datachain 0.11.0__py3-none-any.whl → 0.12.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of datachain might be problematic. Click here for more details.
- datachain/catalog/catalog.py +33 -5
- datachain/catalog/loader.py +19 -13
- datachain/cli/__init__.py +3 -1
- datachain/cli/commands/show.py +12 -1
- datachain/cli/parser/studio.py +13 -1
- datachain/cli/parser/utils.py +6 -0
- datachain/client/fsspec.py +12 -16
- datachain/client/hf.py +36 -14
- datachain/client/local.py +1 -4
- datachain/data_storage/warehouse.py +3 -8
- datachain/dataset.py +8 -0
- datachain/error.py +0 -12
- datachain/fs/utils.py +30 -0
- datachain/func/__init__.py +5 -0
- datachain/func/func.py +2 -1
- datachain/lib/data_model.py +6 -0
- datachain/lib/dc.py +114 -28
- datachain/lib/file.py +100 -25
- datachain/lib/image.py +30 -6
- datachain/lib/listing.py +21 -39
- datachain/lib/signal_schema.py +194 -15
- datachain/lib/video.py +7 -5
- datachain/model/bbox.py +209 -58
- datachain/model/pose.py +49 -37
- datachain/model/segment.py +22 -18
- datachain/model/ultralytics/bbox.py +9 -9
- datachain/model/ultralytics/pose.py +7 -7
- datachain/model/ultralytics/segment.py +7 -7
- datachain/model/utils.py +191 -0
- datachain/nodes_thread_pool.py +32 -11
- datachain/query/dataset.py +4 -2
- datachain/studio.py +8 -6
- datachain/utils.py +3 -16
- {datachain-0.11.0.dist-info → datachain-0.12.0.dist-info}/METADATA +6 -4
- {datachain-0.11.0.dist-info → datachain-0.12.0.dist-info}/RECORD +39 -37
- {datachain-0.11.0.dist-info → datachain-0.12.0.dist-info}/WHEEL +1 -1
- {datachain-0.11.0.dist-info → datachain-0.12.0.dist-info}/LICENSE +0 -0
- {datachain-0.11.0.dist-info → datachain-0.12.0.dist-info}/entry_points.txt +0 -0
- {datachain-0.11.0.dist-info → datachain-0.12.0.dist-info}/top_level.txt +0 -0
datachain/model/bbox.py
CHANGED
|
@@ -1,47 +1,216 @@
|
|
|
1
|
+
from collections.abc import Sequence
|
|
2
|
+
from typing import TYPE_CHECKING, Union
|
|
3
|
+
|
|
1
4
|
from pydantic import Field
|
|
2
5
|
|
|
3
6
|
from datachain.lib.data_model import DataModel
|
|
4
7
|
|
|
8
|
+
from .utils import convert_bbox, validate_bbox
|
|
9
|
+
|
|
10
|
+
if TYPE_CHECKING:
|
|
11
|
+
from .pose import Pose, Pose3D
|
|
12
|
+
|
|
5
13
|
|
|
6
14
|
class BBox(DataModel):
|
|
7
15
|
"""
|
|
8
|
-
A data model
|
|
16
|
+
A data model representing a bounding box.
|
|
9
17
|
|
|
10
18
|
Attributes:
|
|
11
|
-
title (str): The title
|
|
12
|
-
coords (list[int]):
|
|
19
|
+
title (str): The title or label associated with the bounding box.
|
|
20
|
+
coords (list[int]): A list of four bounding box coordinates.
|
|
13
21
|
|
|
14
|
-
The bounding box
|
|
15
|
-
- (x1, y1)
|
|
16
|
-
- (x2, y2)
|
|
22
|
+
The bounding box follows the PASCAL VOC format, where:
|
|
23
|
+
- (x1, y1) represents the pixel coordinates of the top-left corner.
|
|
24
|
+
- (x2, y2) represents the pixel coordinates of the bottom-right corner.
|
|
17
25
|
"""
|
|
18
26
|
|
|
19
27
|
title: str = Field(default="")
|
|
20
28
|
coords: list[int] = Field(default=[])
|
|
21
29
|
|
|
22
30
|
@staticmethod
|
|
23
|
-
def
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
+
def from_albumentations(
|
|
32
|
+
coords: Sequence[float],
|
|
33
|
+
img_size: Sequence[int],
|
|
34
|
+
title: str = "",
|
|
35
|
+
) -> "BBox":
|
|
36
|
+
"""
|
|
37
|
+
Create a bounding box from Albumentations format.
|
|
38
|
+
|
|
39
|
+
Albumentations represents bounding boxes as `[x_min, y_min, x_max, y_max]`
|
|
40
|
+
with normalized coordinates (values between 0 and 1) relative to the image size.
|
|
41
|
+
|
|
42
|
+
Args:
|
|
43
|
+
coords (Sequence[float]): The bounding box coordinates in
|
|
44
|
+
Albumentations format.
|
|
45
|
+
img_size (Sequence[int]): The reference image size as `[width, height]`.
|
|
46
|
+
title (str, optional): The title or label of the bounding box.
|
|
47
|
+
Defaults to an empty string.
|
|
48
|
+
|
|
49
|
+
Returns:
|
|
50
|
+
BBox: The bounding box data model.
|
|
51
|
+
"""
|
|
52
|
+
validate_bbox(coords, float)
|
|
53
|
+
bbox_coords = convert_bbox(coords, img_size, "albumentations", "voc")
|
|
54
|
+
return BBox(title=title, coords=list(map(round, bbox_coords)))
|
|
55
|
+
|
|
56
|
+
def to_albumentations(self, img_size: Sequence[int]) -> list[float]:
|
|
57
|
+
"""
|
|
58
|
+
Convert the bounding box coordinates to Albumentations format.
|
|
59
|
+
|
|
60
|
+
Albumentations represents bounding boxes as `[x_min, y_min, x_max, y_max]`
|
|
61
|
+
with normalized coordinates (values between 0 and 1) relative to the image size.
|
|
62
|
+
|
|
63
|
+
Args:
|
|
64
|
+
img_size (Sequence[int]): The reference image size as `[width, height]`.
|
|
65
|
+
|
|
66
|
+
Returns:
|
|
67
|
+
list[float]: The bounding box coordinates in Albumentations format.
|
|
68
|
+
"""
|
|
69
|
+
return convert_bbox(self.coords, img_size, "voc", "albumentations")
|
|
70
|
+
|
|
71
|
+
@staticmethod
|
|
72
|
+
def from_coco(
|
|
73
|
+
coords: Sequence[float],
|
|
74
|
+
title: str = "",
|
|
75
|
+
) -> "BBox":
|
|
76
|
+
"""
|
|
77
|
+
Create a bounding box from COCO format.
|
|
78
|
+
|
|
79
|
+
COCO format represents bounding boxes as [x_min, y_min, width, height], where:
|
|
80
|
+
- (x_min, y_min) are the pixel coordinates of the top-left corner.
|
|
81
|
+
- width and height define the size of the bounding box in pixels.
|
|
82
|
+
|
|
83
|
+
Args:
|
|
84
|
+
coords (Sequence[float]): The bounding box coordinates in COCO format.
|
|
85
|
+
title (str): The title of the bounding box.
|
|
86
|
+
|
|
87
|
+
Returns:
|
|
88
|
+
BBox: The bounding box data model.
|
|
89
|
+
"""
|
|
90
|
+
validate_bbox(coords, float, int)
|
|
91
|
+
bbox_coords = convert_bbox(coords, [], "coco", "voc")
|
|
92
|
+
return BBox(title=title, coords=list(map(round, bbox_coords)))
|
|
93
|
+
|
|
94
|
+
def to_coco(self) -> list[int]:
|
|
95
|
+
"""
|
|
96
|
+
Return the bounding box coordinates in COCO format.
|
|
97
|
+
|
|
98
|
+
COCO format represents bounding boxes as [x_min, y_min, width, height], where:
|
|
99
|
+
- (x_min, y_min) are the pixel coordinates of the top-left corner.
|
|
100
|
+
- width and height define the size of the bounding box in pixels.
|
|
101
|
+
|
|
102
|
+
Returns:
|
|
103
|
+
list[int]: The bounding box coordinates in COCO format.
|
|
104
|
+
"""
|
|
105
|
+
res = convert_bbox(self.coords, [], "voc", "coco")
|
|
106
|
+
return list(map(round, res))
|
|
107
|
+
|
|
108
|
+
@staticmethod
|
|
109
|
+
def from_voc(
|
|
110
|
+
coords: Sequence[float],
|
|
111
|
+
title: str = "",
|
|
112
|
+
) -> "BBox":
|
|
113
|
+
"""
|
|
114
|
+
Create a bounding box from PASCAL VOC format.
|
|
115
|
+
|
|
116
|
+
PASCAL VOC format represents bounding boxes as [x_min, y_min, x_max, y_max],
|
|
117
|
+
where:
|
|
118
|
+
- (x_min, y_min) are the pixel coordinates of the top-left corner.
|
|
119
|
+
- (x_max, y_max) are the pixel coordinates of the bottom-right corner.
|
|
120
|
+
|
|
121
|
+
Args:
|
|
122
|
+
coords (Sequence[float]): The bounding box coordinates in VOC format.
|
|
123
|
+
title (str): The title of the bounding box.
|
|
124
|
+
|
|
125
|
+
Returns:
|
|
126
|
+
BBox: The bounding box data model.
|
|
127
|
+
"""
|
|
128
|
+
validate_bbox(coords, float, int)
|
|
129
|
+
return BBox(title=title, coords=list(map(round, coords)))
|
|
130
|
+
|
|
131
|
+
def to_voc(self) -> list[int]:
|
|
132
|
+
"""
|
|
133
|
+
Return the bounding box coordinates in PASCAL VOC format.
|
|
134
|
+
|
|
135
|
+
PASCAL VOC format represents bounding boxes as [x_min, y_min, x_max, y_max],
|
|
136
|
+
where:
|
|
137
|
+
- (x_min, y_min) are the pixel coordinates of the top-left corner.
|
|
138
|
+
- (x_max, y_max) are the pixel coordinates of the bottom-right corner.
|
|
139
|
+
|
|
140
|
+
Returns:
|
|
141
|
+
list[int]: The bounding box coordinates in VOC format.
|
|
142
|
+
"""
|
|
143
|
+
return self.coords
|
|
144
|
+
|
|
145
|
+
@staticmethod
|
|
146
|
+
def from_yolo(
|
|
147
|
+
coords: Sequence[float],
|
|
148
|
+
img_size: Sequence[int],
|
|
149
|
+
title: str = "",
|
|
150
|
+
) -> "BBox":
|
|
151
|
+
"""
|
|
152
|
+
Create a bounding box from YOLO format.
|
|
153
|
+
|
|
154
|
+
YOLO format represents bounding boxes as [x_center, y_center, width, height],
|
|
155
|
+
where:
|
|
156
|
+
- (x_center, y_center) are the normalized coordinates of the box center.
|
|
157
|
+
- width and height normalized values define the size of the bounding box.
|
|
158
|
+
|
|
159
|
+
Args:
|
|
160
|
+
coords (Sequence[float]): The bounding box coordinates in YOLO format.
|
|
161
|
+
img_size (Sequence[int]): The reference image size as `[width, height]`.
|
|
162
|
+
title (str): The title of the bounding box.
|
|
163
|
+
|
|
164
|
+
Returns:
|
|
165
|
+
BBox: The bounding box data model.
|
|
166
|
+
"""
|
|
167
|
+
validate_bbox(coords, float)
|
|
168
|
+
bbox_coords = convert_bbox(coords, img_size, "yolo", "voc")
|
|
169
|
+
return BBox(title=title, coords=list(map(round, bbox_coords)))
|
|
170
|
+
|
|
171
|
+
def to_yolo(self, img_size: Sequence[int]) -> list[float]:
|
|
172
|
+
"""
|
|
173
|
+
Return the bounding box coordinates in YOLO format.
|
|
174
|
+
|
|
175
|
+
YOLO format represents bounding boxes as [x_center, y_center, width, height],
|
|
176
|
+
where:
|
|
177
|
+
- (x_center, y_center) are the normalized coordinates of the box center.
|
|
178
|
+
- width and height normalized values define the size of the bounding box.
|
|
179
|
+
|
|
180
|
+
Args:
|
|
181
|
+
img_size (Sequence[int]): The reference image size as `[width, height]`.
|
|
182
|
+
|
|
183
|
+
Returns:
|
|
184
|
+
list[float]: The bounding box coordinates in YOLO format.
|
|
185
|
+
"""
|
|
186
|
+
return convert_bbox(self.coords, img_size, "voc", "yolo")
|
|
187
|
+
|
|
188
|
+
def point_inside(self, x: int, y: int) -> bool:
|
|
189
|
+
"""
|
|
190
|
+
Return True if the point is inside the bounding box.
|
|
191
|
+
|
|
192
|
+
Assumes that if the point is on the edge of the bounding box,
|
|
193
|
+
it is considered inside.
|
|
194
|
+
"""
|
|
195
|
+
x1, y1, x2, y2 = self.coords
|
|
196
|
+
return x1 <= x <= x2 and y1 <= y <= y2
|
|
197
|
+
|
|
198
|
+
def pose_inside(self, pose: Union["Pose", "Pose3D"]) -> bool:
|
|
199
|
+
"""Return True if the pose is inside the bounding box."""
|
|
200
|
+
return all(
|
|
201
|
+
self.point_inside(x, y) for x, y in zip(pose.x, pose.y) if x > 0 or y > 0
|
|
31
202
|
)
|
|
32
203
|
|
|
204
|
+
@staticmethod
|
|
205
|
+
def from_list(coords: Sequence[float], title: str = "") -> "BBox":
|
|
206
|
+
return BBox.from_voc(coords, title=title)
|
|
207
|
+
|
|
33
208
|
@staticmethod
|
|
34
209
|
def from_dict(coords: dict[str, float], title: str = "") -> "BBox":
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
"
|
|
38
|
-
|
|
39
|
-
"y2",
|
|
40
|
-
}, "Bounding box must be a dictionary with keys 'x1', 'y1', 'x2' and 'y2'."
|
|
41
|
-
return BBox.from_list(
|
|
42
|
-
[coords["x1"], coords["y1"], coords["x2"], coords["y2"]],
|
|
43
|
-
title=title,
|
|
44
|
-
)
|
|
210
|
+
keys = ("x1", "y1", "x2", "y2")
|
|
211
|
+
if not isinstance(coords, dict) or set(coords) != set(keys):
|
|
212
|
+
raise ValueError("Bounding box must be a dictionary with coordinates.")
|
|
213
|
+
return BBox.from_voc([coords[k] for k in keys], title=title)
|
|
45
214
|
|
|
46
215
|
|
|
47
216
|
class OBBox(DataModel):
|
|
@@ -63,40 +232,22 @@ class OBBox(DataModel):
|
|
|
63
232
|
coords: list[int] = Field(default=[])
|
|
64
233
|
|
|
65
234
|
@staticmethod
|
|
66
|
-
def from_list(coords:
|
|
67
|
-
|
|
68
|
-
"Oriented bounding box must be a list of
|
|
69
|
-
)
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
)
|
|
235
|
+
def from_list(coords: Sequence[float], title: str = "") -> "OBBox":
|
|
236
|
+
if not isinstance(coords, (list, tuple)):
|
|
237
|
+
raise TypeError("Oriented bounding box must be a list of coordinates.")
|
|
238
|
+
if len(coords) != 8:
|
|
239
|
+
raise ValueError("Oriented bounding box must have 8 coordinates.")
|
|
240
|
+
if not all(isinstance(value, (int, float)) for value in coords):
|
|
241
|
+
raise ValueError(
|
|
242
|
+
"Oriented bounding box coordinates must be floats or integers."
|
|
243
|
+
)
|
|
244
|
+
return OBBox(title=title, coords=list(map(round, coords)))
|
|
77
245
|
|
|
78
246
|
@staticmethod
|
|
79
247
|
def from_dict(coords: dict[str, float], title: str = "") -> "OBBox":
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
"y3",
|
|
87
|
-
"x4",
|
|
88
|
-
"y4",
|
|
89
|
-
}, "Oriented bounding box must be a dictionary with coordinates."
|
|
90
|
-
return OBBox.from_list(
|
|
91
|
-
[
|
|
92
|
-
coords["x1"],
|
|
93
|
-
coords["y1"],
|
|
94
|
-
coords["x2"],
|
|
95
|
-
coords["y2"],
|
|
96
|
-
coords["x3"],
|
|
97
|
-
coords["y3"],
|
|
98
|
-
coords["x4"],
|
|
99
|
-
coords["y4"],
|
|
100
|
-
],
|
|
101
|
-
title=title,
|
|
102
|
-
)
|
|
248
|
+
keys = ("x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4")
|
|
249
|
+
if not isinstance(coords, dict) or set(coords) != set(keys):
|
|
250
|
+
raise ValueError(
|
|
251
|
+
"Oriented bounding box must be a dictionary with coordinates."
|
|
252
|
+
)
|
|
253
|
+
return OBBox.from_list([coords[k] for k in keys], title=title)
|
datachain/model/pose.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
1
|
+
from collections.abc import Sequence
|
|
2
|
+
|
|
1
3
|
from pydantic import Field
|
|
2
4
|
|
|
3
5
|
from datachain.lib.data_model import DataModel
|
|
@@ -19,27 +21,30 @@ class Pose(DataModel):
|
|
|
19
21
|
y: list[int] = Field(default=[])
|
|
20
22
|
|
|
21
23
|
@staticmethod
|
|
22
|
-
def from_list(points:
|
|
23
|
-
|
|
24
|
+
def from_list(points: Sequence[Sequence[float]]) -> "Pose":
|
|
25
|
+
if not isinstance(points, (list, tuple)):
|
|
26
|
+
raise TypeError("Pose must be a list of coordinates.")
|
|
27
|
+
if len(points) != 2:
|
|
28
|
+
raise ValueError("Pose must be a list of 2 lists: x and y coordinates.")
|
|
24
29
|
points_x, points_y = points
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
)
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
30
|
+
if not isinstance(points_x, (list, tuple)) or not isinstance(
|
|
31
|
+
points_y, (list, tuple)
|
|
32
|
+
):
|
|
33
|
+
raise TypeError("Pose x and y coordinates must be lists.")
|
|
34
|
+
if len(points_x) != len(points_y) != 17:
|
|
35
|
+
raise ValueError(
|
|
36
|
+
"Pose x and y coordinates must have the same length of 17."
|
|
37
|
+
)
|
|
38
|
+
if not all(isinstance(value, (int, float)) for value in [*points_x, *points_y]):
|
|
39
|
+
raise ValueError("Pose coordinates must be floats or integers.")
|
|
40
|
+
return Pose(x=list(map(round, points_x)), y=list(map(round, points_y)))
|
|
35
41
|
|
|
36
42
|
@staticmethod
|
|
37
|
-
def from_dict(points: dict[str,
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
"
|
|
41
|
-
|
|
42
|
-
return Pose.from_list([points["x"], points["y"]])
|
|
43
|
+
def from_dict(points: dict[str, Sequence[float]]) -> "Pose":
|
|
44
|
+
keys = ("x", "y")
|
|
45
|
+
if not isinstance(points, dict) or set(points) != set(keys):
|
|
46
|
+
raise ValueError("Pose must be a dictionary with coordinates.")
|
|
47
|
+
return Pose.from_list([points[k] for k in keys])
|
|
43
48
|
|
|
44
49
|
|
|
45
50
|
class Pose3D(DataModel):
|
|
@@ -60,29 +65,36 @@ class Pose3D(DataModel):
|
|
|
60
65
|
visible: list[float] = Field(default=[])
|
|
61
66
|
|
|
62
67
|
@staticmethod
|
|
63
|
-
def from_list(points:
|
|
64
|
-
|
|
65
|
-
"Pose3D must be a list of
|
|
66
|
-
)
|
|
68
|
+
def from_list(points: Sequence[Sequence[float]]) -> "Pose3D":
|
|
69
|
+
if not isinstance(points, (list, tuple)):
|
|
70
|
+
raise TypeError("Pose3D must be a list of coordinates.")
|
|
71
|
+
if len(points) != 3:
|
|
72
|
+
raise ValueError(
|
|
73
|
+
"Pose3D must be a list of 3 lists: x, y coordinates and visible."
|
|
74
|
+
)
|
|
67
75
|
points_x, points_y, points_v = points
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
76
|
+
if (
|
|
77
|
+
not isinstance(points_x, (list, tuple))
|
|
78
|
+
or not isinstance(points_y, (list, tuple))
|
|
79
|
+
or not isinstance(points_v, (list, tuple))
|
|
80
|
+
):
|
|
81
|
+
raise TypeError("Pose3D x, y and visible must be lists.")
|
|
82
|
+
if len(points_x) != len(points_y) != len(points_v) != 17:
|
|
83
|
+
raise ValueError("Pose3D x, y and visible must have the same length of 17.")
|
|
84
|
+
if not all(
|
|
72
85
|
isinstance(value, (int, float))
|
|
73
86
|
for value in [*points_x, *points_y, *points_v]
|
|
74
|
-
)
|
|
87
|
+
):
|
|
88
|
+
raise ValueError("Pose3D coordinates must be floats or integers.")
|
|
75
89
|
return Pose3D(
|
|
76
|
-
x=
|
|
77
|
-
y=
|
|
78
|
-
visible=points_v,
|
|
90
|
+
x=list(map(round, points_x)),
|
|
91
|
+
y=list(map(round, points_y)),
|
|
92
|
+
visible=list(points_v),
|
|
79
93
|
)
|
|
80
94
|
|
|
81
95
|
@staticmethod
|
|
82
|
-
def from_dict(points: dict[str,
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
"
|
|
86
|
-
|
|
87
|
-
}, "Pose3D must be a dict with keys 'x', 'y' and 'visible'."
|
|
88
|
-
return Pose3D.from_list([points["x"], points["y"], points["visible"]])
|
|
96
|
+
def from_dict(points: dict[str, Sequence[float]]) -> "Pose3D":
|
|
97
|
+
keys = ("x", "y", "visible")
|
|
98
|
+
if not isinstance(points, dict) or set(points) != set(keys):
|
|
99
|
+
raise ValueError("Pose3D must be a dictionary with coordinates.")
|
|
100
|
+
return Pose3D.from_list([points[k] for k in keys])
|
datachain/model/segment.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
1
|
+
from collections.abc import Sequence
|
|
2
|
+
|
|
1
3
|
from pydantic import Field
|
|
2
4
|
|
|
3
5
|
from datachain.lib.data_model import DataModel
|
|
@@ -21,27 +23,29 @@ class Segment(DataModel):
|
|
|
21
23
|
y: list[int] = Field(default=[])
|
|
22
24
|
|
|
23
25
|
@staticmethod
|
|
24
|
-
def from_list(points:
|
|
25
|
-
|
|
26
|
-
"Segment must be a list of
|
|
27
|
-
)
|
|
26
|
+
def from_list(points: Sequence[Sequence[float]], title: str = "") -> "Segment":
|
|
27
|
+
if not isinstance(points, (list, tuple)):
|
|
28
|
+
raise TypeError("Segment must be a list of coordinates.")
|
|
29
|
+
if len(points) != 2:
|
|
30
|
+
raise ValueError("Segment must be a list of 2 lists: x and y coordinates.")
|
|
28
31
|
points_x, points_y = points
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
)
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
32
|
+
if not isinstance(points_x, (list, tuple)) or not isinstance(
|
|
33
|
+
points_y, (list, tuple)
|
|
34
|
+
):
|
|
35
|
+
raise TypeError("Segment x and y coordinates must be lists.")
|
|
36
|
+
if len(points_x) != len(points_y):
|
|
37
|
+
raise ValueError("Segment x and y coordinates must have the same length.")
|
|
38
|
+
if not all(isinstance(value, (int, float)) for value in [*points_x, *points_y]):
|
|
39
|
+
raise ValueError("Segment coordinates must be floats or integers.")
|
|
35
40
|
return Segment(
|
|
36
41
|
title=title,
|
|
37
|
-
x=
|
|
38
|
-
y=
|
|
42
|
+
x=list(map(round, points_x)),
|
|
43
|
+
y=list(map(round, points_y)),
|
|
39
44
|
)
|
|
40
45
|
|
|
41
46
|
@staticmethod
|
|
42
|
-
def from_dict(points: dict[str,
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
"
|
|
46
|
-
|
|
47
|
-
return Segment.from_list([points["x"], points["y"]], title=title)
|
|
47
|
+
def from_dict(points: dict[str, Sequence[float]], title: str = "") -> "Segment":
|
|
48
|
+
keys = ("x", "y")
|
|
49
|
+
if not isinstance(points, dict) or set(points) != set(keys):
|
|
50
|
+
raise ValueError("Segment must be a dictionary with coordinates.")
|
|
51
|
+
return Segment.from_list([points[k] for k in keys], title=title)
|
|
@@ -23,7 +23,7 @@ class YoloBBox(DataModel):
|
|
|
23
23
|
cls: int = Field(default=-1)
|
|
24
24
|
name: str = Field(default="")
|
|
25
25
|
confidence: float = Field(default=0)
|
|
26
|
-
box: BBox
|
|
26
|
+
box: BBox = Field(default=BBox())
|
|
27
27
|
|
|
28
28
|
@staticmethod
|
|
29
29
|
def from_result(result: "Results") -> "YoloBBox":
|
|
@@ -55,10 +55,10 @@ class YoloBBoxes(DataModel):
|
|
|
55
55
|
box: A list of bounding boxes of the detected objects
|
|
56
56
|
"""
|
|
57
57
|
|
|
58
|
-
cls: list[int]
|
|
59
|
-
name: list[str]
|
|
60
|
-
confidence: list[float]
|
|
61
|
-
box: list[BBox]
|
|
58
|
+
cls: list[int] = Field(default=[])
|
|
59
|
+
name: list[str] = Field(default=[])
|
|
60
|
+
confidence: list[float] = Field(default=[])
|
|
61
|
+
box: list[BBox] = Field(default=[])
|
|
62
62
|
|
|
63
63
|
@staticmethod
|
|
64
64
|
def from_results(results: list["Results"]) -> "YoloBBoxes":
|
|
@@ -124,10 +124,10 @@ class YoloOBBoxes(DataModel):
|
|
|
124
124
|
box: A list of oriented bounding boxes of the detected objects.
|
|
125
125
|
"""
|
|
126
126
|
|
|
127
|
-
cls: list[int]
|
|
128
|
-
name: list[str]
|
|
129
|
-
confidence: list[float]
|
|
130
|
-
box: list[OBBox]
|
|
127
|
+
cls: list[int] = Field(default=[])
|
|
128
|
+
name: list[str] = Field(default=[])
|
|
129
|
+
confidence: list[float] = Field(default=[])
|
|
130
|
+
box: list[OBBox] = Field(default=[])
|
|
131
131
|
|
|
132
132
|
@staticmethod
|
|
133
133
|
def from_results(results: list["Results"]) -> "YoloOBBoxes":
|
|
@@ -47,8 +47,8 @@ class YoloPose(DataModel):
|
|
|
47
47
|
cls: int = Field(default=-1)
|
|
48
48
|
name: str = Field(default="")
|
|
49
49
|
confidence: float = Field(default=0)
|
|
50
|
-
box: BBox
|
|
51
|
-
pose: Pose3D
|
|
50
|
+
box: BBox = Field(default=BBox())
|
|
51
|
+
pose: Pose3D = Field(default=Pose3D())
|
|
52
52
|
|
|
53
53
|
@staticmethod
|
|
54
54
|
def from_result(result: "Results") -> "YoloPose":
|
|
@@ -87,11 +87,11 @@ class YoloPoses(DataModel):
|
|
|
87
87
|
pose: The 3D pose keypoints of the poses.
|
|
88
88
|
"""
|
|
89
89
|
|
|
90
|
-
cls: list[int]
|
|
91
|
-
name: list[str]
|
|
92
|
-
confidence: list[float]
|
|
93
|
-
box: list[BBox]
|
|
94
|
-
pose: list[Pose3D]
|
|
90
|
+
cls: list[int] = Field(default=[])
|
|
91
|
+
name: list[str] = Field(default=[])
|
|
92
|
+
confidence: list[float] = Field(default=[])
|
|
93
|
+
box: list[BBox] = Field(default=[])
|
|
94
|
+
pose: list[Pose3D] = Field(default=[])
|
|
95
95
|
|
|
96
96
|
@staticmethod
|
|
97
97
|
def from_results(results: list["Results"]) -> "YoloPoses":
|
|
@@ -25,8 +25,8 @@ class YoloSegment(DataModel):
|
|
|
25
25
|
cls: int = Field(default=-1)
|
|
26
26
|
name: str = Field(default="")
|
|
27
27
|
confidence: float = Field(default=0)
|
|
28
|
-
box: BBox
|
|
29
|
-
segment: Segment
|
|
28
|
+
box: BBox = Field(default=BBox())
|
|
29
|
+
segment: Segment = Field(default=Segment())
|
|
30
30
|
|
|
31
31
|
@staticmethod
|
|
32
32
|
def from_result(result: "Results") -> "YoloSegment":
|
|
@@ -65,11 +65,11 @@ class YoloSegments(DataModel):
|
|
|
65
65
|
segment (list[Segments]): The segments of the segments.
|
|
66
66
|
"""
|
|
67
67
|
|
|
68
|
-
cls: list[int]
|
|
69
|
-
name: list[str]
|
|
70
|
-
confidence: list[float]
|
|
71
|
-
box: list[BBox]
|
|
72
|
-
segment: list[Segment]
|
|
68
|
+
cls: list[int] = Field(default=[])
|
|
69
|
+
name: list[str] = Field(default=[])
|
|
70
|
+
confidence: list[float] = Field(default=[])
|
|
71
|
+
box: list[BBox] = Field(default=[])
|
|
72
|
+
segment: list[Segment] = Field(default=[])
|
|
73
73
|
|
|
74
74
|
@staticmethod
|
|
75
75
|
def from_results(results: list["Results"]) -> "YoloSegments":
|