datachain 0.6.10__py3-none-any.whl → 0.6.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of datachain might be problematic. Click here for more details.

@@ -1,6 +1,5 @@
1
- from . import ultralytics
2
- from .bbox import BBox, OBBox
1
+ from . import yolo
2
+ from .bbox import BBox
3
3
  from .pose import Pose, Pose3D
4
- from .segment import Segments
5
4
 
6
- __all__ = ["BBox", "OBBox", "Pose", "Pose3D", "Segments", "ultralytics"]
5
+ __all__ = ["BBox", "Pose", "Pose3D", "yolo"]
@@ -1,3 +1,5 @@
1
+ from typing import Optional
2
+
1
3
  from pydantic import Field
2
4
 
3
5
  from datachain.lib.data_model import DataModel
@@ -9,7 +11,10 @@ class BBox(DataModel):
9
11
 
10
12
  Attributes:
11
13
  title (str): The title of the bounding box.
12
- coords (list[int]): The coordinates of the bounding box.
14
+ x1 (float): The x-coordinate of the top-left corner of the bounding box.
15
+ y1 (float): The y-coordinate of the top-left corner of the bounding box.
16
+ x2 (float): The x-coordinate of the bottom-right corner of the bounding box.
17
+ y2 (float): The y-coordinate of the bottom-right corner of the bounding box.
13
18
 
14
19
  The bounding box is defined by two points:
15
20
  - (x1, y1): The top-left corner of the box.
@@ -17,100 +22,24 @@ class BBox(DataModel):
17
22
  """
18
23
 
19
24
  title: str = Field(default="")
20
- coords: list[int] = Field(default=None)
21
-
22
- @staticmethod
23
- def from_list(coords: list[float], title: str = "") -> "BBox":
24
- assert len(coords) == 4, "Bounding box coordinates must be a list of 4 floats."
25
- assert all(
26
- isinstance(value, (int, float)) for value in coords
27
- ), "Bounding box coordinates must be integers or floats."
28
- return BBox(
29
- title=title,
30
- coords=[round(c) for c in coords],
31
- )
32
-
33
- @staticmethod
34
- def from_dict(coords: dict[str, float], title: str = "") -> "BBox":
35
- assert (
36
- len(coords) == 4
37
- ), "Bounding box coordinates must be a dictionary of 4 floats."
38
- assert set(coords) == {
39
- "x1",
40
- "y1",
41
- "x2",
42
- "y2",
43
- }, "Bounding box coordinates must contain keys with coordinates."
44
- assert all(
45
- isinstance(value, (int, float)) for value in coords.values()
46
- ), "Bounding box coordinates must be integers or floats."
47
- return BBox(
48
- title=title,
49
- coords=[
50
- round(coords["x1"]),
51
- round(coords["y1"]),
52
- round(coords["x2"]),
53
- round(coords["y2"]),
54
- ],
55
- )
56
-
57
-
58
- class OBBox(DataModel):
59
- """
60
- A data model for representing oriented bounding boxes.
61
-
62
- Attributes:
63
- title (str): The title of the oriented bounding box.
64
- coords (list[int]): The coordinates of the oriented bounding box.
65
-
66
- The oriented bounding box is defined by four points:
67
- - (x1, y1): The first corner of the box.
68
- - (x2, y2): The second corner of the box.
69
- - (x3, y3): The third corner of the box.
70
- - (x4, y4): The fourth corner of the box.
71
- """
72
-
73
- title: str = Field(default="")
74
- coords: list[int] = Field(default=None)
75
-
76
- @staticmethod
77
- def from_list(coords: list[float], title: str = "") -> "OBBox":
78
- assert (
79
- len(coords) == 8
80
- ), "Oriented bounding box coordinates must be a list of 8 floats."
81
- assert all(
82
- isinstance(value, (int, float)) for value in coords
83
- ), "Oriented bounding box coordinates must be integers or floats."
84
- return OBBox(
85
- title=title,
86
- coords=[round(c) for c in coords],
87
- )
25
+ x1: float = Field(default=0)
26
+ y1: float = Field(default=0)
27
+ x2: float = Field(default=0)
28
+ y2: float = Field(default=0)
88
29
 
89
30
  @staticmethod
90
- def from_dict(coords: dict[str, float], title: str = "") -> "OBBox":
91
- assert set(coords) == {
92
- "x1",
93
- "y1",
94
- "x2",
95
- "y2",
96
- "x3",
97
- "y3",
98
- "x4",
99
- "y4",
100
- }, "Oriented bounding box coordinates must contain keys with coordinates."
101
- assert all(
102
- isinstance(value, (int, float)) for value in coords.values()
103
- ), "Oriented bounding box coordinates must be integers or floats."
104
- return OBBox(
105
- title=title,
106
- coords=[
107
- round(coords["x1"]),
108
- round(coords["y1"]),
109
- round(coords["x2"]),
110
- round(coords["y2"]),
111
- round(coords["x3"]),
112
- round(coords["y3"]),
113
- round(coords["x4"]),
114
- round(coords["y4"]),
115
- ],
116
- )
31
+ def from_xywh(bbox: list[float], title: Optional[str] = None) -> "BBox":
32
+ """
33
+ Converts a bounding box in (x, y, width, height) format
34
+ to a BBox data model instance.
35
+
36
+ Args:
37
+ bbox (list[float]): A bounding box, represented as a list
38
+ of four floats [x, y, width, height].
39
+
40
+ Returns:
41
+ BBox2D: An instance of the BBox data model.
42
+ """
43
+ assert len(bbox) == 4, f"Bounding box must have 4 elements, got f{len(bbox)}"
44
+ x, y, w, h = bbox
45
+ return BBox(title=title or "", x1=x, y1=y, x2=x + w, y2=y + h)
@@ -8,48 +8,15 @@ class Pose(DataModel):
8
8
  A data model for representing pose keypoints.
9
9
 
10
10
  Attributes:
11
- x (list[int]): The x-coordinates of the keypoints.
12
- y (list[int]): The y-coordinates of the keypoints.
11
+ x (list[float]): The x-coordinates of the keypoints.
12
+ y (list[float]): The y-coordinates of the keypoints.
13
13
 
14
14
  The keypoints are represented as lists of x and y coordinates, where each index
15
15
  corresponds to a specific body part.
16
16
  """
17
17
 
18
- x: list[int] = Field(default=None)
19
- y: list[int] = Field(default=None)
20
-
21
- @staticmethod
22
- def from_list(points: list[list[float]]) -> "Pose":
23
- assert len(points) == 2, "Pose coordinates must be a list of 2 lists."
24
- points_x, points_y = points
25
- assert (
26
- len(points_x) == len(points_y) == 17
27
- ), "Pose x and y coordinates must have the same length of 17."
28
- assert all(
29
- isinstance(value, (int, float)) for value in [*points_x, *points_y]
30
- ), "Pose coordinates must be integers or floats."
31
- return Pose(
32
- x=[round(coord) for coord in points_x],
33
- y=[round(coord) for coord in points_y],
34
- )
35
-
36
- @staticmethod
37
- def from_dict(points: dict[str, list[float]]) -> "Pose":
38
- assert set(points) == {
39
- "x",
40
- "y",
41
- }, "Pose coordinates must contain keys 'x' and 'y'."
42
- points_x, points_y = points["x"], points["y"]
43
- assert (
44
- len(points_x) == len(points_y) == 17
45
- ), "Pose x and y coordinates must have the same length of 17."
46
- assert all(
47
- isinstance(value, (int, float)) for value in [*points_x, *points_y]
48
- ), "Pose coordinates must be integers or floats."
49
- return Pose(
50
- x=[round(coord) for coord in points_x],
51
- y=[round(coord) for coord in points_y],
52
- )
18
+ x: list[float] = Field(default=None)
19
+ y: list[float] = Field(default=None)
53
20
 
54
21
 
55
22
  class Pose3D(DataModel):
@@ -57,52 +24,14 @@ class Pose3D(DataModel):
57
24
  A data model for representing 3D pose keypoints.
58
25
 
59
26
  Attributes:
60
- x (list[int]): The x-coordinates of the keypoints.
61
- y (list[int]): The y-coordinates of the keypoints.
27
+ x (list[float]): The x-coordinates of the keypoints.
28
+ y (list[float]): The y-coordinates of the keypoints.
62
29
  visible (list[float]): The visibility of the keypoints.
63
30
 
64
31
  The keypoints are represented as lists of x, y, and visibility values,
65
32
  where each index corresponds to a specific body part.
66
33
  """
67
34
 
68
- x: list[int] = Field(default=None)
69
- y: list[int] = Field(default=None)
35
+ x: list[float] = Field(default=None)
36
+ y: list[float] = Field(default=None)
70
37
  visible: list[float] = Field(default=None)
71
-
72
- @staticmethod
73
- def from_list(points: list[list[float]]) -> "Pose3D":
74
- assert len(points) == 3, "Pose coordinates must be a list of 3 lists."
75
- points_x, points_y, points_v = points
76
- assert (
77
- len(points_x) == len(points_y) == len(points_v) == 17
78
- ), "Pose x, y, and visibility coordinates must have the same length of 17."
79
- assert all(
80
- isinstance(value, (int, float))
81
- for value in [*points_x, *points_y, *points_v]
82
- ), "Pose coordinates must be integers or floats."
83
- return Pose3D(
84
- x=[round(coord) for coord in points_x],
85
- y=[round(coord) for coord in points_y],
86
- visible=points_v,
87
- )
88
-
89
- @staticmethod
90
- def from_dict(points: dict[str, list[float]]) -> "Pose3D":
91
- assert set(points) == {
92
- "x",
93
- "y",
94
- "visible",
95
- }, "Pose coordinates must contain keys 'x', 'y', and 'visible'."
96
- points_x, points_y, points_v = points["x"], points["y"], points["visible"]
97
- assert (
98
- len(points_x) == len(points_y) == len(points_v) == 17
99
- ), "Pose x, y, and visibility coordinates must have the same length of 17."
100
- assert all(
101
- isinstance(value, (int, float))
102
- for value in [*points_x, *points_y, *points_v]
103
- ), "Pose coordinates must be integers or floats."
104
- return Pose3D(
105
- x=[round(coord) for coord in points_x],
106
- y=[round(coord) for coord in points_y],
107
- visible=points_v,
108
- )
@@ -0,0 +1,39 @@
1
+ """
2
+ This module contains the YOLO models.
3
+
4
+ YOLO stands for "You Only Look Once", a family of object detection models that
5
+ are designed to be fast and accurate. The models are trained to detect objects
6
+ in images by dividing the image into a grid and predicting the bounding boxes
7
+ and class probabilities for each grid cell.
8
+
9
+ More information about YOLO can be found here:
10
+ - https://pjreddie.com/darknet/yolo/
11
+ - https://docs.ultralytics.com/
12
+ """
13
+
14
+
15
+ class PoseBodyPart:
16
+ """
17
+ An enumeration of body parts for YOLO pose keypoints.
18
+
19
+ More information about the body parts can be found here:
20
+ https://docs.ultralytics.com/tasks/pose/
21
+ """
22
+
23
+ nose = 0
24
+ left_eye = 1
25
+ right_eye = 2
26
+ left_ear = 3
27
+ right_ear = 4
28
+ left_shoulder = 5
29
+ right_shoulder = 6
30
+ left_elbow = 7
31
+ right_elbow = 8
32
+ left_wrist = 9
33
+ right_wrist = 10
34
+ left_hip = 11
35
+ right_hip = 12
36
+ left_knee = 13
37
+ right_knee = 14
38
+ left_ankle = 15
39
+ right_ankle = 16
@@ -36,7 +36,14 @@ def convert_array(arr):
36
36
 
37
37
 
38
38
  def adapt_np_array(arr):
39
- return orjson.dumps(arr, option=orjson.OPT_SERIALIZE_NUMPY).decode("utf-8")
39
+ def _json_serialize(obj):
40
+ if isinstance(obj, np.ndarray):
41
+ return obj.tolist()
42
+ return obj
43
+
44
+ return orjson.dumps(
45
+ arr, option=orjson.OPT_SERIALIZE_NUMPY, default=_json_serialize
46
+ ).decode("utf-8")
40
47
 
41
48
 
42
49
  def adapt_np_generic(val):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: datachain
3
- Version: 0.6.10
3
+ Version: 0.6.11
4
4
  Summary: Wrangle unstructured AI data at scale
5
5
  Author-email: Dmitry Petrov <support@dvc.org>
6
6
  License: Apache-2.0
@@ -71,14 +71,10 @@ datachain/lib/convert/values_to_tuples.py,sha256=varRCnSMT_pZmHznrd2Yi05qXLLz_v9
71
71
  datachain/lib/func/__init__.py,sha256=wlAKhGV0QDg9y7reSwoUF8Vicfqh_YOUNIXLzxICGz4,403
72
72
  datachain/lib/func/aggregate.py,sha256=H1ziFQdaK9zvnxvttfnEzkkyGvEEmMAvmgCsBV6nfm8,10917
73
73
  datachain/lib/func/func.py,sha256=HAJZ_tpiRG2R-et7pr0WnoyNZYtpbPn3_HBuL3RQpbU,4800
74
- datachain/lib/models/__init__.py,sha256=6iwqXWcybyELKdLEe59yUPl8R8ZHDY4lA-xCHVYPdOA,191
75
- datachain/lib/models/bbox.py,sha256=UJ_64D8TQglX2B_ueseILPoT3cGIWr9McVg0mv2YdmE,3717
76
- datachain/lib/models/pose.py,sha256=KC-OpLC7-3v6qg4YN6pXlfAgtg88VLQoRc75JCEmbfY,3931
77
- datachain/lib/models/segment.py,sha256=ergCFnEzLDzaU75p1_KvWgal1LSv4VuFmkWLkRJeaVk,1862
78
- datachain/lib/models/ultralytics/__init__.py,sha256=g8mgII0k_RJiOG9kd4k_ECfCgDhT_iPh3vCC_5OiDD4,305
79
- datachain/lib/models/ultralytics/bbox.py,sha256=LAaezAnnugfBiczWZ63NTo65kX2BegR5WGXjQTOTE28,5784
80
- datachain/lib/models/ultralytics/pose.py,sha256=nMoEeeY_Zi7Iiu7vIo9ZTq8ARUdg_BcZMQIA_WgRNk4,3488
81
- datachain/lib/models/ultralytics/segment.py,sha256=IHnthsq6uQ6DSdHLK2akbdd0Eq8wW7oaAK6pUG8nxJc,3818
74
+ datachain/lib/models/__init__.py,sha256=AGvjPbUokJiir3uelTa4XGtNSECkMFc5Xmi_N3AtxPQ,119
75
+ datachain/lib/models/bbox.py,sha256=aiYNhvEcRK3dEN4MBcptmkPKc9kMP16ZQdu7xPk6hek,1555
76
+ datachain/lib/models/pose.py,sha256=peuJPNSiGuTXfCfGIABwv8PGYistvTTBmtf-8X8E_eA,1077
77
+ datachain/lib/models/yolo.py,sha256=eftoJDUa8iOpFTF1EkKVAd5Q-3HRd6X4eCIZ9h5p4nI,972
82
78
  datachain/query/__init__.py,sha256=7DhEIjAA8uZJfejruAVMZVcGFmvUpffuZJwgRqNwe-c,263
83
79
  datachain/query/batch.py,sha256=5fEhORFe7li12SdYddaSK3LyqksMfCHhwN1_A6TfsA4,3485
84
80
  datachain/query/dataset.py,sha256=MGArYxioeGvm8w7hQtQAjEI6wsZN_XAoh4-jO4d0U5Q,53926
@@ -105,14 +101,14 @@ datachain/sql/functions/random.py,sha256=vBwEEj98VH4LjWixUCygQ5Bz1mv1nohsCG0-ZTE
105
101
  datachain/sql/functions/string.py,sha256=DYgiw8XSk7ge7GXvyRI1zbaMruIizNeI-puOjriQGZQ,1148
106
102
  datachain/sql/sqlite/__init__.py,sha256=TAdJX0Bg28XdqPO-QwUVKy8rg78cgMileHvMNot7d04,166
107
103
  datachain/sql/sqlite/base.py,sha256=aHSZVvh4XSVkvZ07h3jMoRlHI4sWD8y3SnmGs9xMG9Y,14375
108
- datachain/sql/sqlite/types.py,sha256=yzvp0sXSEoEYXs6zaYC_2YubarQoZH-MiUNXcpuEP4s,1573
104
+ datachain/sql/sqlite/types.py,sha256=lPXS1XbkmUtlkkiRxy_A_UzsgpPv2VSkXYOD4zIHM4w,1734
109
105
  datachain/sql/sqlite/vector.py,sha256=ncW4eu2FlJhrP_CIpsvtkUabZlQdl2D5Lgwy_cbfqR0,469
110
106
  datachain/toolkit/__init__.py,sha256=eQ58Q5Yf_Fgv1ZG0IO5dpB4jmP90rk8YxUWmPc1M2Bo,68
111
107
  datachain/toolkit/split.py,sha256=6FcEJgUsJsUcCqKW5aXuJy4DvbcQ7_dFbsfNPhn8EVg,2377
112
108
  datachain/torch/__init__.py,sha256=gIS74PoEPy4TB3X6vx9nLO0Y3sLJzsA8ckn8pRWihJM,579
113
- datachain-0.6.10.dist-info/LICENSE,sha256=8DnqK5yoPI_E50bEg_zsHKZHY2HqPy4rYN338BHQaRA,11344
114
- datachain-0.6.10.dist-info/METADATA,sha256=AgQuuefAhZRIL1jDJWz-q4daqA5ZmnQN8dafqnt01XA,18038
115
- datachain-0.6.10.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
116
- datachain-0.6.10.dist-info/entry_points.txt,sha256=0GMJS6B_KWq0m3VT98vQI2YZodAMkn4uReZ_okga9R4,49
117
- datachain-0.6.10.dist-info/top_level.txt,sha256=lZPpdU_2jJABLNIg2kvEOBi8PtsYikbN1OdMLHk8bTg,10
118
- datachain-0.6.10.dist-info/RECORD,,
109
+ datachain-0.6.11.dist-info/LICENSE,sha256=8DnqK5yoPI_E50bEg_zsHKZHY2HqPy4rYN338BHQaRA,11344
110
+ datachain-0.6.11.dist-info/METADATA,sha256=L9Z8Hr_bTC8AWCl3bjakzsdej3lgFMCsFJ6wDdE1heU,18038
111
+ datachain-0.6.11.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
112
+ datachain-0.6.11.dist-info/entry_points.txt,sha256=0GMJS6B_KWq0m3VT98vQI2YZodAMkn4uReZ_okga9R4,49
113
+ datachain-0.6.11.dist-info/top_level.txt,sha256=lZPpdU_2jJABLNIg2kvEOBi8PtsYikbN1OdMLHk8bTg,10
114
+ datachain-0.6.11.dist-info/RECORD,,
@@ -1,53 +0,0 @@
1
- from pydantic import Field
2
-
3
- from datachain.lib.data_model import DataModel
4
-
5
-
6
- class Segments(DataModel):
7
- """
8
- A data model for representing segments.
9
-
10
- Attributes:
11
- title (str): The title of the segments.
12
- x (list[int]): The x-coordinates of the segments.
13
- y (list[int]): The y-coordinates of the segments.
14
-
15
- The segments are represented as lists of x and y coordinates, where each index
16
- corresponds to a specific segment.
17
- """
18
-
19
- title: str = Field(default="")
20
- x: list[int] = Field(default=None)
21
- y: list[int] = Field(default=None)
22
-
23
- @staticmethod
24
- def from_list(points: list[list[float]], title: str = "") -> "Segments":
25
- assert len(points) == 2, "Segments coordinates must be a list of 2 lists."
26
- points_x, points_y = points
27
- assert len(points_x) == len(
28
- points_y
29
- ), "Segments x and y coordinates must have the same length."
30
- assert all(
31
- isinstance(value, (int, float)) for value in [*points_x, *points_y]
32
- ), "Segments coordinates must be integers or floats."
33
- return Segments(
34
- title=title,
35
- x=[round(coord) for coord in points_x],
36
- y=[round(coord) for coord in points_y],
37
- )
38
-
39
- @staticmethod
40
- def from_dict(points: dict[str, list[float]], title: str = "") -> "Segments":
41
- assert set(points) == {
42
- "x",
43
- "y",
44
- }, "Segments coordinates must contain keys 'x' and 'y'."
45
- points_x, points_y = points["x"], points["y"]
46
- assert all(
47
- isinstance(value, (int, float)) for value in [*points_x, *points_y]
48
- ), "Segments coordinates must be integers or floats."
49
- return Segments(
50
- title=title,
51
- x=[round(coord) for coord in points_x],
52
- y=[round(coord) for coord in points_y],
53
- )
@@ -1,14 +0,0 @@
1
- from .bbox import YoloBBox, YoloBBoxes, YoloOBBox, YoloOBBoxes
2
- from .pose import YoloPose, YoloPoses
3
- from .segment import YoloSegment, YoloSegments
4
-
5
- __all__ = [
6
- "YoloBBox",
7
- "YoloBBoxes",
8
- "YoloOBBox",
9
- "YoloOBBoxes",
10
- "YoloPose",
11
- "YoloPoses",
12
- "YoloSegment",
13
- "YoloSegments",
14
- ]
@@ -1,189 +0,0 @@
1
- """
2
- This module contains the YOLO models.
3
-
4
- YOLO stands for "You Only Look Once", a family of object detection models that
5
- are designed to be fast and accurate. The models are trained to detect objects
6
- in images by dividing the image into a grid and predicting the bounding boxes
7
- and class probabilities for each grid cell.
8
-
9
- More information about YOLO can be found here:
10
- - https://pjreddie.com/darknet/yolo/
11
- - https://docs.ultralytics.com/
12
- """
13
-
14
- from io import BytesIO
15
- from typing import TYPE_CHECKING
16
-
17
- from PIL import Image
18
- from pydantic import Field
19
-
20
- from datachain.lib.data_model import DataModel
21
- from datachain.lib.models.bbox import BBox, OBBox
22
-
23
- if TYPE_CHECKING:
24
- from ultralytics.engine.results import Results
25
- from ultralytics.models import YOLO
26
-
27
- from datachain.lib.file import File
28
-
29
-
30
- class YoloBBox(DataModel):
31
- """
32
- A class representing a bounding box detected by a YOLO model.
33
-
34
- Attributes:
35
- cls: The class of the detected object.
36
- name: The name of the detected object.
37
- confidence: The confidence score of the detection.
38
- box: The bounding box of the detected object
39
- """
40
-
41
- cls: int = Field(default=-1)
42
- name: str = Field(default="")
43
- confidence: float = Field(default=0)
44
- box: BBox = Field(default=None)
45
-
46
- @staticmethod
47
- def from_file(yolo: "YOLO", file: "File") -> "YoloBBox":
48
- results = yolo(Image.open(BytesIO(file.read())))
49
- if len(results) == 0:
50
- return YoloBBox()
51
- return YoloBBox.from_result(results[0])
52
-
53
- @staticmethod
54
- def from_result(result: "Results") -> "YoloBBox":
55
- summary = result.summary()
56
- if not summary:
57
- return YoloBBox()
58
- name = summary[0].get("name", "")
59
- box = (
60
- BBox.from_dict(summary[0]["box"], title=name)
61
- if "box" in summary[0]
62
- else BBox()
63
- )
64
- return YoloBBox(
65
- cls=summary[0]["class"],
66
- name=name,
67
- confidence=summary[0]["confidence"],
68
- box=box,
69
- )
70
-
71
-
72
- class YoloBBoxes(DataModel):
73
- """
74
- A class representing a list of bounding boxes detected by a YOLO model.
75
-
76
- Attributes:
77
- cls: A list of classes of the detected objects.
78
- name: A list of names of the detected objects.
79
- confidence: A list of confidence scores of the detections.
80
- box: A list of bounding boxes of the detected objects
81
- """
82
-
83
- cls: list[int]
84
- name: list[str]
85
- confidence: list[float]
86
- box: list[BBox]
87
-
88
- @staticmethod
89
- def from_file(yolo: "YOLO", file: "File") -> "YoloBBoxes":
90
- results = yolo(Image.open(BytesIO(file.read())))
91
- return YoloBBoxes.from_results(results)
92
-
93
- @staticmethod
94
- def from_results(results: list["Results"]) -> "YoloBBoxes":
95
- cls, names, confidence, box = [], [], [], []
96
- for r in results:
97
- for s in r.summary():
98
- name = s.get("name", "")
99
- cls.append(s["class"])
100
- names.append(name)
101
- confidence.append(s["confidence"])
102
- box.append(BBox.from_dict(s.get("box", {}), title=name))
103
- return YoloBBoxes(
104
- cls=cls,
105
- name=names,
106
- confidence=confidence,
107
- box=box,
108
- )
109
-
110
-
111
- class YoloOBBox(DataModel):
112
- """
113
- A class representing an oriented bounding box detected by a YOLO model.
114
-
115
- Attributes:
116
- cls: The class of the detected object.
117
- name: The name of the detected object.
118
- confidence: The confidence score of the detection.
119
- box: The oriented bounding box of the detected object.
120
- """
121
-
122
- cls: int = Field(default=-1)
123
- name: str = Field(default="")
124
- confidence: float = Field(default=0)
125
- box: OBBox = Field(default=None)
126
-
127
- @staticmethod
128
- def from_file(yolo: "YOLO", file: "File") -> "YoloOBBox":
129
- results = yolo(Image.open(BytesIO(file.read())))
130
- if len(results) == 0:
131
- return YoloOBBox()
132
- return YoloOBBox.from_result(results[0])
133
-
134
- @staticmethod
135
- def from_result(result: "Results") -> "YoloOBBox":
136
- summary = result.summary()
137
- if not summary:
138
- return YoloOBBox()
139
- name = summary[0].get("name", "")
140
- box = (
141
- OBBox.from_dict(summary[0]["box"], title=name)
142
- if "box" in summary[0]
143
- else OBBox()
144
- )
145
- return YoloOBBox(
146
- cls=summary[0]["class"],
147
- name=name,
148
- confidence=summary[0]["confidence"],
149
- box=box,
150
- )
151
-
152
-
153
- class YoloOBBoxes(DataModel):
154
- """
155
- A class representing a list of oriented bounding boxes detected by a YOLO model.
156
-
157
- Attributes:
158
- cls: A list of classes of the detected objects.
159
- name: A list of names of the detected objects.
160
- confidence: A list of confidence scores of the detections.
161
- box: A list of oriented bounding boxes of the detected objects.
162
- """
163
-
164
- cls: list[int]
165
- name: list[str]
166
- confidence: list[float]
167
- box: list[OBBox]
168
-
169
- @staticmethod
170
- def from_file(yolo: "YOLO", file: "File") -> "YoloOBBoxes":
171
- results = yolo(Image.open(BytesIO(file.read())))
172
- return YoloOBBoxes.from_results(results)
173
-
174
- @staticmethod
175
- def from_results(results: list["Results"]) -> "YoloOBBoxes":
176
- cls, names, confidence, box = [], [], [], []
177
- for r in results:
178
- for s in r.summary():
179
- name = s.get("name", "")
180
- cls.append(s["class"])
181
- names.append(name)
182
- confidence.append(s["confidence"])
183
- box.append(OBBox.from_dict(s.get("box", {}), title=name))
184
- return YoloOBBoxes(
185
- cls=cls,
186
- name=names,
187
- confidence=confidence,
188
- box=box,
189
- )
@@ -1,126 +0,0 @@
1
- """
2
- This module contains the YOLO models.
3
-
4
- YOLO stands for "You Only Look Once", a family of object detection models that
5
- are designed to be fast and accurate. The models are trained to detect objects
6
- in images by dividing the image into a grid and predicting the bounding boxes
7
- and class probabilities for each grid cell.
8
-
9
- More information about YOLO can be found here:
10
- - https://pjreddie.com/darknet/yolo/
11
- - https://docs.ultralytics.com/
12
- """
13
-
14
- from typing import TYPE_CHECKING
15
-
16
- from pydantic import Field
17
-
18
- from datachain.lib.data_model import DataModel
19
- from datachain.lib.models.bbox import BBox
20
- from datachain.lib.models.pose import Pose3D
21
-
22
- if TYPE_CHECKING:
23
- from ultralytics.engine.results import Results
24
-
25
-
26
- class YoloPoseBodyPart:
27
- """An enumeration of body parts for YOLO pose keypoints."""
28
-
29
- nose = 0
30
- left_eye = 1
31
- right_eye = 2
32
- left_ear = 3
33
- right_ear = 4
34
- left_shoulder = 5
35
- right_shoulder = 6
36
- left_elbow = 7
37
- right_elbow = 8
38
- left_wrist = 9
39
- right_wrist = 10
40
- left_hip = 11
41
- right_hip = 12
42
- left_knee = 13
43
- right_knee = 14
44
- left_ankle = 15
45
- right_ankle = 16
46
-
47
-
48
- class YoloPose(DataModel):
49
- """
50
- A data model for YOLO pose keypoints.
51
-
52
- Attributes:
53
- cls: The class of the pose.
54
- name: The name of the pose.
55
- confidence: The confidence score of the pose.
56
- box: The bounding box of the pose.
57
- keypoints: The 3D pose keypoints.
58
- """
59
-
60
- cls: int = Field(default=-1)
61
- name: str = Field(default="")
62
- confidence: float = Field(default=0)
63
- box: BBox = Field(default=None)
64
- keypoints: Pose3D = Field(default=None)
65
-
66
- @staticmethod
67
- def from_result(result: "Results") -> "YoloPose":
68
- summary = result.summary()
69
- if not summary:
70
- return YoloPose()
71
- name = summary[0].get("name", "")
72
- box = (
73
- BBox.from_dict(summary[0]["box"], title=name)
74
- if "box" in summary[0]
75
- else BBox()
76
- )
77
- keypoints = (
78
- Pose3D.from_dict(summary[0]["keypoints"])
79
- if "keypoints" in summary[0]
80
- else Pose3D()
81
- )
82
- return YoloPose(
83
- cls=summary[0]["class"],
84
- name=name,
85
- confidence=summary[0]["confidence"],
86
- box=box,
87
- keypoints=keypoints,
88
- )
89
-
90
-
91
- class YoloPoses(DataModel):
92
- """
93
- A data model for a list of YOLO pose keypoints.
94
-
95
- Attributes:
96
- cls: The classes of the poses.
97
- name: The names of the poses.
98
- confidence: The confidence scores of the poses.
99
- box: The bounding boxes of the poses.
100
- keypoints: The 3D pose keypoints of the poses.
101
- """
102
-
103
- cls: list[int]
104
- name: list[str]
105
- confidence: list[float]
106
- box: list[BBox]
107
- keypoints: list[Pose3D]
108
-
109
- @staticmethod
110
- def from_results(results: list["Results"]) -> "YoloPoses":
111
- cls, names, confidence, box, keypoints = [], [], [], [], []
112
- for r in results:
113
- for s in r.summary():
114
- name = s.get("name", "")
115
- cls.append(s["class"])
116
- names.append(name)
117
- confidence.append(s["confidence"])
118
- box.append(BBox.from_dict(s.get("box", {}), title=name))
119
- keypoints.append(Pose3D.from_dict(s.get("keypoints", {})))
120
- return YoloPoses(
121
- cls=cls,
122
- name=names,
123
- confidence=confidence,
124
- box=box,
125
- keypoints=keypoints,
126
- )
@@ -1,121 +0,0 @@
1
- """
2
- This module contains the YOLO models.
3
-
4
- YOLO stands for "You Only Look Once", a family of object detection models that
5
- are designed to be fast and accurate. The models are trained to detect objects
6
- in images by dividing the image into a grid and predicting the bounding boxes
7
- and class probabilities for each grid cell.
8
-
9
- More information about YOLO can be found here:
10
- - https://pjreddie.com/darknet/yolo/
11
- - https://docs.ultralytics.com/
12
- """
13
-
14
- from io import BytesIO
15
- from typing import TYPE_CHECKING
16
-
17
- from PIL import Image
18
- from pydantic import Field
19
-
20
- from datachain.lib.data_model import DataModel
21
- from datachain.lib.models.bbox import BBox
22
- from datachain.lib.models.segment import Segments
23
-
24
- if TYPE_CHECKING:
25
- from ultralytics.engine.results import Results
26
- from ultralytics.models import YOLO
27
-
28
- from datachain.lib.file import File
29
-
30
-
31
- class YoloSegment(DataModel):
32
- """
33
- A data model for a single YOLO segment.
34
-
35
- Attributes:
36
- cls (int): The class of the segment.
37
- name (str): The name of the segment.
38
- confidence (float): The confidence of the segment.
39
- box (BBox): The bounding box of the segment.
40
- segments (Segments): The segments of the segment.
41
- """
42
-
43
- cls: int = Field(default=-1)
44
- name: str = Field(default="")
45
- confidence: float = Field(default=0)
46
- box: BBox = Field(default=None)
47
- segments: Segments = Field(default=None)
48
-
49
- @staticmethod
50
- def from_file(yolo: "YOLO", file: "File") -> "YoloSegment":
51
- results = yolo(Image.open(BytesIO(file.read())))
52
- if len(results) == 0:
53
- return YoloSegment()
54
- return YoloSegment.from_result(results[0])
55
-
56
- @staticmethod
57
- def from_result(result: "Results") -> "YoloSegment":
58
- summary = result.summary()
59
- if not summary:
60
- return YoloSegment()
61
- name = summary[0].get("name", "")
62
- box = (
63
- BBox.from_dict(summary[0]["box"], title=name)
64
- if "box" in summary[0]
65
- else BBox()
66
- )
67
- segments = (
68
- Segments.from_dict(summary[0]["segments"], title=name)
69
- if "segments" in summary[0]
70
- else Segments()
71
- )
72
- return YoloSegment(
73
- cls=summary[0]["class"],
74
- name=summary[0]["name"],
75
- confidence=summary[0]["confidence"],
76
- box=box,
77
- segments=segments,
78
- )
79
-
80
-
81
- class YoloSegments(DataModel):
82
- """
83
- A data model for a list of YOLO segments.
84
-
85
- Attributes:
86
- cls (list[int]): The classes of the segments.
87
- name (list[str]): The names of the segments.
88
- confidence (list[float]): The confidences of the segments.
89
- box (list[BBox]): The bounding boxes of the segments.
90
- segments (list[Segments]): The segments of the segments.
91
- """
92
-
93
- cls: list[int]
94
- name: list[str]
95
- confidence: list[float]
96
- box: list[BBox]
97
- segments: list[Segments]
98
-
99
- @staticmethod
100
- def from_file(yolo: "YOLO", file: "File") -> "YoloSegments":
101
- results = yolo(Image.open(BytesIO(file.read())))
102
- return YoloSegments.from_results(results)
103
-
104
- @staticmethod
105
- def from_results(results: list["Results"]) -> "YoloSegments":
106
- cls, names, confidence, box, segments = [], [], [], [], []
107
- for r in results:
108
- for s in r.summary():
109
- name = s.get("name", "")
110
- cls.append(s["class"])
111
- names.append(name)
112
- confidence.append(s["confidence"])
113
- box.append(BBox.from_dict(s.get("box", {}), title=name))
114
- segments.append(Segments.from_dict(s.get("segments", {}), title=name))
115
- return YoloSegments(
116
- cls=cls,
117
- name=names,
118
- confidence=confidence,
119
- box=box,
120
- segments=segments,
121
- )