databricks-sdk 0.39.0__py3-none-any.whl → 0.40.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of databricks-sdk might be problematic. Click here for more details.
- databricks/sdk/__init__.py +15 -1
- databricks/sdk/service/catalog.py +2 -2
- databricks/sdk/service/compute.py +361 -63
- databricks/sdk/service/dashboards.py +16 -2
- databricks/sdk/service/jobs.py +89 -14
- databricks/sdk/service/oauth2.py +461 -0
- databricks/sdk/service/pipelines.py +5 -5
- databricks/sdk/version.py +1 -1
- {databricks_sdk-0.39.0.dist-info → databricks_sdk-0.40.0.dist-info}/METADATA +1 -1
- {databricks_sdk-0.39.0.dist-info → databricks_sdk-0.40.0.dist-info}/RECORD +14 -14
- {databricks_sdk-0.39.0.dist-info → databricks_sdk-0.40.0.dist-info}/LICENSE +0 -0
- {databricks_sdk-0.39.0.dist-info → databricks_sdk-0.40.0.dist-info}/NOTICE +0 -0
- {databricks_sdk-0.39.0.dist-info → databricks_sdk-0.40.0.dist-info}/WHEEL +0 -0
- {databricks_sdk-0.39.0.dist-info → databricks_sdk-0.40.0.dist-info}/top_level.txt +0 -0
|
@@ -659,13 +659,19 @@ class ClusterAttributes:
|
|
|
659
659
|
data_security_mode: Optional[DataSecurityMode] = None
|
|
660
660
|
"""Data security mode decides what data governance model to use when accessing data from a cluster.
|
|
661
661
|
|
|
662
|
-
|
|
663
|
-
|
|
664
|
-
|
|
665
|
-
|
|
666
|
-
|
|
667
|
-
|
|
668
|
-
|
|
662
|
+
The following modes can only be used with `kind`. * `DATA_SECURITY_MODE_AUTO`: Databricks will
|
|
663
|
+
choose the most appropriate access mode depending on your compute configuration. *
|
|
664
|
+
`DATA_SECURITY_MODE_STANDARD`: Alias for `USER_ISOLATION`. * `DATA_SECURITY_MODE_DEDICATED`:
|
|
665
|
+
Alias for `SINGLE_USER`.
|
|
666
|
+
|
|
667
|
+
The following modes can be used regardless of `kind`. * `NONE`: No security isolation for
|
|
668
|
+
multiple users sharing the cluster. Data governance features are not available in this mode. *
|
|
669
|
+
`SINGLE_USER`: A secure cluster that can only be exclusively used by a single user specified in
|
|
670
|
+
`single_user_name`. Most programming languages, cluster features and data governance features
|
|
671
|
+
are available in this mode. * `USER_ISOLATION`: A secure cluster that can be shared by multiple
|
|
672
|
+
users. Cluster users are fully isolated so that they cannot see each other's data and
|
|
673
|
+
credentials. Most data governance features are supported in this mode. But programming languages
|
|
674
|
+
and cluster features might be limited.
|
|
669
675
|
|
|
670
676
|
The following modes are deprecated starting with Databricks Runtime 15.0 and will be removed for
|
|
671
677
|
future Databricks Runtime versions:
|
|
@@ -706,6 +712,20 @@ class ClusterAttributes:
|
|
|
706
712
|
instance_pool_id: Optional[str] = None
|
|
707
713
|
"""The optional ID of the instance pool to which the cluster belongs."""
|
|
708
714
|
|
|
715
|
+
is_single_node: Optional[bool] = None
|
|
716
|
+
"""This field can only be used with `kind`.
|
|
717
|
+
|
|
718
|
+
When set to true, Databricks will automatically set single node related `custom_tags`,
|
|
719
|
+
`spark_conf`, and `num_workers`"""
|
|
720
|
+
|
|
721
|
+
kind: Optional[Kind] = None
|
|
722
|
+
"""The kind of compute described by this compute specification.
|
|
723
|
+
|
|
724
|
+
Depending on `kind`, different validations and default values will be applied.
|
|
725
|
+
|
|
726
|
+
The first usage of this value is for the simple cluster form where it sets `kind =
|
|
727
|
+
CLASSIC_PREVIEW`."""
|
|
728
|
+
|
|
709
729
|
node_type_id: Optional[str] = None
|
|
710
730
|
"""This field encodes, through a single value, the resources available to each of the Spark nodes
|
|
711
731
|
in this cluster. For example, the Spark nodes can be provisioned and optimized for memory or
|
|
@@ -750,6 +770,12 @@ class ClusterAttributes:
|
|
|
750
770
|
private keys can be used to login with the user name `ubuntu` on port `2200`. Up to 10 keys can
|
|
751
771
|
be specified."""
|
|
752
772
|
|
|
773
|
+
use_ml_runtime: Optional[bool] = None
|
|
774
|
+
"""This field can only be used with `kind`.
|
|
775
|
+
|
|
776
|
+
`effective_spark_version` is determined by `spark_version` (DBR release), this field
|
|
777
|
+
`use_ml_runtime`, and whether `node_type_id` is gpu node or not."""
|
|
778
|
+
|
|
753
779
|
workload_type: Optional[WorkloadType] = None
|
|
754
780
|
|
|
755
781
|
def as_dict(self) -> dict:
|
|
@@ -773,6 +799,8 @@ class ClusterAttributes:
|
|
|
773
799
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes.as_dict()
|
|
774
800
|
if self.init_scripts: body['init_scripts'] = [v.as_dict() for v in self.init_scripts]
|
|
775
801
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
802
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
803
|
+
if self.kind is not None: body['kind'] = self.kind.value
|
|
776
804
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
777
805
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
778
806
|
if self.runtime_engine is not None: body['runtime_engine'] = self.runtime_engine.value
|
|
@@ -781,6 +809,7 @@ class ClusterAttributes:
|
|
|
781
809
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
782
810
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
783
811
|
if self.ssh_public_keys: body['ssh_public_keys'] = [v for v in self.ssh_public_keys]
|
|
812
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
784
813
|
if self.workload_type: body['workload_type'] = self.workload_type.as_dict()
|
|
785
814
|
return body
|
|
786
815
|
|
|
@@ -805,6 +834,8 @@ class ClusterAttributes:
|
|
|
805
834
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes
|
|
806
835
|
if self.init_scripts: body['init_scripts'] = self.init_scripts
|
|
807
836
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
837
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
838
|
+
if self.kind is not None: body['kind'] = self.kind
|
|
808
839
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
809
840
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
810
841
|
if self.runtime_engine is not None: body['runtime_engine'] = self.runtime_engine
|
|
@@ -813,6 +844,7 @@ class ClusterAttributes:
|
|
|
813
844
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
814
845
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
815
846
|
if self.ssh_public_keys: body['ssh_public_keys'] = self.ssh_public_keys
|
|
847
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
816
848
|
if self.workload_type: body['workload_type'] = self.workload_type
|
|
817
849
|
return body
|
|
818
850
|
|
|
@@ -834,6 +866,8 @@ class ClusterAttributes:
|
|
|
834
866
|
gcp_attributes=_from_dict(d, 'gcp_attributes', GcpAttributes),
|
|
835
867
|
init_scripts=_repeated_dict(d, 'init_scripts', InitScriptInfo),
|
|
836
868
|
instance_pool_id=d.get('instance_pool_id', None),
|
|
869
|
+
is_single_node=d.get('is_single_node', None),
|
|
870
|
+
kind=_enum(d, 'kind', Kind),
|
|
837
871
|
node_type_id=d.get('node_type_id', None),
|
|
838
872
|
policy_id=d.get('policy_id', None),
|
|
839
873
|
runtime_engine=_enum(d, 'runtime_engine', RuntimeEngine),
|
|
@@ -842,6 +876,7 @@ class ClusterAttributes:
|
|
|
842
876
|
spark_env_vars=d.get('spark_env_vars', None),
|
|
843
877
|
spark_version=d.get('spark_version', None),
|
|
844
878
|
ssh_public_keys=d.get('ssh_public_keys', None),
|
|
879
|
+
use_ml_runtime=d.get('use_ml_runtime', None),
|
|
845
880
|
workload_type=_from_dict(d, 'workload_type', WorkloadType))
|
|
846
881
|
|
|
847
882
|
|
|
@@ -948,13 +983,19 @@ class ClusterDetails:
|
|
|
948
983
|
data_security_mode: Optional[DataSecurityMode] = None
|
|
949
984
|
"""Data security mode decides what data governance model to use when accessing data from a cluster.
|
|
950
985
|
|
|
951
|
-
|
|
952
|
-
|
|
953
|
-
|
|
954
|
-
|
|
955
|
-
|
|
956
|
-
|
|
957
|
-
|
|
986
|
+
The following modes can only be used with `kind`. * `DATA_SECURITY_MODE_AUTO`: Databricks will
|
|
987
|
+
choose the most appropriate access mode depending on your compute configuration. *
|
|
988
|
+
`DATA_SECURITY_MODE_STANDARD`: Alias for `USER_ISOLATION`. * `DATA_SECURITY_MODE_DEDICATED`:
|
|
989
|
+
Alias for `SINGLE_USER`.
|
|
990
|
+
|
|
991
|
+
The following modes can be used regardless of `kind`. * `NONE`: No security isolation for
|
|
992
|
+
multiple users sharing the cluster. Data governance features are not available in this mode. *
|
|
993
|
+
`SINGLE_USER`: A secure cluster that can only be exclusively used by a single user specified in
|
|
994
|
+
`single_user_name`. Most programming languages, cluster features and data governance features
|
|
995
|
+
are available in this mode. * `USER_ISOLATION`: A secure cluster that can be shared by multiple
|
|
996
|
+
users. Cluster users are fully isolated so that they cannot see each other's data and
|
|
997
|
+
credentials. Most data governance features are supported in this mode. But programming languages
|
|
998
|
+
and cluster features might be limited.
|
|
958
999
|
|
|
959
1000
|
The following modes are deprecated starting with Databricks Runtime 15.0 and will be removed for
|
|
960
1001
|
future Databricks Runtime versions:
|
|
@@ -1015,10 +1056,24 @@ class ClusterDetails:
|
|
|
1015
1056
|
instance_pool_id: Optional[str] = None
|
|
1016
1057
|
"""The optional ID of the instance pool to which the cluster belongs."""
|
|
1017
1058
|
|
|
1059
|
+
is_single_node: Optional[bool] = None
|
|
1060
|
+
"""This field can only be used with `kind`.
|
|
1061
|
+
|
|
1062
|
+
When set to true, Databricks will automatically set single node related `custom_tags`,
|
|
1063
|
+
`spark_conf`, and `num_workers`"""
|
|
1064
|
+
|
|
1018
1065
|
jdbc_port: Optional[int] = None
|
|
1019
1066
|
"""Port on which Spark JDBC server is listening, in the driver nod. No service will be listeningon
|
|
1020
1067
|
on this port in executor nodes."""
|
|
1021
1068
|
|
|
1069
|
+
kind: Optional[Kind] = None
|
|
1070
|
+
"""The kind of compute described by this compute specification.
|
|
1071
|
+
|
|
1072
|
+
Depending on `kind`, different validations and default values will be applied.
|
|
1073
|
+
|
|
1074
|
+
The first usage of this value is for the simple cluster form where it sets `kind =
|
|
1075
|
+
CLASSIC_PREVIEW`."""
|
|
1076
|
+
|
|
1022
1077
|
last_restarted_time: Optional[int] = None
|
|
1023
1078
|
"""the timestamp that the cluster was started/restarted"""
|
|
1024
1079
|
|
|
@@ -1111,6 +1166,12 @@ class ClusterDetails:
|
|
|
1111
1166
|
"""Information about why the cluster was terminated. This field only appears when the cluster is in
|
|
1112
1167
|
a `TERMINATING` or `TERMINATED` state."""
|
|
1113
1168
|
|
|
1169
|
+
use_ml_runtime: Optional[bool] = None
|
|
1170
|
+
"""This field can only be used with `kind`.
|
|
1171
|
+
|
|
1172
|
+
`effective_spark_version` is determined by `spark_version` (DBR release), this field
|
|
1173
|
+
`use_ml_runtime`, and whether `node_type_id` is gpu node or not."""
|
|
1174
|
+
|
|
1114
1175
|
workload_type: Optional[WorkloadType] = None
|
|
1115
1176
|
|
|
1116
1177
|
def as_dict(self) -> dict:
|
|
@@ -1144,7 +1205,9 @@ class ClusterDetails:
|
|
|
1144
1205
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes.as_dict()
|
|
1145
1206
|
if self.init_scripts: body['init_scripts'] = [v.as_dict() for v in self.init_scripts]
|
|
1146
1207
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
1208
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
1147
1209
|
if self.jdbc_port is not None: body['jdbc_port'] = self.jdbc_port
|
|
1210
|
+
if self.kind is not None: body['kind'] = self.kind.value
|
|
1148
1211
|
if self.last_restarted_time is not None: body['last_restarted_time'] = self.last_restarted_time
|
|
1149
1212
|
if self.last_state_loss_time is not None: body['last_state_loss_time'] = self.last_state_loss_time
|
|
1150
1213
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
@@ -1163,6 +1226,7 @@ class ClusterDetails:
|
|
|
1163
1226
|
if self.state_message is not None: body['state_message'] = self.state_message
|
|
1164
1227
|
if self.terminated_time is not None: body['terminated_time'] = self.terminated_time
|
|
1165
1228
|
if self.termination_reason: body['termination_reason'] = self.termination_reason.as_dict()
|
|
1229
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
1166
1230
|
if self.workload_type: body['workload_type'] = self.workload_type.as_dict()
|
|
1167
1231
|
return body
|
|
1168
1232
|
|
|
@@ -1197,7 +1261,9 @@ class ClusterDetails:
|
|
|
1197
1261
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes
|
|
1198
1262
|
if self.init_scripts: body['init_scripts'] = self.init_scripts
|
|
1199
1263
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
1264
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
1200
1265
|
if self.jdbc_port is not None: body['jdbc_port'] = self.jdbc_port
|
|
1266
|
+
if self.kind is not None: body['kind'] = self.kind
|
|
1201
1267
|
if self.last_restarted_time is not None: body['last_restarted_time'] = self.last_restarted_time
|
|
1202
1268
|
if self.last_state_loss_time is not None: body['last_state_loss_time'] = self.last_state_loss_time
|
|
1203
1269
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
@@ -1216,6 +1282,7 @@ class ClusterDetails:
|
|
|
1216
1282
|
if self.state_message is not None: body['state_message'] = self.state_message
|
|
1217
1283
|
if self.terminated_time is not None: body['terminated_time'] = self.terminated_time
|
|
1218
1284
|
if self.termination_reason: body['termination_reason'] = self.termination_reason
|
|
1285
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
1219
1286
|
if self.workload_type: body['workload_type'] = self.workload_type
|
|
1220
1287
|
return body
|
|
1221
1288
|
|
|
@@ -1247,7 +1314,9 @@ class ClusterDetails:
|
|
|
1247
1314
|
gcp_attributes=_from_dict(d, 'gcp_attributes', GcpAttributes),
|
|
1248
1315
|
init_scripts=_repeated_dict(d, 'init_scripts', InitScriptInfo),
|
|
1249
1316
|
instance_pool_id=d.get('instance_pool_id', None),
|
|
1317
|
+
is_single_node=d.get('is_single_node', None),
|
|
1250
1318
|
jdbc_port=d.get('jdbc_port', None),
|
|
1319
|
+
kind=_enum(d, 'kind', Kind),
|
|
1251
1320
|
last_restarted_time=d.get('last_restarted_time', None),
|
|
1252
1321
|
last_state_loss_time=d.get('last_state_loss_time', None),
|
|
1253
1322
|
node_type_id=d.get('node_type_id', None),
|
|
@@ -1266,6 +1335,7 @@ class ClusterDetails:
|
|
|
1266
1335
|
state_message=d.get('state_message', None),
|
|
1267
1336
|
terminated_time=d.get('terminated_time', None),
|
|
1268
1337
|
termination_reason=_from_dict(d, 'termination_reason', TerminationReason),
|
|
1338
|
+
use_ml_runtime=d.get('use_ml_runtime', None),
|
|
1269
1339
|
workload_type=_from_dict(d, 'workload_type', WorkloadType))
|
|
1270
1340
|
|
|
1271
1341
|
|
|
@@ -1870,13 +1940,19 @@ class ClusterSpec:
|
|
|
1870
1940
|
data_security_mode: Optional[DataSecurityMode] = None
|
|
1871
1941
|
"""Data security mode decides what data governance model to use when accessing data from a cluster.
|
|
1872
1942
|
|
|
1873
|
-
|
|
1874
|
-
|
|
1875
|
-
|
|
1876
|
-
|
|
1877
|
-
|
|
1878
|
-
|
|
1879
|
-
|
|
1943
|
+
The following modes can only be used with `kind`. * `DATA_SECURITY_MODE_AUTO`: Databricks will
|
|
1944
|
+
choose the most appropriate access mode depending on your compute configuration. *
|
|
1945
|
+
`DATA_SECURITY_MODE_STANDARD`: Alias for `USER_ISOLATION`. * `DATA_SECURITY_MODE_DEDICATED`:
|
|
1946
|
+
Alias for `SINGLE_USER`.
|
|
1947
|
+
|
|
1948
|
+
The following modes can be used regardless of `kind`. * `NONE`: No security isolation for
|
|
1949
|
+
multiple users sharing the cluster. Data governance features are not available in this mode. *
|
|
1950
|
+
`SINGLE_USER`: A secure cluster that can only be exclusively used by a single user specified in
|
|
1951
|
+
`single_user_name`. Most programming languages, cluster features and data governance features
|
|
1952
|
+
are available in this mode. * `USER_ISOLATION`: A secure cluster that can be shared by multiple
|
|
1953
|
+
users. Cluster users are fully isolated so that they cannot see each other's data and
|
|
1954
|
+
credentials. Most data governance features are supported in this mode. But programming languages
|
|
1955
|
+
and cluster features might be limited.
|
|
1880
1956
|
|
|
1881
1957
|
The following modes are deprecated starting with Databricks Runtime 15.0 and will be removed for
|
|
1882
1958
|
future Databricks Runtime versions:
|
|
@@ -1917,6 +1993,20 @@ class ClusterSpec:
|
|
|
1917
1993
|
instance_pool_id: Optional[str] = None
|
|
1918
1994
|
"""The optional ID of the instance pool to which the cluster belongs."""
|
|
1919
1995
|
|
|
1996
|
+
is_single_node: Optional[bool] = None
|
|
1997
|
+
"""This field can only be used with `kind`.
|
|
1998
|
+
|
|
1999
|
+
When set to true, Databricks will automatically set single node related `custom_tags`,
|
|
2000
|
+
`spark_conf`, and `num_workers`"""
|
|
2001
|
+
|
|
2002
|
+
kind: Optional[Kind] = None
|
|
2003
|
+
"""The kind of compute described by this compute specification.
|
|
2004
|
+
|
|
2005
|
+
Depending on `kind`, different validations and default values will be applied.
|
|
2006
|
+
|
|
2007
|
+
The first usage of this value is for the simple cluster form where it sets `kind =
|
|
2008
|
+
CLASSIC_PREVIEW`."""
|
|
2009
|
+
|
|
1920
2010
|
node_type_id: Optional[str] = None
|
|
1921
2011
|
"""This field encodes, through a single value, the resources available to each of the Spark nodes
|
|
1922
2012
|
in this cluster. For example, the Spark nodes can be provisioned and optimized for memory or
|
|
@@ -1975,6 +2065,12 @@ class ClusterSpec:
|
|
|
1975
2065
|
private keys can be used to login with the user name `ubuntu` on port `2200`. Up to 10 keys can
|
|
1976
2066
|
be specified."""
|
|
1977
2067
|
|
|
2068
|
+
use_ml_runtime: Optional[bool] = None
|
|
2069
|
+
"""This field can only be used with `kind`.
|
|
2070
|
+
|
|
2071
|
+
`effective_spark_version` is determined by `spark_version` (DBR release), this field
|
|
2072
|
+
`use_ml_runtime`, and whether `node_type_id` is gpu node or not."""
|
|
2073
|
+
|
|
1978
2074
|
workload_type: Optional[WorkloadType] = None
|
|
1979
2075
|
|
|
1980
2076
|
def as_dict(self) -> dict:
|
|
@@ -2001,6 +2097,8 @@ class ClusterSpec:
|
|
|
2001
2097
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes.as_dict()
|
|
2002
2098
|
if self.init_scripts: body['init_scripts'] = [v.as_dict() for v in self.init_scripts]
|
|
2003
2099
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
2100
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
2101
|
+
if self.kind is not None: body['kind'] = self.kind.value
|
|
2004
2102
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
2005
2103
|
if self.num_workers is not None: body['num_workers'] = self.num_workers
|
|
2006
2104
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
@@ -2010,6 +2108,7 @@ class ClusterSpec:
|
|
|
2010
2108
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
2011
2109
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
2012
2110
|
if self.ssh_public_keys: body['ssh_public_keys'] = [v for v in self.ssh_public_keys]
|
|
2111
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
2013
2112
|
if self.workload_type: body['workload_type'] = self.workload_type.as_dict()
|
|
2014
2113
|
return body
|
|
2015
2114
|
|
|
@@ -2037,6 +2136,8 @@ class ClusterSpec:
|
|
|
2037
2136
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes
|
|
2038
2137
|
if self.init_scripts: body['init_scripts'] = self.init_scripts
|
|
2039
2138
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
2139
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
2140
|
+
if self.kind is not None: body['kind'] = self.kind
|
|
2040
2141
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
2041
2142
|
if self.num_workers is not None: body['num_workers'] = self.num_workers
|
|
2042
2143
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
@@ -2046,6 +2147,7 @@ class ClusterSpec:
|
|
|
2046
2147
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
2047
2148
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
2048
2149
|
if self.ssh_public_keys: body['ssh_public_keys'] = self.ssh_public_keys
|
|
2150
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
2049
2151
|
if self.workload_type: body['workload_type'] = self.workload_type
|
|
2050
2152
|
return body
|
|
2051
2153
|
|
|
@@ -2069,6 +2171,8 @@ class ClusterSpec:
|
|
|
2069
2171
|
gcp_attributes=_from_dict(d, 'gcp_attributes', GcpAttributes),
|
|
2070
2172
|
init_scripts=_repeated_dict(d, 'init_scripts', InitScriptInfo),
|
|
2071
2173
|
instance_pool_id=d.get('instance_pool_id', None),
|
|
2174
|
+
is_single_node=d.get('is_single_node', None),
|
|
2175
|
+
kind=_enum(d, 'kind', Kind),
|
|
2072
2176
|
node_type_id=d.get('node_type_id', None),
|
|
2073
2177
|
num_workers=d.get('num_workers', None),
|
|
2074
2178
|
policy_id=d.get('policy_id', None),
|
|
@@ -2078,6 +2182,7 @@ class ClusterSpec:
|
|
|
2078
2182
|
spark_env_vars=d.get('spark_env_vars', None),
|
|
2079
2183
|
spark_version=d.get('spark_version', None),
|
|
2080
2184
|
ssh_public_keys=d.get('ssh_public_keys', None),
|
|
2185
|
+
use_ml_runtime=d.get('use_ml_runtime', None),
|
|
2081
2186
|
workload_type=_from_dict(d, 'workload_type', WorkloadType))
|
|
2082
2187
|
|
|
2083
2188
|
|
|
@@ -2251,13 +2356,19 @@ class CreateCluster:
|
|
|
2251
2356
|
data_security_mode: Optional[DataSecurityMode] = None
|
|
2252
2357
|
"""Data security mode decides what data governance model to use when accessing data from a cluster.
|
|
2253
2358
|
|
|
2254
|
-
|
|
2255
|
-
|
|
2256
|
-
|
|
2257
|
-
|
|
2258
|
-
|
|
2259
|
-
|
|
2260
|
-
|
|
2359
|
+
The following modes can only be used with `kind`. * `DATA_SECURITY_MODE_AUTO`: Databricks will
|
|
2360
|
+
choose the most appropriate access mode depending on your compute configuration. *
|
|
2361
|
+
`DATA_SECURITY_MODE_STANDARD`: Alias for `USER_ISOLATION`. * `DATA_SECURITY_MODE_DEDICATED`:
|
|
2362
|
+
Alias for `SINGLE_USER`.
|
|
2363
|
+
|
|
2364
|
+
The following modes can be used regardless of `kind`. * `NONE`: No security isolation for
|
|
2365
|
+
multiple users sharing the cluster. Data governance features are not available in this mode. *
|
|
2366
|
+
`SINGLE_USER`: A secure cluster that can only be exclusively used by a single user specified in
|
|
2367
|
+
`single_user_name`. Most programming languages, cluster features and data governance features
|
|
2368
|
+
are available in this mode. * `USER_ISOLATION`: A secure cluster that can be shared by multiple
|
|
2369
|
+
users. Cluster users are fully isolated so that they cannot see each other's data and
|
|
2370
|
+
credentials. Most data governance features are supported in this mode. But programming languages
|
|
2371
|
+
and cluster features might be limited.
|
|
2261
2372
|
|
|
2262
2373
|
The following modes are deprecated starting with Databricks Runtime 15.0 and will be removed for
|
|
2263
2374
|
future Databricks Runtime versions:
|
|
@@ -2298,6 +2409,20 @@ class CreateCluster:
|
|
|
2298
2409
|
instance_pool_id: Optional[str] = None
|
|
2299
2410
|
"""The optional ID of the instance pool to which the cluster belongs."""
|
|
2300
2411
|
|
|
2412
|
+
is_single_node: Optional[bool] = None
|
|
2413
|
+
"""This field can only be used with `kind`.
|
|
2414
|
+
|
|
2415
|
+
When set to true, Databricks will automatically set single node related `custom_tags`,
|
|
2416
|
+
`spark_conf`, and `num_workers`"""
|
|
2417
|
+
|
|
2418
|
+
kind: Optional[Kind] = None
|
|
2419
|
+
"""The kind of compute described by this compute specification.
|
|
2420
|
+
|
|
2421
|
+
Depending on `kind`, different validations and default values will be applied.
|
|
2422
|
+
|
|
2423
|
+
The first usage of this value is for the simple cluster form where it sets `kind =
|
|
2424
|
+
CLASSIC_PREVIEW`."""
|
|
2425
|
+
|
|
2301
2426
|
node_type_id: Optional[str] = None
|
|
2302
2427
|
"""This field encodes, through a single value, the resources available to each of the Spark nodes
|
|
2303
2428
|
in this cluster. For example, the Spark nodes can be provisioned and optimized for memory or
|
|
@@ -2352,6 +2477,12 @@ class CreateCluster:
|
|
|
2352
2477
|
private keys can be used to login with the user name `ubuntu` on port `2200`. Up to 10 keys can
|
|
2353
2478
|
be specified."""
|
|
2354
2479
|
|
|
2480
|
+
use_ml_runtime: Optional[bool] = None
|
|
2481
|
+
"""This field can only be used with `kind`.
|
|
2482
|
+
|
|
2483
|
+
`effective_spark_version` is determined by `spark_version` (DBR release), this field
|
|
2484
|
+
`use_ml_runtime`, and whether `node_type_id` is gpu node or not."""
|
|
2485
|
+
|
|
2355
2486
|
workload_type: Optional[WorkloadType] = None
|
|
2356
2487
|
|
|
2357
2488
|
def as_dict(self) -> dict:
|
|
@@ -2379,6 +2510,8 @@ class CreateCluster:
|
|
|
2379
2510
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes.as_dict()
|
|
2380
2511
|
if self.init_scripts: body['init_scripts'] = [v.as_dict() for v in self.init_scripts]
|
|
2381
2512
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
2513
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
2514
|
+
if self.kind is not None: body['kind'] = self.kind.value
|
|
2382
2515
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
2383
2516
|
if self.num_workers is not None: body['num_workers'] = self.num_workers
|
|
2384
2517
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
@@ -2388,6 +2521,7 @@ class CreateCluster:
|
|
|
2388
2521
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
2389
2522
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
2390
2523
|
if self.ssh_public_keys: body['ssh_public_keys'] = [v for v in self.ssh_public_keys]
|
|
2524
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
2391
2525
|
if self.workload_type: body['workload_type'] = self.workload_type.as_dict()
|
|
2392
2526
|
return body
|
|
2393
2527
|
|
|
@@ -2416,6 +2550,8 @@ class CreateCluster:
|
|
|
2416
2550
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes
|
|
2417
2551
|
if self.init_scripts: body['init_scripts'] = self.init_scripts
|
|
2418
2552
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
2553
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
2554
|
+
if self.kind is not None: body['kind'] = self.kind
|
|
2419
2555
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
2420
2556
|
if self.num_workers is not None: body['num_workers'] = self.num_workers
|
|
2421
2557
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
@@ -2425,6 +2561,7 @@ class CreateCluster:
|
|
|
2425
2561
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
2426
2562
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
2427
2563
|
if self.ssh_public_keys: body['ssh_public_keys'] = self.ssh_public_keys
|
|
2564
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
2428
2565
|
if self.workload_type: body['workload_type'] = self.workload_type
|
|
2429
2566
|
return body
|
|
2430
2567
|
|
|
@@ -2449,6 +2586,8 @@ class CreateCluster:
|
|
|
2449
2586
|
gcp_attributes=_from_dict(d, 'gcp_attributes', GcpAttributes),
|
|
2450
2587
|
init_scripts=_repeated_dict(d, 'init_scripts', InitScriptInfo),
|
|
2451
2588
|
instance_pool_id=d.get('instance_pool_id', None),
|
|
2589
|
+
is_single_node=d.get('is_single_node', None),
|
|
2590
|
+
kind=_enum(d, 'kind', Kind),
|
|
2452
2591
|
node_type_id=d.get('node_type_id', None),
|
|
2453
2592
|
num_workers=d.get('num_workers', None),
|
|
2454
2593
|
policy_id=d.get('policy_id', None),
|
|
@@ -2458,6 +2597,7 @@ class CreateCluster:
|
|
|
2458
2597
|
spark_env_vars=d.get('spark_env_vars', None),
|
|
2459
2598
|
spark_version=d.get('spark_version', None),
|
|
2460
2599
|
ssh_public_keys=d.get('ssh_public_keys', None),
|
|
2600
|
+
use_ml_runtime=d.get('use_ml_runtime', None),
|
|
2461
2601
|
workload_type=_from_dict(d, 'workload_type', WorkloadType))
|
|
2462
2602
|
|
|
2463
2603
|
|
|
@@ -2848,13 +2988,19 @@ class DataPlaneEventDetailsEventType(Enum):
|
|
|
2848
2988
|
class DataSecurityMode(Enum):
|
|
2849
2989
|
"""Data security mode decides what data governance model to use when accessing data from a cluster.
|
|
2850
2990
|
|
|
2851
|
-
|
|
2852
|
-
|
|
2853
|
-
|
|
2854
|
-
|
|
2855
|
-
|
|
2856
|
-
|
|
2857
|
-
|
|
2991
|
+
The following modes can only be used with `kind`. * `DATA_SECURITY_MODE_AUTO`: Databricks will
|
|
2992
|
+
choose the most appropriate access mode depending on your compute configuration. *
|
|
2993
|
+
`DATA_SECURITY_MODE_STANDARD`: Alias for `USER_ISOLATION`. * `DATA_SECURITY_MODE_DEDICATED`:
|
|
2994
|
+
Alias for `SINGLE_USER`.
|
|
2995
|
+
|
|
2996
|
+
The following modes can be used regardless of `kind`. * `NONE`: No security isolation for
|
|
2997
|
+
multiple users sharing the cluster. Data governance features are not available in this mode. *
|
|
2998
|
+
`SINGLE_USER`: A secure cluster that can only be exclusively used by a single user specified in
|
|
2999
|
+
`single_user_name`. Most programming languages, cluster features and data governance features
|
|
3000
|
+
are available in this mode. * `USER_ISOLATION`: A secure cluster that can be shared by multiple
|
|
3001
|
+
users. Cluster users are fully isolated so that they cannot see each other's data and
|
|
3002
|
+
credentials. Most data governance features are supported in this mode. But programming languages
|
|
3003
|
+
and cluster features might be limited.
|
|
2858
3004
|
|
|
2859
3005
|
The following modes are deprecated starting with Databricks Runtime 15.0 and will be removed for
|
|
2860
3006
|
future Databricks Runtime versions:
|
|
@@ -2865,6 +3011,9 @@ class DataSecurityMode(Enum):
|
|
|
2865
3011
|
Passthrough on standard clusters. * `LEGACY_SINGLE_USER_STANDARD`: This mode provides a way that
|
|
2866
3012
|
doesn’t have UC nor passthrough enabled."""
|
|
2867
3013
|
|
|
3014
|
+
DATA_SECURITY_MODE_AUTO = 'DATA_SECURITY_MODE_AUTO'
|
|
3015
|
+
DATA_SECURITY_MODE_DEDICATED = 'DATA_SECURITY_MODE_DEDICATED'
|
|
3016
|
+
DATA_SECURITY_MODE_STANDARD = 'DATA_SECURITY_MODE_STANDARD'
|
|
2868
3017
|
LEGACY_PASSTHROUGH = 'LEGACY_PASSTHROUGH'
|
|
2869
3018
|
LEGACY_SINGLE_USER = 'LEGACY_SINGLE_USER'
|
|
2870
3019
|
LEGACY_SINGLE_USER_STANDARD = 'LEGACY_SINGLE_USER_STANDARD'
|
|
@@ -3306,13 +3455,19 @@ class EditCluster:
|
|
|
3306
3455
|
data_security_mode: Optional[DataSecurityMode] = None
|
|
3307
3456
|
"""Data security mode decides what data governance model to use when accessing data from a cluster.
|
|
3308
3457
|
|
|
3309
|
-
|
|
3310
|
-
|
|
3311
|
-
|
|
3312
|
-
|
|
3313
|
-
|
|
3314
|
-
|
|
3315
|
-
|
|
3458
|
+
The following modes can only be used with `kind`. * `DATA_SECURITY_MODE_AUTO`: Databricks will
|
|
3459
|
+
choose the most appropriate access mode depending on your compute configuration. *
|
|
3460
|
+
`DATA_SECURITY_MODE_STANDARD`: Alias for `USER_ISOLATION`. * `DATA_SECURITY_MODE_DEDICATED`:
|
|
3461
|
+
Alias for `SINGLE_USER`.
|
|
3462
|
+
|
|
3463
|
+
The following modes can be used regardless of `kind`. * `NONE`: No security isolation for
|
|
3464
|
+
multiple users sharing the cluster. Data governance features are not available in this mode. *
|
|
3465
|
+
`SINGLE_USER`: A secure cluster that can only be exclusively used by a single user specified in
|
|
3466
|
+
`single_user_name`. Most programming languages, cluster features and data governance features
|
|
3467
|
+
are available in this mode. * `USER_ISOLATION`: A secure cluster that can be shared by multiple
|
|
3468
|
+
users. Cluster users are fully isolated so that they cannot see each other's data and
|
|
3469
|
+
credentials. Most data governance features are supported in this mode. But programming languages
|
|
3470
|
+
and cluster features might be limited.
|
|
3316
3471
|
|
|
3317
3472
|
The following modes are deprecated starting with Databricks Runtime 15.0 and will be removed for
|
|
3318
3473
|
future Databricks Runtime versions:
|
|
@@ -3353,6 +3508,20 @@ class EditCluster:
|
|
|
3353
3508
|
instance_pool_id: Optional[str] = None
|
|
3354
3509
|
"""The optional ID of the instance pool to which the cluster belongs."""
|
|
3355
3510
|
|
|
3511
|
+
is_single_node: Optional[bool] = None
|
|
3512
|
+
"""This field can only be used with `kind`.
|
|
3513
|
+
|
|
3514
|
+
When set to true, Databricks will automatically set single node related `custom_tags`,
|
|
3515
|
+
`spark_conf`, and `num_workers`"""
|
|
3516
|
+
|
|
3517
|
+
kind: Optional[Kind] = None
|
|
3518
|
+
"""The kind of compute described by this compute specification.
|
|
3519
|
+
|
|
3520
|
+
Depending on `kind`, different validations and default values will be applied.
|
|
3521
|
+
|
|
3522
|
+
The first usage of this value is for the simple cluster form where it sets `kind =
|
|
3523
|
+
CLASSIC_PREVIEW`."""
|
|
3524
|
+
|
|
3356
3525
|
node_type_id: Optional[str] = None
|
|
3357
3526
|
"""This field encodes, through a single value, the resources available to each of the Spark nodes
|
|
3358
3527
|
in this cluster. For example, the Spark nodes can be provisioned and optimized for memory or
|
|
@@ -3407,6 +3576,12 @@ class EditCluster:
|
|
|
3407
3576
|
private keys can be used to login with the user name `ubuntu` on port `2200`. Up to 10 keys can
|
|
3408
3577
|
be specified."""
|
|
3409
3578
|
|
|
3579
|
+
use_ml_runtime: Optional[bool] = None
|
|
3580
|
+
"""This field can only be used with `kind`.
|
|
3581
|
+
|
|
3582
|
+
`effective_spark_version` is determined by `spark_version` (DBR release), this field
|
|
3583
|
+
`use_ml_runtime`, and whether `node_type_id` is gpu node or not."""
|
|
3584
|
+
|
|
3410
3585
|
workload_type: Optional[WorkloadType] = None
|
|
3411
3586
|
|
|
3412
3587
|
def as_dict(self) -> dict:
|
|
@@ -3434,6 +3609,8 @@ class EditCluster:
|
|
|
3434
3609
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes.as_dict()
|
|
3435
3610
|
if self.init_scripts: body['init_scripts'] = [v.as_dict() for v in self.init_scripts]
|
|
3436
3611
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
3612
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
3613
|
+
if self.kind is not None: body['kind'] = self.kind.value
|
|
3437
3614
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
3438
3615
|
if self.num_workers is not None: body['num_workers'] = self.num_workers
|
|
3439
3616
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
@@ -3443,6 +3620,7 @@ class EditCluster:
|
|
|
3443
3620
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
3444
3621
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
3445
3622
|
if self.ssh_public_keys: body['ssh_public_keys'] = [v for v in self.ssh_public_keys]
|
|
3623
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
3446
3624
|
if self.workload_type: body['workload_type'] = self.workload_type.as_dict()
|
|
3447
3625
|
return body
|
|
3448
3626
|
|
|
@@ -3471,6 +3649,8 @@ class EditCluster:
|
|
|
3471
3649
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes
|
|
3472
3650
|
if self.init_scripts: body['init_scripts'] = self.init_scripts
|
|
3473
3651
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
3652
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
3653
|
+
if self.kind is not None: body['kind'] = self.kind
|
|
3474
3654
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
3475
3655
|
if self.num_workers is not None: body['num_workers'] = self.num_workers
|
|
3476
3656
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
@@ -3480,6 +3660,7 @@ class EditCluster:
|
|
|
3480
3660
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
3481
3661
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
3482
3662
|
if self.ssh_public_keys: body['ssh_public_keys'] = self.ssh_public_keys
|
|
3663
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
3483
3664
|
if self.workload_type: body['workload_type'] = self.workload_type
|
|
3484
3665
|
return body
|
|
3485
3666
|
|
|
@@ -3504,6 +3685,8 @@ class EditCluster:
|
|
|
3504
3685
|
gcp_attributes=_from_dict(d, 'gcp_attributes', GcpAttributes),
|
|
3505
3686
|
init_scripts=_repeated_dict(d, 'init_scripts', InitScriptInfo),
|
|
3506
3687
|
instance_pool_id=d.get('instance_pool_id', None),
|
|
3688
|
+
is_single_node=d.get('is_single_node', None),
|
|
3689
|
+
kind=_enum(d, 'kind', Kind),
|
|
3507
3690
|
node_type_id=d.get('node_type_id', None),
|
|
3508
3691
|
num_workers=d.get('num_workers', None),
|
|
3509
3692
|
policy_id=d.get('policy_id', None),
|
|
@@ -3513,6 +3696,7 @@ class EditCluster:
|
|
|
3513
3696
|
spark_env_vars=d.get('spark_env_vars', None),
|
|
3514
3697
|
spark_version=d.get('spark_version', None),
|
|
3515
3698
|
ssh_public_keys=d.get('ssh_public_keys', None),
|
|
3699
|
+
use_ml_runtime=d.get('use_ml_runtime', None),
|
|
3516
3700
|
workload_type=_from_dict(d, 'workload_type', WorkloadType))
|
|
3517
3701
|
|
|
3518
3702
|
|
|
@@ -5642,6 +5826,17 @@ class InstanceProfile:
|
|
|
5642
5826
|
is_meta_instance_profile=d.get('is_meta_instance_profile', None))
|
|
5643
5827
|
|
|
5644
5828
|
|
|
5829
|
+
class Kind(Enum):
|
|
5830
|
+
"""The kind of compute described by this compute specification.
|
|
5831
|
+
|
|
5832
|
+
Depending on `kind`, different validations and default values will be applied.
|
|
5833
|
+
|
|
5834
|
+
The first usage of this value is for the simple cluster form where it sets `kind =
|
|
5835
|
+
CLASSIC_PREVIEW`."""
|
|
5836
|
+
|
|
5837
|
+
CLASSIC_PREVIEW = 'CLASSIC_PREVIEW'
|
|
5838
|
+
|
|
5839
|
+
|
|
5645
5840
|
class Language(Enum):
|
|
5646
5841
|
|
|
5647
5842
|
PYTHON = 'python'
|
|
@@ -7560,13 +7755,19 @@ class UpdateClusterResource:
|
|
|
7560
7755
|
data_security_mode: Optional[DataSecurityMode] = None
|
|
7561
7756
|
"""Data security mode decides what data governance model to use when accessing data from a cluster.
|
|
7562
7757
|
|
|
7563
|
-
|
|
7564
|
-
|
|
7565
|
-
|
|
7566
|
-
|
|
7567
|
-
|
|
7568
|
-
|
|
7569
|
-
|
|
7758
|
+
The following modes can only be used with `kind`. * `DATA_SECURITY_MODE_AUTO`: Databricks will
|
|
7759
|
+
choose the most appropriate access mode depending on your compute configuration. *
|
|
7760
|
+
`DATA_SECURITY_MODE_STANDARD`: Alias for `USER_ISOLATION`. * `DATA_SECURITY_MODE_DEDICATED`:
|
|
7761
|
+
Alias for `SINGLE_USER`.
|
|
7762
|
+
|
|
7763
|
+
The following modes can be used regardless of `kind`. * `NONE`: No security isolation for
|
|
7764
|
+
multiple users sharing the cluster. Data governance features are not available in this mode. *
|
|
7765
|
+
`SINGLE_USER`: A secure cluster that can only be exclusively used by a single user specified in
|
|
7766
|
+
`single_user_name`. Most programming languages, cluster features and data governance features
|
|
7767
|
+
are available in this mode. * `USER_ISOLATION`: A secure cluster that can be shared by multiple
|
|
7768
|
+
users. Cluster users are fully isolated so that they cannot see each other's data and
|
|
7769
|
+
credentials. Most data governance features are supported in this mode. But programming languages
|
|
7770
|
+
and cluster features might be limited.
|
|
7570
7771
|
|
|
7571
7772
|
The following modes are deprecated starting with Databricks Runtime 15.0 and will be removed for
|
|
7572
7773
|
future Databricks Runtime versions:
|
|
@@ -7607,6 +7808,20 @@ class UpdateClusterResource:
|
|
|
7607
7808
|
instance_pool_id: Optional[str] = None
|
|
7608
7809
|
"""The optional ID of the instance pool to which the cluster belongs."""
|
|
7609
7810
|
|
|
7811
|
+
is_single_node: Optional[bool] = None
|
|
7812
|
+
"""This field can only be used with `kind`.
|
|
7813
|
+
|
|
7814
|
+
When set to true, Databricks will automatically set single node related `custom_tags`,
|
|
7815
|
+
`spark_conf`, and `num_workers`"""
|
|
7816
|
+
|
|
7817
|
+
kind: Optional[Kind] = None
|
|
7818
|
+
"""The kind of compute described by this compute specification.
|
|
7819
|
+
|
|
7820
|
+
Depending on `kind`, different validations and default values will be applied.
|
|
7821
|
+
|
|
7822
|
+
The first usage of this value is for the simple cluster form where it sets `kind =
|
|
7823
|
+
CLASSIC_PREVIEW`."""
|
|
7824
|
+
|
|
7610
7825
|
node_type_id: Optional[str] = None
|
|
7611
7826
|
"""This field encodes, through a single value, the resources available to each of the Spark nodes
|
|
7612
7827
|
in this cluster. For example, the Spark nodes can be provisioned and optimized for memory or
|
|
@@ -7665,6 +7880,12 @@ class UpdateClusterResource:
|
|
|
7665
7880
|
private keys can be used to login with the user name `ubuntu` on port `2200`. Up to 10 keys can
|
|
7666
7881
|
be specified."""
|
|
7667
7882
|
|
|
7883
|
+
use_ml_runtime: Optional[bool] = None
|
|
7884
|
+
"""This field can only be used with `kind`.
|
|
7885
|
+
|
|
7886
|
+
`effective_spark_version` is determined by `spark_version` (DBR release), this field
|
|
7887
|
+
`use_ml_runtime`, and whether `node_type_id` is gpu node or not."""
|
|
7888
|
+
|
|
7668
7889
|
workload_type: Optional[WorkloadType] = None
|
|
7669
7890
|
|
|
7670
7891
|
def as_dict(self) -> dict:
|
|
@@ -7689,6 +7910,8 @@ class UpdateClusterResource:
|
|
|
7689
7910
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes.as_dict()
|
|
7690
7911
|
if self.init_scripts: body['init_scripts'] = [v.as_dict() for v in self.init_scripts]
|
|
7691
7912
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
7913
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
7914
|
+
if self.kind is not None: body['kind'] = self.kind.value
|
|
7692
7915
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
7693
7916
|
if self.num_workers is not None: body['num_workers'] = self.num_workers
|
|
7694
7917
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
@@ -7698,6 +7921,7 @@ class UpdateClusterResource:
|
|
|
7698
7921
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
7699
7922
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
7700
7923
|
if self.ssh_public_keys: body['ssh_public_keys'] = [v for v in self.ssh_public_keys]
|
|
7924
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
7701
7925
|
if self.workload_type: body['workload_type'] = self.workload_type.as_dict()
|
|
7702
7926
|
return body
|
|
7703
7927
|
|
|
@@ -7723,6 +7947,8 @@ class UpdateClusterResource:
|
|
|
7723
7947
|
if self.gcp_attributes: body['gcp_attributes'] = self.gcp_attributes
|
|
7724
7948
|
if self.init_scripts: body['init_scripts'] = self.init_scripts
|
|
7725
7949
|
if self.instance_pool_id is not None: body['instance_pool_id'] = self.instance_pool_id
|
|
7950
|
+
if self.is_single_node is not None: body['is_single_node'] = self.is_single_node
|
|
7951
|
+
if self.kind is not None: body['kind'] = self.kind
|
|
7726
7952
|
if self.node_type_id is not None: body['node_type_id'] = self.node_type_id
|
|
7727
7953
|
if self.num_workers is not None: body['num_workers'] = self.num_workers
|
|
7728
7954
|
if self.policy_id is not None: body['policy_id'] = self.policy_id
|
|
@@ -7732,6 +7958,7 @@ class UpdateClusterResource:
|
|
|
7732
7958
|
if self.spark_env_vars: body['spark_env_vars'] = self.spark_env_vars
|
|
7733
7959
|
if self.spark_version is not None: body['spark_version'] = self.spark_version
|
|
7734
7960
|
if self.ssh_public_keys: body['ssh_public_keys'] = self.ssh_public_keys
|
|
7961
|
+
if self.use_ml_runtime is not None: body['use_ml_runtime'] = self.use_ml_runtime
|
|
7735
7962
|
if self.workload_type: body['workload_type'] = self.workload_type
|
|
7736
7963
|
return body
|
|
7737
7964
|
|
|
@@ -7754,6 +7981,8 @@ class UpdateClusterResource:
|
|
|
7754
7981
|
gcp_attributes=_from_dict(d, 'gcp_attributes', GcpAttributes),
|
|
7755
7982
|
init_scripts=_repeated_dict(d, 'init_scripts', InitScriptInfo),
|
|
7756
7983
|
instance_pool_id=d.get('instance_pool_id', None),
|
|
7984
|
+
is_single_node=d.get('is_single_node', None),
|
|
7985
|
+
kind=_enum(d, 'kind', Kind),
|
|
7757
7986
|
node_type_id=d.get('node_type_id', None),
|
|
7758
7987
|
num_workers=d.get('num_workers', None),
|
|
7759
7988
|
policy_id=d.get('policy_id', None),
|
|
@@ -7763,6 +7992,7 @@ class UpdateClusterResource:
|
|
|
7763
7992
|
spark_env_vars=d.get('spark_env_vars', None),
|
|
7764
7993
|
spark_version=d.get('spark_version', None),
|
|
7765
7994
|
ssh_public_keys=d.get('ssh_public_keys', None),
|
|
7995
|
+
use_ml_runtime=d.get('use_ml_runtime', None),
|
|
7766
7996
|
workload_type=_from_dict(d, 'workload_type', WorkloadType))
|
|
7767
7997
|
|
|
7768
7998
|
|
|
@@ -8301,6 +8531,8 @@ class ClustersAPI:
|
|
|
8301
8531
|
gcp_attributes: Optional[GcpAttributes] = None,
|
|
8302
8532
|
init_scripts: Optional[List[InitScriptInfo]] = None,
|
|
8303
8533
|
instance_pool_id: Optional[str] = None,
|
|
8534
|
+
is_single_node: Optional[bool] = None,
|
|
8535
|
+
kind: Optional[Kind] = None,
|
|
8304
8536
|
node_type_id: Optional[str] = None,
|
|
8305
8537
|
num_workers: Optional[int] = None,
|
|
8306
8538
|
policy_id: Optional[str] = None,
|
|
@@ -8309,6 +8541,7 @@ class ClustersAPI:
|
|
|
8309
8541
|
spark_conf: Optional[Dict[str, str]] = None,
|
|
8310
8542
|
spark_env_vars: Optional[Dict[str, str]] = None,
|
|
8311
8543
|
ssh_public_keys: Optional[List[str]] = None,
|
|
8544
|
+
use_ml_runtime: Optional[bool] = None,
|
|
8312
8545
|
workload_type: Optional[WorkloadType] = None) -> Wait[ClusterDetails]:
|
|
8313
8546
|
"""Create new cluster.
|
|
8314
8547
|
|
|
@@ -8364,13 +8597,19 @@ class ClustersAPI:
|
|
|
8364
8597
|
:param data_security_mode: :class:`DataSecurityMode` (optional)
|
|
8365
8598
|
Data security mode decides what data governance model to use when accessing data from a cluster.
|
|
8366
8599
|
|
|
8367
|
-
|
|
8368
|
-
|
|
8369
|
-
|
|
8370
|
-
|
|
8371
|
-
|
|
8372
|
-
|
|
8373
|
-
|
|
8600
|
+
The following modes can only be used with `kind`. * `DATA_SECURITY_MODE_AUTO`: Databricks will
|
|
8601
|
+
choose the most appropriate access mode depending on your compute configuration. *
|
|
8602
|
+
`DATA_SECURITY_MODE_STANDARD`: Alias for `USER_ISOLATION`. * `DATA_SECURITY_MODE_DEDICATED`: Alias
|
|
8603
|
+
for `SINGLE_USER`.
|
|
8604
|
+
|
|
8605
|
+
The following modes can be used regardless of `kind`. * `NONE`: No security isolation for multiple
|
|
8606
|
+
users sharing the cluster. Data governance features are not available in this mode. * `SINGLE_USER`:
|
|
8607
|
+
A secure cluster that can only be exclusively used by a single user specified in `single_user_name`.
|
|
8608
|
+
Most programming languages, cluster features and data governance features are available in this
|
|
8609
|
+
mode. * `USER_ISOLATION`: A secure cluster that can be shared by multiple users. Cluster users are
|
|
8610
|
+
fully isolated so that they cannot see each other's data and credentials. Most data governance
|
|
8611
|
+
features are supported in this mode. But programming languages and cluster features might be
|
|
8612
|
+
limited.
|
|
8374
8613
|
|
|
8375
8614
|
The following modes are deprecated starting with Databricks Runtime 15.0 and will be removed for
|
|
8376
8615
|
future Databricks Runtime versions:
|
|
@@ -8402,6 +8641,17 @@ class ClustersAPI:
|
|
|
8402
8641
|
logs are sent to `<destination>/<cluster-ID>/init_scripts`.
|
|
8403
8642
|
:param instance_pool_id: str (optional)
|
|
8404
8643
|
The optional ID of the instance pool to which the cluster belongs.
|
|
8644
|
+
:param is_single_node: bool (optional)
|
|
8645
|
+
This field can only be used with `kind`.
|
|
8646
|
+
|
|
8647
|
+
When set to true, Databricks will automatically set single node related `custom_tags`, `spark_conf`,
|
|
8648
|
+
and `num_workers`
|
|
8649
|
+
:param kind: :class:`Kind` (optional)
|
|
8650
|
+
The kind of compute described by this compute specification.
|
|
8651
|
+
|
|
8652
|
+
Depending on `kind`, different validations and default values will be applied.
|
|
8653
|
+
|
|
8654
|
+
The first usage of this value is for the simple cluster form where it sets `kind = CLASSIC_PREVIEW`.
|
|
8405
8655
|
:param node_type_id: str (optional)
|
|
8406
8656
|
This field encodes, through a single value, the resources available to each of the Spark nodes in
|
|
8407
8657
|
this cluster. For example, the Spark nodes can be provisioned and optimized for memory or compute
|
|
@@ -8448,6 +8698,11 @@ class ClustersAPI:
|
|
|
8448
8698
|
SSH public key contents that will be added to each Spark node in this cluster. The corresponding
|
|
8449
8699
|
private keys can be used to login with the user name `ubuntu` on port `2200`. Up to 10 keys can be
|
|
8450
8700
|
specified.
|
|
8701
|
+
:param use_ml_runtime: bool (optional)
|
|
8702
|
+
This field can only be used with `kind`.
|
|
8703
|
+
|
|
8704
|
+
`effective_spark_version` is determined by `spark_version` (DBR release), this field
|
|
8705
|
+
`use_ml_runtime`, and whether `node_type_id` is gpu node or not.
|
|
8451
8706
|
:param workload_type: :class:`WorkloadType` (optional)
|
|
8452
8707
|
|
|
8453
8708
|
:returns:
|
|
@@ -8475,6 +8730,8 @@ class ClustersAPI:
|
|
|
8475
8730
|
if gcp_attributes is not None: body['gcp_attributes'] = gcp_attributes.as_dict()
|
|
8476
8731
|
if init_scripts is not None: body['init_scripts'] = [v.as_dict() for v in init_scripts]
|
|
8477
8732
|
if instance_pool_id is not None: body['instance_pool_id'] = instance_pool_id
|
|
8733
|
+
if is_single_node is not None: body['is_single_node'] = is_single_node
|
|
8734
|
+
if kind is not None: body['kind'] = kind.value
|
|
8478
8735
|
if node_type_id is not None: body['node_type_id'] = node_type_id
|
|
8479
8736
|
if num_workers is not None: body['num_workers'] = num_workers
|
|
8480
8737
|
if policy_id is not None: body['policy_id'] = policy_id
|
|
@@ -8484,6 +8741,7 @@ class ClustersAPI:
|
|
|
8484
8741
|
if spark_env_vars is not None: body['spark_env_vars'] = spark_env_vars
|
|
8485
8742
|
if spark_version is not None: body['spark_version'] = spark_version
|
|
8486
8743
|
if ssh_public_keys is not None: body['ssh_public_keys'] = [v for v in ssh_public_keys]
|
|
8744
|
+
if use_ml_runtime is not None: body['use_ml_runtime'] = use_ml_runtime
|
|
8487
8745
|
if workload_type is not None: body['workload_type'] = workload_type.as_dict()
|
|
8488
8746
|
headers = {'Accept': 'application/json', 'Content-Type': 'application/json', }
|
|
8489
8747
|
|
|
@@ -8514,6 +8772,8 @@ class ClustersAPI:
|
|
|
8514
8772
|
gcp_attributes: Optional[GcpAttributes] = None,
|
|
8515
8773
|
init_scripts: Optional[List[InitScriptInfo]] = None,
|
|
8516
8774
|
instance_pool_id: Optional[str] = None,
|
|
8775
|
+
is_single_node: Optional[bool] = None,
|
|
8776
|
+
kind: Optional[Kind] = None,
|
|
8517
8777
|
node_type_id: Optional[str] = None,
|
|
8518
8778
|
num_workers: Optional[int] = None,
|
|
8519
8779
|
policy_id: Optional[str] = None,
|
|
@@ -8522,6 +8782,7 @@ class ClustersAPI:
|
|
|
8522
8782
|
spark_conf: Optional[Dict[str, str]] = None,
|
|
8523
8783
|
spark_env_vars: Optional[Dict[str, str]] = None,
|
|
8524
8784
|
ssh_public_keys: Optional[List[str]] = None,
|
|
8785
|
+
use_ml_runtime: Optional[bool] = None,
|
|
8525
8786
|
workload_type: Optional[WorkloadType] = None,
|
|
8526
8787
|
timeout=timedelta(minutes=20)) -> ClusterDetails:
|
|
8527
8788
|
return self.create(apply_policy_default_values=apply_policy_default_values,
|
|
@@ -8542,6 +8803,8 @@ class ClustersAPI:
|
|
|
8542
8803
|
gcp_attributes=gcp_attributes,
|
|
8543
8804
|
init_scripts=init_scripts,
|
|
8544
8805
|
instance_pool_id=instance_pool_id,
|
|
8806
|
+
is_single_node=is_single_node,
|
|
8807
|
+
kind=kind,
|
|
8545
8808
|
node_type_id=node_type_id,
|
|
8546
8809
|
num_workers=num_workers,
|
|
8547
8810
|
policy_id=policy_id,
|
|
@@ -8551,6 +8814,7 @@ class ClustersAPI:
|
|
|
8551
8814
|
spark_env_vars=spark_env_vars,
|
|
8552
8815
|
spark_version=spark_version,
|
|
8553
8816
|
ssh_public_keys=ssh_public_keys,
|
|
8817
|
+
use_ml_runtime=use_ml_runtime,
|
|
8554
8818
|
workload_type=workload_type).result(timeout=timeout)
|
|
8555
8819
|
|
|
8556
8820
|
def delete(self, cluster_id: str) -> Wait[ClusterDetails]:
|
|
@@ -8600,6 +8864,8 @@ class ClustersAPI:
|
|
|
8600
8864
|
gcp_attributes: Optional[GcpAttributes] = None,
|
|
8601
8865
|
init_scripts: Optional[List[InitScriptInfo]] = None,
|
|
8602
8866
|
instance_pool_id: Optional[str] = None,
|
|
8867
|
+
is_single_node: Optional[bool] = None,
|
|
8868
|
+
kind: Optional[Kind] = None,
|
|
8603
8869
|
node_type_id: Optional[str] = None,
|
|
8604
8870
|
num_workers: Optional[int] = None,
|
|
8605
8871
|
policy_id: Optional[str] = None,
|
|
@@ -8608,6 +8874,7 @@ class ClustersAPI:
|
|
|
8608
8874
|
spark_conf: Optional[Dict[str, str]] = None,
|
|
8609
8875
|
spark_env_vars: Optional[Dict[str, str]] = None,
|
|
8610
8876
|
ssh_public_keys: Optional[List[str]] = None,
|
|
8877
|
+
use_ml_runtime: Optional[bool] = None,
|
|
8611
8878
|
workload_type: Optional[WorkloadType] = None) -> Wait[ClusterDetails]:
|
|
8612
8879
|
"""Update cluster configuration.
|
|
8613
8880
|
|
|
@@ -8663,13 +8930,19 @@ class ClustersAPI:
|
|
|
8663
8930
|
:param data_security_mode: :class:`DataSecurityMode` (optional)
|
|
8664
8931
|
Data security mode decides what data governance model to use when accessing data from a cluster.
|
|
8665
8932
|
|
|
8666
|
-
|
|
8667
|
-
|
|
8668
|
-
|
|
8669
|
-
|
|
8670
|
-
|
|
8671
|
-
|
|
8672
|
-
|
|
8933
|
+
The following modes can only be used with `kind`. * `DATA_SECURITY_MODE_AUTO`: Databricks will
|
|
8934
|
+
choose the most appropriate access mode depending on your compute configuration. *
|
|
8935
|
+
`DATA_SECURITY_MODE_STANDARD`: Alias for `USER_ISOLATION`. * `DATA_SECURITY_MODE_DEDICATED`: Alias
|
|
8936
|
+
for `SINGLE_USER`.
|
|
8937
|
+
|
|
8938
|
+
The following modes can be used regardless of `kind`. * `NONE`: No security isolation for multiple
|
|
8939
|
+
users sharing the cluster. Data governance features are not available in this mode. * `SINGLE_USER`:
|
|
8940
|
+
A secure cluster that can only be exclusively used by a single user specified in `single_user_name`.
|
|
8941
|
+
Most programming languages, cluster features and data governance features are available in this
|
|
8942
|
+
mode. * `USER_ISOLATION`: A secure cluster that can be shared by multiple users. Cluster users are
|
|
8943
|
+
fully isolated so that they cannot see each other's data and credentials. Most data governance
|
|
8944
|
+
features are supported in this mode. But programming languages and cluster features might be
|
|
8945
|
+
limited.
|
|
8673
8946
|
|
|
8674
8947
|
The following modes are deprecated starting with Databricks Runtime 15.0 and will be removed for
|
|
8675
8948
|
future Databricks Runtime versions:
|
|
@@ -8701,6 +8974,17 @@ class ClustersAPI:
|
|
|
8701
8974
|
logs are sent to `<destination>/<cluster-ID>/init_scripts`.
|
|
8702
8975
|
:param instance_pool_id: str (optional)
|
|
8703
8976
|
The optional ID of the instance pool to which the cluster belongs.
|
|
8977
|
+
:param is_single_node: bool (optional)
|
|
8978
|
+
This field can only be used with `kind`.
|
|
8979
|
+
|
|
8980
|
+
When set to true, Databricks will automatically set single node related `custom_tags`, `spark_conf`,
|
|
8981
|
+
and `num_workers`
|
|
8982
|
+
:param kind: :class:`Kind` (optional)
|
|
8983
|
+
The kind of compute described by this compute specification.
|
|
8984
|
+
|
|
8985
|
+
Depending on `kind`, different validations and default values will be applied.
|
|
8986
|
+
|
|
8987
|
+
The first usage of this value is for the simple cluster form where it sets `kind = CLASSIC_PREVIEW`.
|
|
8704
8988
|
:param node_type_id: str (optional)
|
|
8705
8989
|
This field encodes, through a single value, the resources available to each of the Spark nodes in
|
|
8706
8990
|
this cluster. For example, the Spark nodes can be provisioned and optimized for memory or compute
|
|
@@ -8747,6 +9031,11 @@ class ClustersAPI:
|
|
|
8747
9031
|
SSH public key contents that will be added to each Spark node in this cluster. The corresponding
|
|
8748
9032
|
private keys can be used to login with the user name `ubuntu` on port `2200`. Up to 10 keys can be
|
|
8749
9033
|
specified.
|
|
9034
|
+
:param use_ml_runtime: bool (optional)
|
|
9035
|
+
This field can only be used with `kind`.
|
|
9036
|
+
|
|
9037
|
+
`effective_spark_version` is determined by `spark_version` (DBR release), this field
|
|
9038
|
+
`use_ml_runtime`, and whether `node_type_id` is gpu node or not.
|
|
8750
9039
|
:param workload_type: :class:`WorkloadType` (optional)
|
|
8751
9040
|
|
|
8752
9041
|
:returns:
|
|
@@ -8774,6 +9063,8 @@ class ClustersAPI:
|
|
|
8774
9063
|
if gcp_attributes is not None: body['gcp_attributes'] = gcp_attributes.as_dict()
|
|
8775
9064
|
if init_scripts is not None: body['init_scripts'] = [v.as_dict() for v in init_scripts]
|
|
8776
9065
|
if instance_pool_id is not None: body['instance_pool_id'] = instance_pool_id
|
|
9066
|
+
if is_single_node is not None: body['is_single_node'] = is_single_node
|
|
9067
|
+
if kind is not None: body['kind'] = kind.value
|
|
8777
9068
|
if node_type_id is not None: body['node_type_id'] = node_type_id
|
|
8778
9069
|
if num_workers is not None: body['num_workers'] = num_workers
|
|
8779
9070
|
if policy_id is not None: body['policy_id'] = policy_id
|
|
@@ -8783,6 +9074,7 @@ class ClustersAPI:
|
|
|
8783
9074
|
if spark_env_vars is not None: body['spark_env_vars'] = spark_env_vars
|
|
8784
9075
|
if spark_version is not None: body['spark_version'] = spark_version
|
|
8785
9076
|
if ssh_public_keys is not None: body['ssh_public_keys'] = [v for v in ssh_public_keys]
|
|
9077
|
+
if use_ml_runtime is not None: body['use_ml_runtime'] = use_ml_runtime
|
|
8786
9078
|
if workload_type is not None: body['workload_type'] = workload_type.as_dict()
|
|
8787
9079
|
headers = {'Accept': 'application/json', 'Content-Type': 'application/json', }
|
|
8788
9080
|
|
|
@@ -8813,6 +9105,8 @@ class ClustersAPI:
|
|
|
8813
9105
|
gcp_attributes: Optional[GcpAttributes] = None,
|
|
8814
9106
|
init_scripts: Optional[List[InitScriptInfo]] = None,
|
|
8815
9107
|
instance_pool_id: Optional[str] = None,
|
|
9108
|
+
is_single_node: Optional[bool] = None,
|
|
9109
|
+
kind: Optional[Kind] = None,
|
|
8816
9110
|
node_type_id: Optional[str] = None,
|
|
8817
9111
|
num_workers: Optional[int] = None,
|
|
8818
9112
|
policy_id: Optional[str] = None,
|
|
@@ -8821,6 +9115,7 @@ class ClustersAPI:
|
|
|
8821
9115
|
spark_conf: Optional[Dict[str, str]] = None,
|
|
8822
9116
|
spark_env_vars: Optional[Dict[str, str]] = None,
|
|
8823
9117
|
ssh_public_keys: Optional[List[str]] = None,
|
|
9118
|
+
use_ml_runtime: Optional[bool] = None,
|
|
8824
9119
|
workload_type: Optional[WorkloadType] = None,
|
|
8825
9120
|
timeout=timedelta(minutes=20)) -> ClusterDetails:
|
|
8826
9121
|
return self.edit(apply_policy_default_values=apply_policy_default_values,
|
|
@@ -8841,6 +9136,8 @@ class ClustersAPI:
|
|
|
8841
9136
|
gcp_attributes=gcp_attributes,
|
|
8842
9137
|
init_scripts=init_scripts,
|
|
8843
9138
|
instance_pool_id=instance_pool_id,
|
|
9139
|
+
is_single_node=is_single_node,
|
|
9140
|
+
kind=kind,
|
|
8844
9141
|
node_type_id=node_type_id,
|
|
8845
9142
|
num_workers=num_workers,
|
|
8846
9143
|
policy_id=policy_id,
|
|
@@ -8850,6 +9147,7 @@ class ClustersAPI:
|
|
|
8850
9147
|
spark_env_vars=spark_env_vars,
|
|
8851
9148
|
spark_version=spark_version,
|
|
8852
9149
|
ssh_public_keys=ssh_public_keys,
|
|
9150
|
+
use_ml_runtime=use_ml_runtime,
|
|
8853
9151
|
workload_type=workload_type).result(timeout=timeout)
|
|
8854
9152
|
|
|
8855
9153
|
def events(self,
|