = points
25
- assert (
26
- len(points_x) == len(points_y) == 17
27
- ), "Pose x and y coordinates must have the same length of 17."
28
- assert all(
29
- isinstance(value, (int, float)) for value in [*points_x, *points_y]
30
- ), "Pose coordinates must be integers or floats."
31
- return Pose(
32
- x=[round(coord) for coord in points_x],
33
- y=[round(coord) for coord in points_y],
34
- )
35
-
36
- @staticmethod
37
- def from_dict(points: dict[str, list[float]]) -> "Pose":
38
- assert set(points) == {
39
- "x",
40
- "y",
41
- }, "Pose coordinates must contain keys 'x' and 'y'."
42
- points_x, points_y = points["x"], points["y"]
43
- assert (
44
- len(points_x) == len(points_y) == 17
45
- ), "Pose x and y coordinates must have the same length of 17."
46
- assert all(
47
- isinstance(value, (int, float)) for value in [*points_x, *points_y]
48
- ), "Pose coordinates must be integers or floats."
49
- return Pose(
50
- x=[round(coord) for coord in points_x],
51
- y=[round(coord) for coord in points_y],
52
- )
18
+ x: list[float] = Field(default=None)
19
+ y: list[float] = Field(default=None)
53
20
 
54
21
 
55
22
  class Pose3D(DataModel):
@@ -57,52 +24,14 @@ class Pose3D(DataModel):
57
24
  A data model for representing 3D pose keypoints.
58
25
 
59
26
  Attributes:
60
- x (list[int]): The x-coordinates of the keypoints.
61
- y (list[int]): The y-coordinates of the keypoints.
27
+ x (list[float]): The x-coordinates of the keypoints.
28
+ y (list[float]): The y-coordinates of the keypoints.
62
29
  visible (list[float]): The visibility of the keypoints.
63
30
 
64
31
  The keypoints are represented as lists of x, y, and visibility values,
65
32
  where each index corresponds to a specific body part.
66
33
  """
67
34
 
68
- x: list[int] = Field(default=None)
69
- y: list[int] = Field(default=None)
35
+ x: list[float] = Field(default=None)
36
+ y: list[float] = Field(default=None)
70
37
  visible: list[float] = Field(default=None)
71
-
72
- @staticmethod
73
- def from_list(points: list[list[float]]) -> "Pose3D":
74
- assert len(points) == 3, "Pose coordinates must be a list of 3 lists."
75
- points_x, points_y, points_v = points
76
- assert (
77
- len(points_x) == len(points_y) == len(points_v) == 17
78
- ), "Pose x, y, and visibility coordinates must have the same length of 17."
79
- assert all(
80
- isinstance(value, (int, float))
81
- for value in [*points_x, *points_y, *points_v]
82
- ), "Pose coordinates must be integers or floats."
83
- return Pose3D(
84
- x=[round(coord) for coord in points_x],
85
- y=[round(coord) for coord in points_y],
86
- visible=points_v,
87
- )
88
-
89
- @staticmethod
90
- def from_dict(points: dict[str, list[float]]) -> "Pose3D":
91
- assert set(points) == {
92
- "x",
93
- "y",
94
- "visible",
95
- }, "Pose coordinates must contain keys 'x', 'y', and 'visible'."
96
- points_x, points_y, points_v = points["x"], points["y"], points["visible"]
97
- assert (
98
- len(points_x) == len(points_y) == len(points_v) == 17
99
- ), "Pose x, y, and visibility coordinates must have the same length of 17."
100
- assert all(
101
- isinstance(value, (int, float))
102
- for value in [*points_x, *points_y, *points_v]
103
- ), "Pose coordinates must be integers or floats."
104
- return Pose3D(
105
- x=[round(coord) for coord in points_x],
106
- y=[round(coord) for coord in points_y],
107
- visible=points_v,
108
- )
@@ -0,0 +1,39 @@
1
+ """
2
+ This module contains the YOLO models.
3
+
4
+ YOLO stands for "You Only Look Once", a family of object detection models that
5
+ are designed to be fast and accurate. The models are trained to detect objects
6
+ in images by dividing the image into a grid and predicting the bounding boxes
7
+ and class probabilities for each grid cell.
8
+
9
+ More information about YOLO can be found here:
10
+ - https://pjreddie.com/darknet/yolo/
11
+ - https://docs.ultralytics.com/
12
+ """
13
+
14
+
15
+ class PoseBodyPart:
16
+ """
17
+ An enumeration of body parts for YOLO pose keypoints.
18
+
19
+ More information about the body parts can be found here:
20
+ https://docs.ultralytics.com/tasks/pose/
21
+ """
22
+
23
+ nose = 0
24
+ left_eye = 1
25
+ right_eye = 2
26
+ left_ear = 3
27
+ right_ear = 4
28
+ left_shoulder = 5
29
+ right_shoulder = 6
30
+ left_elbow = 7
31
+ right_elbow = 8
32
+ left_wrist = 9
33
+ right_wrist = 10
34
+ left_hip = 11
35
+ right_hip = 12
36
+ left_knee = 13
37
+ right_knee = 14
38
+ left_ankle = 15
39
+ right_ankle = 16
datachain/lib/settings.py CHANGED
@@ -7,11 +7,19 @@ class SettingsError(DataChainParamsError):
7
7
 
8
8
 
9
9
  class Settings:
10
- def __init__(self, cache=None, parallel=None, workers=None, min_task_size=None):
10
+ def __init__(
11
+ self,
12
+ cache=None,
13
+ parallel=None,
14
+ workers=None,
15
+ min_task_size=None,
16
+ prefetch=None,
17
+ ):
11
18
  self._cache = cache
12
19
  self.parallel = parallel
13
20
  self._workers = workers
14
21
  self.min_task_size = min_task_size
22
+ self.prefetch = prefetch
15
23
 
16
24
  if not isinstance(cache, bool) and cache is not None:
17
25
  raise SettingsError(
@@ -66,3 +74,5 @@ class Settings:
66
74
  self.parallel = settings.parallel or self.parallel
67
75
  self._workers = settings._workers or self._workers
68
76
  self.min_task_size = settings.min_task_size or self.min_task_size
77
+ if settings.prefetch is not None:
78
+ self.prefetch = settings.prefetch
datachain/lib/udf.py CHANGED
@@ -1,3 +1,4 @@
1
+ import contextlib
1
2
  import sys
2
3
  import traceback
3
4
  from collections.abc import Iterable, Iterator, Mapping, Sequence
@@ -7,6 +8,7 @@ import attrs
7
8
  from fsspec.callbacks import DEFAULT_CALLBACK, Callback
8
9
  from pydantic import BaseModel
9
10
 
11
+ from datachain.asyn import AsyncMapper
10
12
  from datachain.dataset import RowDict
11
13
  from datachain.lib.convert.flatten import flatten
12
14
  from datachain.lib.data_model import DataValue
@@ -21,6 +23,8 @@ from datachain.query.batch import (
21
23
  )
22
24
 
23
25
  if TYPE_CHECKING:
26
+ from collections import abc
27
+
24
28
  from typing_extensions import Self
25
29
 
26
30
  from datachain.catalog import Catalog
@@ -276,9 +280,18 @@ class UDFBase(AbstractUDF):
276
280
  return result_objs
277
281
 
278
282
 
283
+ async def _prefetch_input(row):
284
+ for obj in row:
285
+ if isinstance(obj, File):
286
+ await obj._prefetch()
287
+ return row
288
+
289
+
279
290
  class Mapper(UDFBase):
280
291
  """Inherit from this class to pass to `DataChain.map()`."""
281
292
 
293
+ prefetch: int = 2
294
+
282
295
  def run(
283
296
  self,
284
297
  udf_fields: "Sequence[str]",
@@ -290,16 +303,22 @@ class Mapper(UDFBase):
290
303
  ) -> Iterator[Iterable[UDFResult]]:
291
304
  self.catalog = catalog
292
305
  self.setup()
293
-
294
- for row in udf_inputs:
295
- id_, *udf_args = self._prepare_row_and_id(
296
- row, udf_fields, cache, download_cb
297
- )
298
- result_objs = self.process_safe(udf_args)
299
- udf_output = self._flatten_row(result_objs)
300
- output = [{"sys__id": id_} | dict(zip(self.signal_names, udf_output))]
301
- processed_cb.relative_update(1)
302
- yield output
306
+ prepared_inputs: abc.Generator[Sequence[Any], None, None] = (
307
+ self._prepare_row_and_id(row, udf_fields, cache, download_cb)
308
+ for row in udf_inputs
309
+ )
310
+ if self.prefetch > 0:
311
+ prepared_inputs = AsyncMapper(
312
+ _prefetch_input, prepared_inputs, workers=self.prefetch
313
+ ).iterate()
314
+
315
+ with contextlib.closing(prepared_inputs):
316
+ for id_, *udf_args in prepared_inputs:
317
+ result_objs = self.process_safe(udf_args)
318
+ udf_output = self._flatten_row(result_objs)
319
+ output = [{"sys__id": id_} | dict(zip(self.signal_names, udf_output))]
320
+ processed_cb.relative_update(1)
321
+ yield output
303
322
 
304
323
  self.teardown()
305
324
 
@@ -349,6 +368,7 @@ class Generator(UDFBase):
349
368
  """Inherit from this class to pass to `DataChain.gen()`."""
350
369
 
351
370
  is_output_batched = True
371
+ prefetch: int = 2
352
372
 
353
373
  def run(
354
374
  self,
@@ -361,14 +381,21 @@ class Generator(UDFBase):
361
381
  ) -> Iterator[Iterable[UDFResult]]:
362
382
  self.catalog = catalog
363
383
  self.setup()
364
-
365
- for row in udf_inputs:
366
- udf_args = self._prepare_row(row, udf_fields, cache, download_cb)
367
- result_objs = self.process_safe(udf_args)
368
- udf_outputs = (self._flatten_row(row) for row in result_objs)
369
- output = (dict(zip(self.signal_names, row)) for row in udf_outputs)
370
- processed_cb.relative_update(1)
371
- yield output
384
+ prepared_inputs: abc.Generator[Sequence[Any], None, None] = (
385
+ self._prepare_row(row, udf_fields, cache, download_cb) for row in udf_inputs
386
+ )
387
+ if self.prefetch > 0:
388
+ prepared_inputs = AsyncMapper(
389
+ _prefetch_input, prepared_inputs, workers=self.prefetch
390
+ ).iterate()
391
+
392
+ with contextlib.closing(prepared_inputs):
393
+ for row in prepared_inputs:
394
+ result_objs = self.process_safe(row)
395
+ udf_outputs = (self._flatten_row(row) for row in result_objs)
396
+ output = (dict(zip(self.signal_names, row)) for row in udf_outputs)
397
+ processed_cb.relative_update(1)
398
+ yield output
372
399
 
373
400
  self.teardown()
374
401
 
datachain/node.py CHANGED
@@ -55,7 +55,7 @@ class Node:
55
55
  last_modified: Optional[datetime] = None
56
56
  size: int = 0
57
57
  location: Optional[str] = None
58
- source: StorageURI = StorageURI("")
58
+ source: StorageURI = StorageURI("") # noqa: RUF009
59
59
  dir_type: int = DirType.FILE
60
60
 
61
61
  @property
@@ -473,33 +473,31 @@ class UDFStep(Step, ABC):
473
473
  # Otherwise process single-threaded (faster for smaller UDFs)
474
474
  warehouse = self.catalog.warehouse
475
475
 
476
- with contextlib.closing(
477
- batching(warehouse.dataset_select_paginated, query)
478
- ) as udf_inputs:
479
- download_cb = get_download_callback()
480
- processed_cb = get_processed_callback()
481
- generated_cb = get_generated_callback(self.is_generator)
482
- try:
483
- udf_results = self.udf.run(
484
- udf_fields,
485
- udf_inputs,
486
- self.catalog,
487
- self.is_generator,
488
- self.cache,
489
- download_cb,
490
- processed_cb,
491
- )
492
- process_udf_outputs(
493
- warehouse,
494
- udf_table,
495
- udf_results,
496
- self.udf,
497
- cb=generated_cb,
498
- )
499
- finally:
500
- download_cb.close()
501
- processed_cb.close()
502
- generated_cb.close()
476
+ udf_inputs = batching(warehouse.dataset_select_paginated, query)
477
+ download_cb = get_download_callback()
478
+ processed_cb = get_processed_callback()
479
+ generated_cb = get_generated_callback(self.is_generator)
480
+ try:
481
+ udf_results = self.udf.run(
482
+ udf_fields,
483
+ udf_inputs,
484
+ self.catalog,
485
+ self.is_generator,
486
+ self.cache,
487
+ download_cb,
488
+ processed_cb,
489
+ )
490
+ process_udf_outputs(
491
+ warehouse,
492
+ udf_table,
493
+ udf_results,
494
+ self.udf,
495
+ cb=generated_cb,
496
+ )
497
+ finally:
498
+ download_cb.close()
499
+ processed_cb.close()
500
+ generated_cb.close()
503
501
 
504
502
  warehouse.insert_rows_done(udf_table)
505
503
 
@@ -36,7 +36,14 @@ def convert_array(arr):
36
36
 
37
37
 
38
38
  def adapt_np_array(arr):
39
- return orjson.dumps(arr, option=orjson.OPT_SERIALIZE_NUMPY).decode("utf-8")
39
+ def _json_serialize(obj):
40
+ if isinstance(obj, np.ndarray):
41
+ return obj.tolist()
42
+ return obj
43
+
44
+ return orjson.dumps(
45
+ arr, option=orjson.OPT_SERIALIZE_NUMPY, default=_json_serialize
46
+ ).decode("utf-8")
40
47
 
41
48
 
42
49
  def adapt_np_generic(val):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: datachain
3
- Version: 0.6.10
3
+ Version: 0.7.0
4
4
  Summary: Wrangle unstructured AI data at scale
5
5
  Author-email: Dmitry Petrov <support@dvc.org>
6
6
  License: Apache-2.0
@@ -1,6 +1,6 @@
1
1
  datachain/__init__.py,sha256=nnTyB5MpCfBZ6D85JPz-5hUT7i-68Is-47Bxgew8lRw,930
2
2
  datachain/__main__.py,sha256=hG3Y4ARGEqe1AWwNMd259rBlqtphx1Wk39YbueQ0yV8,91
3
- datachain/asyn.py,sha256=Lg3Ck1PQLjQziMx9KU4atzbEnJXTE0924WMYkhgWtGU,8247
3
+ datachain/asyn.py,sha256=5aKrjnUxk0mtnZeFKNJd1DCE0MsnSoyJBZkr0y9H_a0,9313
4
4
  datachain/cache.py,sha256=s0YHN7qurmQv-eC265TjeureK84TebWWAnL07cxchZQ,2997
5
5
  datachain/cli.py,sha256=hdVt_HJumQVgtaBAtBVJm-uPyYVogMXNVLmRcZyWHgk,36677
6
6
  datachain/cli_utils.py,sha256=jrn9ejGXjybeO1ur3fjdSiAyCHZrX0qsLLbJzN9ErPM,2418
@@ -9,7 +9,7 @@ datachain/dataset.py,sha256=0IN-5y723y-bnFlieKtOFZLCjwX_yplFo3q0DV7LRPw,14821
9
9
  datachain/error.py,sha256=bxAAL32lSeMgzsQDEHbGTGORj-mPzzpCRvWDPueJNN4,1092
10
10
  datachain/job.py,sha256=Jt4sNutMHJReaGsj3r3scueN5aESLGfhimAa8pUP7Is,1271
11
11
  datachain/listing.py,sha256=TgKg25ZWAP5enzKgw2_2GUPJVdnQUh6uySHB5SJrUY4,7773
12
- datachain/node.py,sha256=i7_jC8VcW6W5VYkDszAOu0H-rNBuqXB4UnLEh4wFzjc,5195
12
+ datachain/node.py,sha256=o8Sqy92QkzzcLK6XmIFLyDSE6Rw6kUTmGRhEmfLFdhg,5211
13
13
  datachain/nodes_fetcher.py,sha256=F-73-h19HHNGtHFBGKk7p3mc0ALm4a9zGnzhtuUjnp4,1107
14
14
  datachain/nodes_thread_pool.py,sha256=uPo-xl8zG5m9YgODjPFBpbcqqHjI-dcxH87yAbj_qco,3192
15
15
  datachain/progress.py,sha256=5KotcvvzAUL_RF0GEj4JY0IB1lyImnmHxe89YkT1XO4,4330
@@ -37,14 +37,14 @@ datachain/data_storage/metastore.py,sha256=5b7o_CSHC2djottebYn-Hq5q0yaSLOKPIRCna
37
37
  datachain/data_storage/schema.py,sha256=scANMQqozita3HjEtq7eupMgh6yYkrZHoXtfuL2RoQg,9879
38
38
  datachain/data_storage/serializer.py,sha256=6G2YtOFqqDzJf1KbvZraKGXl2XHZyVml2krunWUum5o,927
39
39
  datachain/data_storage/sqlite.py,sha256=CspRUlYsIcubgzvcQxTACnmcuKESSLZcqCl0dcrtRiA,27471
40
- datachain/data_storage/warehouse.py,sha256=xwMaR4jBpR13vjG3zrhphH4z2_CFLNj0KPF0LJCXCJ8,30727
40
+ datachain/data_storage/warehouse.py,sha256=yXNU0U3exzR1E6dqbYYmL4RhXWsbYWVdZ3jONGcVniY,30914
41
41
  datachain/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
42
  datachain/lib/arrow.py,sha256=-hu9tic79a01SY2UBqkA3U6wUr6tnE3T3q5q_BnO93A,9156
43
43
  datachain/lib/clip.py,sha256=lm5CzVi4Cj1jVLEKvERKArb-egb9j1Ls-fwTItT6vlI,6150
44
44
  datachain/lib/data_model.py,sha256=dau4AlZBhOFvF7pEKMeqCeRkcFFg5KFvTBWW_2CdH5g,2371
45
45
  datachain/lib/dataset_info.py,sha256=q0EW9tj5jXGSD9Lzct9zbH4P1lfIGd_cIWqhnMxv7Q0,2464
46
- datachain/lib/dc.py,sha256=BmRgCt5fXvBqlFV07KN-nWszueRyCkC7td1x7T4BZ7k,87688
47
- datachain/lib/file.py,sha256=lHxE1wOGR4QJBQ3AYjhPLwpX72dOi06vkcwA-WSAGlg,14817
46
+ datachain/lib/dc.py,sha256=u0RQJPG0zwxsoYS-4wrbDBPuLYZajwIi1YX37khKfkI,87942
47
+ datachain/lib/file.py,sha256=-XMkL6ED1sE7TMhWoMRTEuOXswZJw8X6AEmJDONFP74,15019
48
48
  datachain/lib/hf.py,sha256=BW2NPpqxkpPwkSaGlppT8Rbs8zPpyYC-tR6htY08c-0,5817
49
49
  datachain/lib/image.py,sha256=AMXYwQsmarZjRbPCZY3M1jDsM2WAB_b3cTY4uOIuXNU,2675
50
50
  datachain/lib/listing.py,sha256=cVkCp7TRVpcZKSx-Bbk9t51bQI9Mw0o86W6ZPhAsuzM,3667
@@ -52,11 +52,11 @@ datachain/lib/listing_info.py,sha256=9ua40Hw0aiQByUw3oAEeNzMavJYfW0Uhe8YdCTK-m_g
52
52
  datachain/lib/meta_formats.py,sha256=anK2bDVbaeCCh0yvKUBaW2MVos3zRgdaSV8uSduzPcU,6680
53
53
  datachain/lib/model_store.py,sha256=DNIv8Y6Jtk1_idNLzIpsThOsdW2BMAudyUCbPUcgcxk,2515
54
54
  datachain/lib/pytorch.py,sha256=W-ARi2xH1f1DUkVfRuerW-YWYgSaJASmNCxtz2lrJGI,6072
55
- datachain/lib/settings.py,sha256=39thOpYJw-zPirzeNO6pmRC2vPrQvt4eBsw1xLWDFsw,2344
55
+ datachain/lib/settings.py,sha256=ZELRCTLbi5vzRPiDX6cQ9LLg9TefJ_A05gIGni0lll8,2535
56
56
  datachain/lib/signal_schema.py,sha256=xwkE5bxJxUhZTjrA6jqN87XbSXPikCbL6eOPL9WyrKM,24556
57
57
  datachain/lib/tar.py,sha256=3WIzao6yD5fbLqXLTt9GhPGNonbFIs_fDRu-9vgLgsA,1038
58
58
  datachain/lib/text.py,sha256=UNHm8fhidk7wdrWqacEWaA6I9ykfYqarQ2URby7jc7M,1261
59
- datachain/lib/udf.py,sha256=4CqK51n3bntXCmkwoOQIrX34wMKOknkC23HtR4D_2vM,12705
59
+ datachain/lib/udf.py,sha256=-j0krjNAELTqRI0dB1N65AmawtcIY5vN---AuUcW8Us,13637
60
60
  datachain/lib/udf_signature.py,sha256=GXw24A-Olna6DWCdgy2bC-gZh_gLGPQ-KvjuI6pUjC0,7281
61
61
  datachain/lib/utils.py,sha256=6NwgWLl5JrgtD4rsSFEe-yR2ntEwJMJEtAZ3FIxK3fg,1529
62
62
  datachain/lib/vfile.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -71,17 +71,13 @@ datachain/lib/convert/values_to_tuples.py,sha256=varRCnSMT_pZmHznrd2Yi05qXLLz_v9
71
71
  datachain/lib/func/__init__.py,sha256=wlAKhGV0QDg9y7reSwoUF8Vicfqh_YOUNIXLzxICGz4,403
72
72
  datachain/lib/func/aggregate.py,sha256=H1ziFQdaK9zvnxvttfnEzkkyGvEEmMAvmgCsBV6nfm8,10917
73
73
  datachain/lib/func/func.py,sha256=HAJZ_tpiRG2R-et7pr0WnoyNZYtpbPn3_HBuL3RQpbU,4800
74
- datachain/lib/models/__init__.py,sha256=6iwqXWcybyELKdLEe59yUPl8R8ZHDY4lA-xCHVYPdOA,191
75
- datachain/lib/models/bbox.py,sha256=UJ_64D8TQglX2B_ueseILPoT3cGIWr9McVg0mv2YdmE,3717
76
- datachain/lib/models/pose.py,sha256=KC-OpLC7-3v6qg4YN6pXlfAgtg88VLQoRc75JCEmbfY,3931
77
- datachain/lib/models/segment.py,sha256=ergCFnEzLDzaU75p1_KvWgal1LSv4VuFmkWLkRJeaVk,1862
78
- datachain/lib/models/ultralytics/__init__.py,sha256=g8mgII0k_RJiOG9kd4k_ECfCgDhT_iPh3vCC_5OiDD4,305
79
- datachain/lib/models/ultralytics/bbox.py,sha256=LAaezAnnugfBiczWZ63NTo65kX2BegR5WGXjQTOTE28,5784
80
- datachain/lib/models/ultralytics/pose.py,sha256=nMoEeeY_Zi7Iiu7vIo9ZTq8ARUdg_BcZMQIA_WgRNk4,3488
81
- datachain/lib/models/ultralytics/segment.py,sha256=IHnthsq6uQ6DSdHLK2akbdd0Eq8wW7oaAK6pUG8nxJc,3818
74
+ datachain/lib/models/__init__.py,sha256=AGvjPbUokJiir3uelTa4XGtNSECkMFc5Xmi_N3AtxPQ,119
75
+ datachain/lib/models/bbox.py,sha256=aiYNhvEcRK3dEN4MBcptmkPKc9kMP16ZQdu7xPk6hek,1555
76
+ datachain/lib/models/pose.py,sha256=peuJPNSiGuTXfCfGIABwv8PGYistvTTBmtf-8X8E_eA,1077
77
+ datachain/lib/models/yolo.py,sha256=eftoJDUa8iOpFTF1EkKVAd5Q-3HRd6X4eCIZ9h5p4nI,972
82
78
  datachain/query/__init__.py,sha256=7DhEIjAA8uZJfejruAVMZVcGFmvUpffuZJwgRqNwe-c,263
83
79
  datachain/query/batch.py,sha256=5fEhORFe7li12SdYddaSK3LyqksMfCHhwN1_A6TfsA4,3485
84
- datachain/query/dataset.py,sha256=MGArYxioeGvm8w7hQtQAjEI6wsZN_XAoh4-jO4d0U5Q,53926
80
+ datachain/query/dataset.py,sha256=sQny-ZemB2HueC4mPg-7qSaqUD85MMO-DQyVVP8K1CA,53765
85
81
  datachain/query/dispatch.py,sha256=wjjTWw6sFQbB9SKRh78VbfvwSMgJXCfqJklS3-9KnCU,12025
86
82
  datachain/query/metrics.py,sha256=r5b0ygYhokbXp8Mg3kCH8iFSRw0jxzyeBe-C-J_bKFc,938
87
83
  datachain/query/params.py,sha256=O_j89mjYRLOwWNhYZl-z7mi-rkdP7WyFmaDufsdTryE,863
@@ -105,14 +101,14 @@ datachain/sql/functions/random.py,sha256=vBwEEj98VH4LjWixUCygQ5Bz1mv1nohsCG0-ZTE
105
101
  datachain/sql/functions/string.py,sha256=DYgiw8XSk7ge7GXvyRI1zbaMruIizNeI-puOjriQGZQ,1148
106
102
  datachain/sql/sqlite/__init__.py,sha256=TAdJX0Bg28XdqPO-QwUVKy8rg78cgMileHvMNot7d04,166
107
103
  datachain/sql/sqlite/base.py,sha256=aHSZVvh4XSVkvZ07h3jMoRlHI4sWD8y3SnmGs9xMG9Y,14375
108
- datachain/sql/sqlite/types.py,sha256=yzvp0sXSEoEYXs6zaYC_2YubarQoZH-MiUNXcpuEP4s,1573
104
+ datachain/sql/sqlite/types.py,sha256=lPXS1XbkmUtlkkiRxy_A_UzsgpPv2VSkXYOD4zIHM4w,1734
109
105
  datachain/sql/sqlite/vector.py,sha256=ncW4eu2FlJhrP_CIpsvtkUabZlQdl2D5Lgwy_cbfqR0,469
110
106
  datachain/toolkit/__init__.py,sha256=eQ58Q5Yf_Fgv1ZG0IO5dpB4jmP90rk8YxUWmPc1M2Bo,68
111
107
  datachain/toolkit/split.py,sha256=6FcEJgUsJsUcCqKW5aXuJy4DvbcQ7_dFbsfNPhn8EVg,2377
112
108
  datachain/torch/__init__.py,sha256=gIS74PoEPy4TB3X6vx9nLO0Y3sLJzsA8ckn8pRWihJM,579
113
- datachain-0.6.10.dist-info/LICENSE,sha256=8DnqK5yoPI_E50bEg_zsHKZHY2HqPy4rYN338BHQaRA,11344
114
- datachain-0.6.10.dist-info/METADATA,sha256=AgQuuefAhZRIL1jDJWz-q4daqA5ZmnQN8dafqnt01XA,18038
115
- datachain-0.6.10.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
116
- datachain-0.6.10.dist-info/entry_points.txt,sha256=0GMJS6B_KWq0m3VT98vQI2YZodAMkn4uReZ_okga9R4,49
117
- datachain-0.6.10.dist-info/top_level.txt,sha256=lZPpdU_2jJABLNIg2kvEOBi8PtsYikbN1OdMLHk8bTg,10
118
- datachain-0.6.10.dist-info/RECORD,,
109
+ datachain-0.7.0.dist-info/LICENSE,sha256=8DnqK5yoPI_E50bEg_zsHKZHY2HqPy4rYN338BHQaRA,11344
110
+ datachain-0.7.0.dist-info/METADATA,sha256=Cm0v22C-aT14JBG4NjNQmM7kvhYZFAf6rh0yDAMRWFU,18037
111
+ datachain-0.7.0.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
112
+ datachain-0.7.0.dist-info/entry_points.txt,sha256=0GMJS6B_KWq0m3VT98vQI2YZodAMkn4uReZ_okga9R4,49
113
+ datachain-0.7.0.dist-info/top_level.txt,sha256=lZPpdU_2jJABLNIg2kvEOBi8PtsYikbN1OdMLHk8bTg,10
114
+ datachain-0.7.0.dist-info/RECORD,,
@@ -1,53 +0,0 @@
1
- from pydantic import Field
2
-
3
- from datachain.lib.data_model import DataModel
4
-
5
-
6
- class Segments(DataModel):
7
- """
8
- A data model for representing segments.
9
-
10
- Attributes:
11
- title (str): The title of the segments.
12
- x (list[int]): The x-coordinates of the segments.
13
- y (list[int]): The y-coordinates of the segments.
14
-
15
- The segments are represented as lists of x and y coordinates, where each index
16
- corresponds to a specific segment.
17
- """
18
-
19
- title: str = Field(default="")
20
- x: list[int] = Field(default=None)
21
- y: list[int] = Field(default=None)
22
-
23
- @staticmethod
24
- def from_list(points: list[list[float]], title: str = "") -> "Segments":
25
- assert len(points) == 2, "Segments coordinates must be a list of 2 lists."
26
- points_x, points_y = points
27
- assert len(points_x) == len(
28
- points_y
29
- ), "Segments x and y coordinates must have the same length."
30
- assert all(
31
- isinstance(value, (int, float)) for value in [*points_x, *points_y]
32
- ), "Segments coordinates must be integers or floats."
33
- return Segments(
34
- title=title,
35
- x=[round(coord) for coord in points_x],
36
- y=[round(coord) for coord in points_y],
37
- )
38
-
39
- @staticmethod
40
- def from_dict(points: dict[str, list[float]], title: str = "") -> "Segments":
41
- assert set(points) == {
42
- "x",
43
- "y",
44
- }, "Segments coordinates must contain keys 'x' and 'y'."
45
- points_x, points_y = points["x"], points["y"]
46
- assert all(
47
- isinstance(value, (int, float)) for value in [*points_x, *points_y]
48
- ), "Segments coordinates must be integers or floats."
49
- return Segments(
50
- title=title,
51
- x=[round(coord) for coord in points_x],
52
- y=[round(coord) for coord in points_y],
53
- )
@@ -1,14 +0,0 @@
1
- from .bbox import YoloBBox, YoloBBoxes, YoloOBBox, YoloOBBoxes
2
- from .pose import YoloPose, YoloPoses
3
- from .segment import YoloSegment, YoloSegments
4
-
5
- __all__ = [
6
- "YoloBBox",
7
- "YoloBBoxes",
8
- "YoloOBBox",
9
- "YoloOBBoxes",
10
- "YoloPose",
11
- "YoloPoses",
12
- "YoloSegment",
13
- "YoloSegments",
14
- ]
@@ -1,189 +0,0 @@
1
- """
2
- This module contains the YOLO models.
3
-
4
- YOLO stands for "You Only Look Once", a family of object detection models that
5
- are designed to be fast and accurate. The models are trained to detect objects
6
- in images by dividing the image into a grid and predicting the bounding boxes
7
- and class probabilities for each grid cell.
8
-
9
- More information about YOLO can be found here:
10
- - https://pjreddie.com/darknet/yolo/
11
- - https://docs.ultralytics.com/
12
- """
13
-
14
- from io import BytesIO
15
- from typing import TYPE_CHECKING
16
-
17
- from PIL import Image
18
- from pydantic import Field
19
-
20
- from datachain.lib.data_model import DataModel
21
- from datachain.lib.models.bbox import BBox, OBBox
22
-
23
- if TYPE_CHECKING:
24
- from ultralytics.engine.results import Results
25
- from ultralytics.models import YOLO
26
-
27
- from datachain.lib.file import File
28
-
29
-
30
- class YoloBBox(DataModel):
31
- """
32
- A class representing a bounding box detected by a YOLO model.
33
-
34
- Attributes:
35
- cls: The class of the detected object.
36
- name: The name of the detected object.
37
- confidence: The confidence score of the detection.
38
- box: The bounding box of the detected object
39
- """
40
-
41
- cls: int = Field(default=-1)
42
- name: str = Field(default="")
43
- confidence: float = Field(default=0)
44
- box: BBox = Field(default=None)
45
-
46
- @staticmethod
47
- def from_file(yolo: "YOLO", file: "File") -> "YoloBBox":
48
- results = yolo(Image.open(BytesIO(file.read())))
49
- if len(results) == 0:
50
- return YoloBBox()
51
- return YoloBBox.from_result(results[0])
52
-
53
- @staticmethod
54
- def from_result(result: "Results") -> "YoloBBox":
55
- summary = result.summary()
56
- if not summary:
57
- return YoloBBox()
58
- name = summary[0].get("name", "")
59
- box = (
60
- BBox.from_dict(summary[0]["box"], title=name)
61
- if "box" in summary[0]
62
- else BBox()
63
- )
64
- return YoloBBox(
65
- cls=summary[0]["class"],
66
- name=name,
67
- confidence=summary[0]["confidence"],
68
- box=box,
69
- )
70
-
71
-
72
- class YoloBBoxes(DataModel):
73
- """
74
- A class representing a list of bounding boxes detected by a YOLO model.
75
-
76
- Attributes:
77
- cls: A list of classes of the detected objects.
78
- name: A list of names of the detected objects.
79
- confidence: A list of confidence scores of the detections.
80
- box: A list of bounding boxes of the detected objects
81
- """
82
-
83
- cls: list[int]
84
- name: list[str]
85
- confidence: list[float]
86
- box: list[BBox]
87
-
88
- @staticmethod
89
- def from_file(yolo: "YOLO", file: "File") -> "YoloBBoxes":
90
- results = yolo(Image.open(BytesIO(file.read())))
91
- return YoloBBoxes.from_results(results)
92
-
93
- @staticmethod
94
- def from_results(results: list["Results"]) -> "YoloBBoxes":
95
- cls, names, confidence, box = [], [], [], []
96
- for r in results:
97
- for s in r.summary():
98
- name = s.get("name", "")
99
- cls.append(s["class"])
100
- names.append(name)
101
- confidence.append(s["confidence"])
102
- box.append(BBox.from_dict(s.get("box", {}), title=name))
103
- return YoloBBoxes(
104
- cls=cls,
105
- name=names,
106
- confidence=confidence,
107
- box=box,
108
- )
109
-
110
-
111
- class YoloOBBox(DataModel):
112
- """
113
- A class representing an oriented bounding box detected by a YOLO model.
114
-
115
- Attributes:
116
- cls: The class of the detected object.
117
- name: The name of the detected object.
118
- confidence: The confidence score of the detection.
119
- box: The oriented bounding box of the detected object.
120
- """
121
-
122
- cls: int = Field(default=-1)
123
- name: str = Field(default="")
124
- confidence: float = Field(default=0)
125
- box: OBBox = Field(default=None)
126
-
127
- @staticmethod
128
- def from_file(yolo: "YOLO", file: "File") -> "YoloOBBox":
129
- results = yolo(Image.open(BytesIO(file.read())))
130
- if len(results) == 0:
131
- return YoloOBBox()
132
- return YoloOBBox.from_result(results[0])
133
-
134
- @staticmethod
135
- def from_result(result: "Results") -> "YoloOBBox":
136
- summary = result.summary()
137
- if not summary:
138
- return YoloOBBox()
139
- name = summary[0].get("name", "")
140
- box = (
141
- OBBox.from_dict(summary[0]["box"], title=name)
142
- if "box" in summary[0]
143
- else OBBox()
144
- )
145
- return YoloOBBox(
146
- cls=summary[0]["class"],
147
- name=name,
148
- confidence=summary[0]["confidence"],
149
- box=box,
150
- )
151
-
152
-
153
- class YoloOBBoxes(DataModel):
154
- """
155
- A class representing a list of oriented bounding boxes detected by a YOLO model.
156
-
157
- Attributes:
158
- cls: A list of classes of the detected objects.
159
- name: A list of names of the detected objects.
160
- confidence: A list of confidence scores of the detections.
161
- box: A list of oriented bounding boxes of the detected objects.
162
- """
163
-
164
- cls: list[int]
165
- name: list[str]
166
- confidence: list[float]
167
- box: list[OBBox]
168
-
169
- @staticmethod
170
- def from_file(yolo: "YOLO", file: "File") -> "YoloOBBoxes":
171
- results = yolo(Image.open(BytesIO(file.read())))
172
- return YoloOBBoxes.from_results(results)
173
-
174
- @staticmethod
175
- def from_results(results: list["Results"]) -> "YoloOBBoxes":
176
- cls, names, confidence, box = [], [], [], []
177
- for r in results:
178
- for s in r.summary():
179
- name = s.get("name", "")
180
- cls.append(s["class"])
181
- names.append(name)
182
- confidence.append(s["confidence"])
183
- box.append(OBBox.from_dict(s.get("box", {}), title=name))
184
- return YoloOBBoxes(
185
- cls=cls,
186
- name=names,
187
- confidence=confidence,
188
- box=box,
189
- )
@@ -1,126 +0,0 @@
1
- """
2
- This module contains the YOLO models.
3
-
4
- YOLO stands for "You Only Look Once", a family of object detection models that
5
- are designed to be fast and accurate. The models are trained to detect objects
6
- in images by dividing the image into a grid and predicting the bounding boxes
7
- and class probabilities for each grid cell.
8
-
9
- More information about YOLO can be found here:
10
- - https://pjreddie.com/darknet/yolo/
11
- - https://docs.ultralytics.com/
12
- """
13
-
14
- from typing import TYPE_CHECKING
15
-
16
- from pydantic import Field
17
-
18
- from datachain.lib.data_model import DataModel
19
- from datachain.lib.models.bbox import BBox
20
- from datachain.lib.models.pose import Pose3D
21
-
22
- if TYPE_CHECKING:
23
- from ultralytics.engine.results import Results
24
-
25
-
26
- class YoloPoseBodyPart:
27
- """An enumeration of body parts for YOLO pose keypoints."""
28
-
29
- nose = 0
30
- left_eye = 1
31
- right_eye = 2
32
- left_ear = 3
33
- right_ear = 4
34
- left_shoulder = 5
35
- right_shoulder = 6
36
- left_elbow = 7
37
- right_elbow = 8
38
- left_wrist = 9
39
- right_wrist = 10
40
- left_hip = 11
41
- right_hip = 12
42
- left_knee = 13
43
- right_knee = 14
44
- left_ankle = 15
45
- right_ankle = 16
46
-
47
-
48
- class YoloPose(DataModel):
49
- """
50
- A data model for YOLO pose keypoints.
51
-
52
- Attributes:
53
- cls: The class of the pose.
54
- name: The name of the pose.
55
- confidence: The confidence score of the pose.
56
- box: The bounding box of the pose.
57
- keypoints: The 3D pose keypoints.
58
- """
59
-
60
- cls: int = Field(default=-1)
61
- name: str = Field(default="")
62
- confidence: float = Field(default=0)
63
- box: BBox = Field(default=None)
64
- keypoints: Pose3D = Field(default=None)
65
-
66
- @staticmethod
67
- def from_result(result: "Results") -> "YoloPose":
68
- summary = result.summary()
69
- if not summary:
70
- return YoloPose()
71
- name = summary[0].get("name", "")
72
- box = (
73
- BBox.from_dict(summary[0]["box"], title=name)
74
- if "box" in summary[0]
75
- else BBox()
76
- )
77
- keypoints = (
78
- Pose3D.from_dict(summary[0]["keypoints"])
79
- if "keypoints" in summary[0]
80
- else Pose3D()
81
- )
82
- return YoloPose(
83
- cls=summary[0]["class"],
84
- name=name,
85
- confidence=summary[0]["confidence"],
86
- box=box,
87
- keypoints=keypoints,
88
- )
89
-
90
-
91
- class YoloPoses(DataModel):
92
- """
93
- A data model for a list of YOLO pose keypoints.
94
-
95
- Attributes:
96
- cls: The classes of the poses.
97
- name: The names of the poses.
98
- confidence: The confidence scores of the poses.
99
- box: The bounding boxes of the poses.
100
- keypoints: The 3D pose keypoints of the poses.
101
- """
102
-
103
- cls: list[int]
104
- name: list[str]
105
- confidence: list[float]
106
- box: list[BBox]
107
- keypoints: list[Pose3D]
108
-
109
- @staticmethod
110
- def from_results(results: list["Results"]) -> "YoloPoses":
111
- cls, names, confidence, box, keypoints = [], [], [], [], []
112
- for r in results:
113
- for s in r.summary():
114
- name = s.get("name", "")
115
- cls.append(s["class"])
116
- names.append(name)
117
- confidence.append(s["confidence"])
118
- box.append(BBox.from_dict(s.get("box", {}), title=name))
119
- keypoints.append(Pose3D.from_dict(s.get("keypoints", {})))
120
- return YoloPoses(
121
- cls=cls,
122
- name=names,
123
- confidence=confidence,
124
- box=box,
125
- keypoints=keypoints,
126
- )
@@ -1,121 +0,0 @@
1
- """
2
- This module contains the YOLO models.
3
-
4
- YOLO stands for "You Only Look Once", a family of object detection models that
5
- are designed to be fast and accurate. The models are trained to detect objects
6
- in images by dividing the image into a grid and predicting the bounding boxes
7
- and class probabilities for each grid cell.
8
-
9
- More information about YOLO can be found here:
10
- - https://pjreddie.com/darknet/yolo/
11
- - https://docs.ultralytics.com/
12
- """
13
-
14
- from io import BytesIO
15
- from typing import TYPE_CHECKING
16
-
17
- from PIL import Image
18
- from pydantic import Field
19
-
20
- from datachain.lib.data_model import DataModel
21
- from datachain.lib.models.bbox import BBox
22
- from datachain.lib.models.segment import Segments
23
-
24
- if TYPE_CHECKING:
25
- from ultralytics.engine.results import Results
26
- from ultralytics.models import YOLO
27
-
28
- from datachain.lib.file import File
29
-
30
-
31
- class YoloSegment(DataModel):
32
- """
33
- A data model for a single YOLO segment.
34
-
35
- Attributes:
36
- cls (int): The class of the segment.
37
- name (str): The name of the segment.
38
- confidence (float): The confidence of the segment.
39
- box (BBox): The bounding box of the segment.
40
- segments (Segments): The segments of the segment.
41
- """
42
-
43
- cls: int = Field(default=-1)
44
- name: str = Field(default="")
45
- confidence: float = Field(default=0)
46
- box: BBox = Field(default=None)
47
- segments: Segments = Field(default=None)
48
-
49
- @staticmethod
50
- def from_file(yolo: "YOLO", file: "File") -> "YoloSegment":
51
- results = yolo(Image.open(BytesIO(file.read())))
52
- if len(results) == 0:
53
- return YoloSegment()
54
- return YoloSegment.from_result(results[0])
55
-
56
- @staticmethod
57
- def from_result(result: "Results") -> "YoloSegment":
58
- summary = result.summary()
59
- if not summary:
60
- return YoloSegment()
61
- name = summary[0].get("name", "")
62
- box = (
63
- BBox.from_dict(summary[0]["box"], title=name)
64
- if "box" in summary[0]
65
- else BBox()
66
- )
67
- segments = (
68
- Segments.from_dict(summary[0]["segments"], title=name)
69
- if "segments" in summary[0]
70
- else Segments()
71
- )
72
- return YoloSegment(
73
- cls=summary[0]["class"],
74
- name=summary[0]["name"],
75
- confidence=summary[0]["confidence"],
76
- box=box,
77
- segments=segments,
78
- )
79
-
80
-
81
- class YoloSegments(DataModel):
82
- """
83
- A data model for a list of YOLO segments.
84
-
85
- Attributes:
86
- cls (list[int]): The classes of the segments.
87
- name (list[str]): The names of the segments.
88
- confidence (list[float]): The confidences of the segments.
89
- box (list[BBox]): The bounding boxes of the segments.
90
- segments (list[Segments]): The segments of the segments.
91
- """
92
-
93
- cls: list[int]
94
- name: list[str]
95
- confidence: list[float]
96
- box: list[BBox]
97
- segments: list[Segments]
98
-
99
- @staticmethod
100
- def from_file(yolo: "YOLO", file: "File") -> "YoloSegments":
101
- results = yolo(Image.open(BytesIO(file.read())))
102
- return YoloSegments.from_results(results)
103
-
104
- @staticmethod
105
- def from_results(results: list["Results"]) -> "YoloSegments":
106
- cls, names, confidence, box, segments = [], [], [], [], []
107
- for r in results:
108
- for s in r.summary():
109
- name = s.get("name", "")
110
- cls.append(s["class"])
111
- names.append(name)
112
- confidence.append(s["confidence"])
113
- box.append(BBox.from_dict(s.get("box", {}), title=name))
114
- segments.append(Segments.from_dict(s.get("segments", {}), title=name))
115
- return YoloSegments(
116
- cls=cls,
117
- name=names,
118
- confidence=confidence,
119
- box=box,
120
- segments=segments,
121
- )