databricks-labs-lakebridge 0.10.6__py3-none-any.whl → 0.10.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. databricks/labs/lakebridge/__about__.py +1 -1
  2. databricks/labs/lakebridge/analyzer/__init__.py +0 -0
  3. databricks/labs/lakebridge/analyzer/lakebridge_analyzer.py +95 -0
  4. databricks/labs/lakebridge/base_install.py +24 -3
  5. databricks/labs/lakebridge/cli.py +19 -53
  6. databricks/labs/lakebridge/contexts/application.py +7 -0
  7. databricks/labs/lakebridge/deployment/job.py +2 -2
  8. databricks/labs/lakebridge/helpers/file_utils.py +36 -0
  9. databricks/labs/lakebridge/install.py +187 -157
  10. databricks/labs/lakebridge/reconcile/compare.py +70 -33
  11. databricks/labs/lakebridge/reconcile/connectors/data_source.py +19 -0
  12. databricks/labs/lakebridge/reconcile/connectors/databricks.py +11 -1
  13. databricks/labs/lakebridge/reconcile/connectors/dialect_utils.py +126 -0
  14. databricks/labs/lakebridge/reconcile/connectors/models.py +7 -0
  15. databricks/labs/lakebridge/reconcile/connectors/oracle.py +11 -1
  16. databricks/labs/lakebridge/reconcile/connectors/snowflake.py +14 -2
  17. databricks/labs/lakebridge/reconcile/connectors/tsql.py +27 -2
  18. databricks/labs/lakebridge/reconcile/constants.py +4 -3
  19. databricks/labs/lakebridge/reconcile/execute.py +9 -810
  20. databricks/labs/lakebridge/reconcile/normalize_recon_config_service.py +133 -0
  21. databricks/labs/lakebridge/reconcile/query_builder/base.py +3 -7
  22. databricks/labs/lakebridge/reconcile/recon_config.py +3 -0
  23. databricks/labs/lakebridge/reconcile/recon_output_config.py +2 -1
  24. databricks/labs/lakebridge/reconcile/reconciliation.py +508 -0
  25. databricks/labs/lakebridge/reconcile/schema_compare.py +26 -19
  26. databricks/labs/lakebridge/reconcile/trigger_recon_aggregate_service.py +98 -0
  27. databricks/labs/lakebridge/reconcile/trigger_recon_service.py +253 -0
  28. databricks/labs/lakebridge/reconcile/utils.py +38 -0
  29. databricks/labs/lakebridge/transpiler/lsp/lsp_engine.py +45 -60
  30. databricks/labs/lakebridge/transpiler/sqlglot/dialect_utils.py +2 -0
  31. databricks/labs/lakebridge/transpiler/transpile_engine.py +0 -18
  32. {databricks_labs_lakebridge-0.10.6.dist-info → databricks_labs_lakebridge-0.10.7.dist-info}/METADATA +1 -1
  33. {databricks_labs_lakebridge-0.10.6.dist-info → databricks_labs_lakebridge-0.10.7.dist-info}/RECORD +37 -28
  34. {databricks_labs_lakebridge-0.10.6.dist-info → databricks_labs_lakebridge-0.10.7.dist-info}/WHEEL +0 -0
  35. {databricks_labs_lakebridge-0.10.6.dist-info → databricks_labs_lakebridge-0.10.7.dist-info}/entry_points.txt +0 -0
  36. {databricks_labs_lakebridge-0.10.6.dist-info → databricks_labs_lakebridge-0.10.7.dist-info}/licenses/LICENSE +0 -0
  37. {databricks_labs_lakebridge-0.10.6.dist-info → databricks_labs_lakebridge-0.10.7.dist-info}/licenses/NOTICE +0 -0
@@ -0,0 +1,133 @@
1
+ import dataclasses
2
+
3
+ from databricks.labs.lakebridge.reconcile.connectors.data_source import DataSource
4
+ from databricks.labs.lakebridge.reconcile.recon_config import (
5
+ Table,
6
+ Aggregate,
7
+ ColumnMapping,
8
+ Transformation,
9
+ ColumnThresholds,
10
+ )
11
+
12
+
13
+ class NormalizeReconConfigService:
14
+ def __init__(self, source: DataSource, target: DataSource):
15
+ self.source = source
16
+ self.target = target
17
+
18
+ def normalize_recon_table_config(self, table: Table) -> Table:
19
+ normalized_table = dataclasses.replace(table)
20
+
21
+ self._normalize_sampling(normalized_table)
22
+ self._normalize_aggs(normalized_table)
23
+ self._normalize_join_cols(normalized_table)
24
+ self._normalize_select_cols(normalized_table)
25
+ self._normalize_drop_cols(normalized_table)
26
+ self._normalize_col_mappings(normalized_table)
27
+ self._normalize_transformations(normalized_table)
28
+ self._normalize_col_thresholds(normalized_table)
29
+ self._normalize_jdbc_options(normalized_table)
30
+
31
+ return normalized_table
32
+
33
+ def _normalize_sampling(self, table: Table):
34
+ if table.sampling_options:
35
+ normalized_sampling = dataclasses.replace(table.sampling_options)
36
+ normalized_sampling.stratified_columns = (
37
+ [self.source.normalize_identifier(c).ansi_normalized for c in normalized_sampling.stratified_columns]
38
+ if normalized_sampling.stratified_columns
39
+ else None
40
+ )
41
+ table.sampling_options = normalized_sampling
42
+ return table
43
+
44
+ def _normalize_aggs(self, table: Table):
45
+ normalized = [self._normalize_agg(a) for a in table.aggregates] if table.aggregates else None
46
+ table.aggregates = normalized
47
+ return table
48
+
49
+ def _normalize_agg(self, agg: Aggregate) -> Aggregate:
50
+ normalized = dataclasses.replace(agg)
51
+ normalized.agg_columns = [self.source.normalize_identifier(c).ansi_normalized for c in normalized.agg_columns]
52
+ normalized.group_by_columns = (
53
+ [self.source.normalize_identifier(c).ansi_normalized for c in normalized.group_by_columns]
54
+ if normalized.group_by_columns
55
+ else None
56
+ )
57
+ return normalized
58
+
59
+ def _normalize_join_cols(self, table: Table):
60
+ table.join_columns = (
61
+ [self.source.normalize_identifier(c).ansi_normalized for c in table.join_columns]
62
+ if table.join_columns
63
+ else None
64
+ )
65
+ return table
66
+
67
+ def _normalize_select_cols(self, table: Table):
68
+ table.select_columns = (
69
+ [self.source.normalize_identifier(c).ansi_normalized for c in table.select_columns]
70
+ if table.select_columns
71
+ else None
72
+ )
73
+ return table
74
+
75
+ def _normalize_drop_cols(self, table: Table):
76
+ table.drop_columns = (
77
+ [self.source.normalize_identifier(c).ansi_normalized for c in table.drop_columns]
78
+ if table.drop_columns
79
+ else None
80
+ )
81
+ return table
82
+
83
+ def _normalize_col_mappings(self, table: Table):
84
+ table.column_mapping = (
85
+ [self._normalize_col_mapping(m) for m in table.column_mapping] if table.column_mapping else None
86
+ )
87
+ return table
88
+
89
+ def _normalize_col_mapping(self, mapping: ColumnMapping):
90
+ return ColumnMapping(
91
+ source_name=self.source.normalize_identifier(mapping.source_name).ansi_normalized,
92
+ target_name=self.target.normalize_identifier(mapping.target_name).ansi_normalized,
93
+ )
94
+
95
+ def _normalize_transformations(self, table: Table):
96
+ table.transformations = (
97
+ [self._normalize_transformation(t) for t in table.transformations] if table.transformations else None
98
+ )
99
+ return table
100
+
101
+ def _normalize_transformation(self, transform: Transformation):
102
+ """normalize user-configured transformations
103
+
104
+ The user configures the table column and passes SQL code to transform the source table and target table.
105
+ This is useful in scenarios when the data changes e.g. migrating `datetime`s. The SQL code is not normalized
106
+ and it is the user responsibility to pass valid SQL respecting source database and target database.
107
+ """
108
+ normalized = dataclasses.replace(transform)
109
+ normalized.column_name = self.source.normalize_identifier(transform.column_name).ansi_normalized
110
+ return normalized
111
+
112
+ def _normalize_col_thresholds(self, table: Table):
113
+ table.column_thresholds = (
114
+ [self._normalize_col_threshold(t) for t in table.column_thresholds] if table.column_thresholds else None
115
+ )
116
+ return table
117
+
118
+ def _normalize_col_threshold(self, threshold: ColumnThresholds):
119
+ normalized = dataclasses.replace(threshold)
120
+ normalized.column_name = self.source.normalize_identifier(threshold.column_name).ansi_normalized
121
+ return normalized
122
+
123
+ def _normalize_jdbc_options(self, table: Table):
124
+ if table.jdbc_reader_options:
125
+ normalized = dataclasses.replace(table.jdbc_reader_options)
126
+ normalized.partition_column = (
127
+ self.source.normalize_identifier(normalized.partition_column).ansi_normalized
128
+ if normalized.partition_column
129
+ else None
130
+ )
131
+ table.jdbc_reader_options = normalized
132
+
133
+ return table
@@ -4,6 +4,7 @@ from abc import ABC
4
4
  import sqlglot.expressions as exp
5
5
  from sqlglot import Dialect, parse_one
6
6
 
7
+ from databricks.labs.lakebridge.reconcile.connectors.data_source import DataSource
7
8
  from databricks.labs.lakebridge.reconcile.exception import InvalidInputException
8
9
  from databricks.labs.lakebridge.reconcile.query_builder.expression_generator import (
9
10
  DataType_transform_mapping,
@@ -16,17 +17,12 @@ logger = logging.getLogger(__name__)
16
17
 
17
18
 
18
19
  class QueryBuilder(ABC):
19
- def __init__(
20
- self,
21
- table_conf: Table,
22
- schema: list[Schema],
23
- layer: str,
24
- engine: Dialect,
25
- ):
20
+ def __init__(self, table_conf: Table, schema: list[Schema], layer: str, engine: Dialect, data_source: DataSource):
26
21
  self._table_conf = table_conf
27
22
  self._schema = schema
28
23
  self._layer = layer
29
24
  self._engine = engine
25
+ self._data_source = data_source
30
26
 
31
27
  @property
32
28
  def engine(self) -> Dialect:
@@ -288,8 +288,11 @@ class Table:
288
288
 
289
289
  @dataclass
290
290
  class Schema:
291
+ # TODO remove: This will have the value of ansi_normalized_column_name. Kept for backwards compatibility.
291
292
  column_name: str
292
293
  data_type: str
294
+ ansi_normalized_column_name: str
295
+ source_normalized_column_name: str
293
296
 
294
297
 
295
298
  @dataclass
@@ -31,7 +31,8 @@ class DataReconcileOutput:
31
31
 
32
32
  @dataclass
33
33
  class SchemaMatchResult:
34
- source_column: str
34
+ source_column_normalized: str
35
+ source_column_normalized_ansi: str
35
36
  source_datatype: str
36
37
  databricks_column: str
37
38
  databricks_datatype: str
@@ -0,0 +1,508 @@
1
+ import logging
2
+
3
+ from pyspark.sql import DataFrame, SparkSession
4
+ from sqlglot import Dialect
5
+
6
+ from databricks.labs.lakebridge.config import (
7
+ DatabaseConfig,
8
+ ReconcileMetadataConfig,
9
+ )
10
+ from databricks.labs.lakebridge.reconcile import utils
11
+ from databricks.labs.lakebridge.reconcile.compare import (
12
+ capture_mismatch_data_and_columns,
13
+ reconcile_data,
14
+ join_aggregate_data,
15
+ reconcile_agg_data_per_rule,
16
+ )
17
+ from databricks.labs.lakebridge.reconcile.connectors.data_source import DataSource
18
+ from databricks.labs.lakebridge.reconcile.exception import (
19
+ DataSourceRuntimeException,
20
+ )
21
+ from databricks.labs.lakebridge.reconcile.query_builder.aggregate_query import AggregateQueryBuilder
22
+ from databricks.labs.lakebridge.reconcile.query_builder.count_query import CountQueryBuilder
23
+ from databricks.labs.lakebridge.reconcile.query_builder.hash_query import HashQueryBuilder
24
+ from databricks.labs.lakebridge.reconcile.query_builder.sampling_query import (
25
+ SamplingQueryBuilder,
26
+ )
27
+ from databricks.labs.lakebridge.reconcile.query_builder.threshold_query import (
28
+ ThresholdQueryBuilder,
29
+ )
30
+ from databricks.labs.lakebridge.reconcile.recon_config import (
31
+ Schema,
32
+ Table,
33
+ AggregateQueryRules,
34
+ SamplingOptions,
35
+ )
36
+ from databricks.labs.lakebridge.reconcile.recon_output_config import (
37
+ DataReconcileOutput,
38
+ ThresholdOutput,
39
+ ReconcileRecordCount,
40
+ AggregateQueryOutput,
41
+ )
42
+ from databricks.labs.lakebridge.reconcile.sampler import SamplerFactory
43
+ from databricks.labs.lakebridge.reconcile.schema_compare import SchemaCompare
44
+ from databricks.labs.lakebridge.transpiler.sqlglot.dialect_utils import get_dialect
45
+
46
+ logger = logging.getLogger(__name__)
47
+ _SAMPLE_ROWS = 50
48
+
49
+
50
+ class Reconciliation:
51
+
52
+ def __init__(
53
+ self,
54
+ source: DataSource,
55
+ target: DataSource,
56
+ database_config: DatabaseConfig,
57
+ report_type: str,
58
+ schema_comparator: SchemaCompare,
59
+ source_engine: Dialect,
60
+ spark: SparkSession,
61
+ metadata_config: ReconcileMetadataConfig,
62
+ ):
63
+ self._source = source
64
+ self._target = target
65
+ self._report_type = report_type
66
+ self._database_config = database_config
67
+ self._schema_comparator = schema_comparator
68
+ self._target_engine = get_dialect("databricks")
69
+ self._source_engine = source_engine
70
+ self._spark = spark
71
+ self._metadata_config = metadata_config
72
+
73
+ @property
74
+ def source(self) -> DataSource:
75
+ return self._source
76
+
77
+ @property
78
+ def target(self) -> DataSource:
79
+ return self._target
80
+
81
+ @property
82
+ def report_type(self) -> str:
83
+ return self._report_type
84
+
85
+ def reconcile_data(
86
+ self,
87
+ table_conf: Table,
88
+ src_schema: list[Schema],
89
+ tgt_schema: list[Schema],
90
+ ) -> DataReconcileOutput:
91
+ data_reconcile_output = self._get_reconcile_output(table_conf, src_schema, tgt_schema)
92
+ reconcile_output = data_reconcile_output
93
+ if self._report_type in {"data", "all"}:
94
+ reconcile_output = self._get_sample_data(table_conf, data_reconcile_output, src_schema, tgt_schema)
95
+ if table_conf.get_threshold_columns("source"):
96
+ reconcile_output.threshold_output = self._reconcile_threshold_data(table_conf, src_schema, tgt_schema)
97
+
98
+ if self._report_type == "row" and table_conf.get_threshold_columns("source"):
99
+ logger.warning("Threshold comparison is ignored for 'row' report type")
100
+
101
+ return reconcile_output
102
+
103
+ def reconcile_schema(
104
+ self,
105
+ src_schema: list[Schema],
106
+ tgt_schema: list[Schema],
107
+ table_conf: Table,
108
+ ):
109
+ return self._schema_comparator.compare(src_schema, tgt_schema, self._source_engine, table_conf)
110
+
111
+ def reconcile_aggregates(
112
+ self,
113
+ table_conf: Table,
114
+ src_schema: list[Schema],
115
+ tgt_schema: list[Schema],
116
+ ) -> list[AggregateQueryOutput]:
117
+ return self._get_reconcile_aggregate_output(table_conf, src_schema, tgt_schema)
118
+
119
+ def _get_reconcile_output(
120
+ self,
121
+ table_conf,
122
+ src_schema,
123
+ tgt_schema,
124
+ ):
125
+ src_hash_query = HashQueryBuilder(
126
+ table_conf, src_schema, "source", self._source_engine, self._source
127
+ ).build_query(report_type=self._report_type)
128
+ tgt_hash_query = HashQueryBuilder(
129
+ table_conf, tgt_schema, "target", self._source_engine, self._target
130
+ ).build_query(report_type=self._report_type)
131
+ src_data = self._source.read_data(
132
+ catalog=self._database_config.source_catalog,
133
+ schema=self._database_config.source_schema,
134
+ table=table_conf.source_name,
135
+ query=src_hash_query,
136
+ options=table_conf.jdbc_reader_options,
137
+ )
138
+ tgt_data = self._target.read_data(
139
+ catalog=self._database_config.target_catalog,
140
+ schema=self._database_config.target_schema,
141
+ table=table_conf.target_name,
142
+ query=tgt_hash_query,
143
+ options=table_conf.jdbc_reader_options,
144
+ )
145
+
146
+ volume_path = utils.generate_volume_path(table_conf, self._metadata_config)
147
+ return reconcile_data(
148
+ source=src_data,
149
+ target=tgt_data,
150
+ key_columns=table_conf.join_columns,
151
+ report_type=self._report_type,
152
+ spark=self._spark,
153
+ path=volume_path,
154
+ )
155
+
156
+ def _get_reconcile_aggregate_output(
157
+ self,
158
+ table_conf,
159
+ src_schema,
160
+ tgt_schema,
161
+ ):
162
+ """
163
+ Creates a single Query, for the aggregates having the same group by columns. (Ex: 1)
164
+ If there are no group by columns, all the aggregates are clubbed together in a single query. (Ex: 2)
165
+ Examples:
166
+ 1. {
167
+ "type": "MIN",
168
+ "agg_cols": ["COL1"],
169
+ "group_by_cols": ["COL4"]
170
+ },
171
+ {
172
+ "type": "MAX",
173
+ "agg_cols": ["COL2"],
174
+ "group_by_cols": ["COL9"]
175
+ },
176
+ {
177
+ "type": "COUNT",
178
+ "agg_cols": ["COL2"],
179
+ "group_by_cols": ["COL9"]
180
+ },
181
+ {
182
+ "type": "AVG",
183
+ "agg_cols": ["COL3"],
184
+ "group_by_cols": ["COL4"]
185
+ },
186
+ Query 1: SELECT MIN(COL1), AVG(COL3) FROM :table GROUP BY COL4
187
+ Rules: ID | Aggregate Type | Column | Group By Column
188
+ #1, MIN, COL1, COL4
189
+ #2, AVG, COL3, COL4
190
+ -------------------------------------------------------
191
+ Query 2: SELECT MAX(COL2), COUNT(COL2) FROM :table GROUP BY COL9
192
+ Rules: ID | Aggregate Type | Column | Group By Column
193
+ #1, MAX, COL2, COL9
194
+ #2, COUNT, COL2, COL9
195
+ 2. {
196
+ "type": "MAX",
197
+ "agg_cols": ["COL1"]
198
+ },
199
+ {
200
+ "type": "SUM",
201
+ "agg_cols": ["COL2"]
202
+ },
203
+ {
204
+ "type": "MAX",
205
+ "agg_cols": ["COL3"]
206
+ }
207
+ Query: SELECT MAX(COL1), SUM(COL2), MAX(COL3) FROM :table
208
+ Rules: ID | Aggregate Type | Column | Group By Column
209
+ #1, MAX, COL1,
210
+ #2, SUM, COL2,
211
+ #3, MAX, COL3,
212
+ """
213
+
214
+ src_query_builder = AggregateQueryBuilder(
215
+ table_conf,
216
+ src_schema,
217
+ "source",
218
+ self._source_engine,
219
+ self._source,
220
+ )
221
+
222
+ # build Aggregate queries for source,
223
+ src_agg_queries: list[AggregateQueryRules] = src_query_builder.build_queries()
224
+
225
+ # There could be one or more queries per table based on the group by columns
226
+
227
+ # build Aggregate queries for target(Databricks),
228
+ tgt_agg_queries: list[AggregateQueryRules] = AggregateQueryBuilder(
229
+ table_conf,
230
+ tgt_schema,
231
+ "target",
232
+ self._target_engine,
233
+ self._target,
234
+ ).build_queries()
235
+
236
+ volume_path = utils.generate_volume_path(table_conf, self._metadata_config)
237
+
238
+ table_agg_output: list[AggregateQueryOutput] = []
239
+
240
+ # Iterate over the grouped aggregates and reconcile the data
241
+ # Zip all the keys, read the source, target data for each Aggregate query
242
+ # and reconcile on the aggregate data
243
+ # For e.g., (source_query_GRP1, target_query_GRP1), (source_query_GRP2, target_query_GRP2)
244
+ for src_query_with_rules, tgt_query_with_rules in zip(src_agg_queries, tgt_agg_queries):
245
+ # For each Aggregate query, read the Source and Target Data and add a hash column
246
+
247
+ rules_reconcile_output: list[AggregateQueryOutput] = []
248
+ src_data = None
249
+ tgt_data = None
250
+ joined_df = None
251
+ data_source_exception = None
252
+ try:
253
+ src_data = self._source.read_data(
254
+ catalog=self._database_config.source_catalog,
255
+ schema=self._database_config.source_schema,
256
+ table=table_conf.source_name,
257
+ query=src_query_with_rules.query,
258
+ options=table_conf.jdbc_reader_options,
259
+ )
260
+ tgt_data = self._target.read_data(
261
+ catalog=self._database_config.target_catalog,
262
+ schema=self._database_config.target_schema,
263
+ table=table_conf.target_name,
264
+ query=tgt_query_with_rules.query,
265
+ options=table_conf.jdbc_reader_options,
266
+ )
267
+ # Join the Source and Target Aggregated data
268
+ joined_df = join_aggregate_data(
269
+ source=src_data,
270
+ target=tgt_data,
271
+ key_columns=src_query_with_rules.group_by_columns,
272
+ spark=self._spark,
273
+ path=f"{volume_path}{src_query_with_rules.group_by_columns_as_str}",
274
+ )
275
+ except DataSourceRuntimeException as e:
276
+ data_source_exception = e
277
+
278
+ # For each Aggregated Query, reconcile the data based on the rule
279
+ for rule in src_query_with_rules.rules:
280
+ if data_source_exception:
281
+ rule_reconcile_output = DataReconcileOutput(exception=str(data_source_exception))
282
+ else:
283
+ rule_reconcile_output = reconcile_agg_data_per_rule(
284
+ joined_df, src_data.columns, tgt_data.columns, rule
285
+ )
286
+ rules_reconcile_output.append(AggregateQueryOutput(rule=rule, reconcile_output=rule_reconcile_output))
287
+
288
+ # For each table, there could be many Aggregated queries.
289
+ # Collect the list of Rule Reconcile output per each Aggregate query and append it to the list
290
+ table_agg_output.extend(rules_reconcile_output)
291
+ return table_agg_output
292
+
293
+ def _get_sample_data(
294
+ self,
295
+ table_conf,
296
+ reconcile_output,
297
+ src_schema,
298
+ tgt_schema,
299
+ ):
300
+ mismatch = None
301
+ missing_in_src = None
302
+ missing_in_tgt = None
303
+
304
+ if (
305
+ reconcile_output.mismatch_count > 0
306
+ or reconcile_output.missing_in_src_count > 0
307
+ or reconcile_output.missing_in_tgt_count > 0
308
+ ):
309
+ src_sampler = SamplingQueryBuilder(table_conf, src_schema, "source", self._source_engine, self._source)
310
+ tgt_sampler = SamplingQueryBuilder(table_conf, tgt_schema, "target", self._target_engine, self._target)
311
+ if reconcile_output.mismatch_count > 0:
312
+ mismatch = self._get_mismatch_data(
313
+ src_sampler,
314
+ tgt_sampler,
315
+ reconcile_output.mismatch_count,
316
+ reconcile_output.mismatch.mismatch_df,
317
+ table_conf.join_columns,
318
+ table_conf.source_name,
319
+ table_conf.target_name,
320
+ table_conf.sampling_options,
321
+ )
322
+
323
+ if reconcile_output.missing_in_src_count > 0:
324
+ missing_in_src = Reconciliation._get_missing_data(
325
+ self._target,
326
+ tgt_sampler,
327
+ reconcile_output.missing_in_src,
328
+ self._database_config.target_catalog,
329
+ self._database_config.target_schema,
330
+ table_conf.target_name,
331
+ )
332
+
333
+ if reconcile_output.missing_in_tgt_count > 0:
334
+ missing_in_tgt = Reconciliation._get_missing_data(
335
+ self._source,
336
+ src_sampler,
337
+ reconcile_output.missing_in_tgt,
338
+ self._database_config.source_catalog,
339
+ self._database_config.source_schema,
340
+ table_conf.source_name,
341
+ )
342
+
343
+ return DataReconcileOutput(
344
+ mismatch=mismatch,
345
+ mismatch_count=reconcile_output.mismatch_count,
346
+ missing_in_src_count=reconcile_output.missing_in_src_count,
347
+ missing_in_tgt_count=reconcile_output.missing_in_tgt_count,
348
+ missing_in_src=missing_in_src,
349
+ missing_in_tgt=missing_in_tgt,
350
+ )
351
+
352
+ def _get_mismatch_data(
353
+ self,
354
+ src_sampler,
355
+ tgt_sampler,
356
+ mismatch_count,
357
+ mismatch,
358
+ key_columns,
359
+ src_table: str,
360
+ tgt_table: str,
361
+ sampling_options: SamplingOptions,
362
+ ):
363
+
364
+ tgt_sampling_query = tgt_sampler.build_query_with_alias()
365
+
366
+ sampling_model_target = self._target.read_data(
367
+ catalog=self._database_config.target_catalog,
368
+ schema=self._database_config.target_schema,
369
+ table=tgt_table,
370
+ query=tgt_sampling_query,
371
+ options=None,
372
+ )
373
+
374
+ # Uses pre-calculated `mismatch_count` from `reconcile_output.mismatch_count` to avoid from recomputing `mismatch` for RandomSampler.
375
+ mismatch_sampler = SamplerFactory.get_sampler(sampling_options)
376
+ df = mismatch_sampler.sample(mismatch, mismatch_count, key_columns, sampling_model_target).cache()
377
+
378
+ src_mismatch_sample_query = src_sampler.build_query(df)
379
+ tgt_mismatch_sample_query = tgt_sampler.build_query(df)
380
+
381
+ src_data = self._source.read_data(
382
+ catalog=self._database_config.source_catalog,
383
+ schema=self._database_config.source_schema,
384
+ table=src_table,
385
+ query=src_mismatch_sample_query,
386
+ options=None,
387
+ )
388
+ tgt_data = self._target.read_data(
389
+ catalog=self._database_config.target_catalog,
390
+ schema=self._database_config.target_schema,
391
+ table=tgt_table,
392
+ query=tgt_mismatch_sample_query,
393
+ options=None,
394
+ )
395
+
396
+ return capture_mismatch_data_and_columns(source=src_data, target=tgt_data, key_columns=key_columns)
397
+
398
+ def _reconcile_threshold_data(
399
+ self,
400
+ table_conf: Table,
401
+ src_schema: list[Schema],
402
+ tgt_schema: list[Schema],
403
+ ):
404
+
405
+ src_data, tgt_data = self._get_threshold_data(table_conf, src_schema, tgt_schema)
406
+
407
+ source_view = f"source_{table_conf.source_name}_df_threshold_vw"
408
+ target_view = f"target_{table_conf.target_name}_df_threshold_vw"
409
+
410
+ src_data.createOrReplaceTempView(source_view)
411
+ tgt_data.createOrReplaceTempView(target_view)
412
+
413
+ return self._compute_threshold_comparison(table_conf, src_schema)
414
+
415
+ def _get_threshold_data(
416
+ self,
417
+ table_conf: Table,
418
+ src_schema: list[Schema],
419
+ tgt_schema: list[Schema],
420
+ ) -> tuple[DataFrame, DataFrame]:
421
+ src_threshold_query = ThresholdQueryBuilder(
422
+ table_conf, src_schema, "source", self._source_engine, self._source
423
+ ).build_threshold_query()
424
+ tgt_threshold_query = ThresholdQueryBuilder(
425
+ table_conf, tgt_schema, "target", self._target_engine, self._target
426
+ ).build_threshold_query()
427
+
428
+ src_data = self._source.read_data(
429
+ catalog=self._database_config.source_catalog,
430
+ schema=self._database_config.source_schema,
431
+ table=table_conf.source_name,
432
+ query=src_threshold_query,
433
+ options=table_conf.jdbc_reader_options,
434
+ )
435
+ tgt_data = self._target.read_data(
436
+ catalog=self._database_config.target_catalog,
437
+ schema=self._database_config.target_schema,
438
+ table=table_conf.target_name,
439
+ query=tgt_threshold_query,
440
+ options=table_conf.jdbc_reader_options,
441
+ )
442
+
443
+ return src_data, tgt_data
444
+
445
+ def _compute_threshold_comparison(self, table_conf: Table, src_schema: list[Schema]) -> ThresholdOutput:
446
+ threshold_comparison_query = ThresholdQueryBuilder(
447
+ table_conf, src_schema, "target", self._target_engine, self._target
448
+ ).build_comparison_query()
449
+
450
+ threshold_result = self._target.read_data(
451
+ catalog=self._database_config.target_catalog,
452
+ schema=self._database_config.target_schema,
453
+ table=table_conf.target_name,
454
+ query=threshold_comparison_query,
455
+ options=table_conf.jdbc_reader_options,
456
+ )
457
+ threshold_columns = table_conf.get_threshold_columns("source")
458
+ failed_where_cond = " OR ".join([name + "_match = 'Failed'" for name in threshold_columns])
459
+ mismatched_df = threshold_result.filter(failed_where_cond)
460
+ mismatched_count = mismatched_df.count()
461
+ threshold_df = None
462
+ if mismatched_count > 0:
463
+ threshold_df = mismatched_df.limit(_SAMPLE_ROWS)
464
+
465
+ return ThresholdOutput(threshold_df=threshold_df, threshold_mismatch_count=mismatched_count)
466
+
467
+ def get_record_count(self, table_conf: Table, report_type: str) -> ReconcileRecordCount:
468
+ if report_type != "schema":
469
+ source_count_query = CountQueryBuilder(table_conf, "source", self._source_engine).build_query()
470
+ target_count_query = CountQueryBuilder(table_conf, "target", self._target_engine).build_query()
471
+ source_count_row = self._source.read_data(
472
+ catalog=self._database_config.source_catalog,
473
+ schema=self._database_config.source_schema,
474
+ table=table_conf.source_name,
475
+ query=source_count_query,
476
+ options=None,
477
+ ).first()
478
+ target_count_row = self._target.read_data(
479
+ catalog=self._database_config.target_catalog,
480
+ schema=self._database_config.target_schema,
481
+ table=table_conf.target_name,
482
+ query=target_count_query,
483
+ options=None,
484
+ ).first()
485
+
486
+ source_count = int(source_count_row[0]) if source_count_row is not None else 0
487
+ target_count = int(target_count_row[0]) if target_count_row is not None else 0
488
+
489
+ return ReconcileRecordCount(source=int(source_count), target=int(target_count))
490
+ return ReconcileRecordCount()
491
+
492
+ @staticmethod
493
+ def _get_missing_data(
494
+ reader: DataSource,
495
+ sampler: SamplingQueryBuilder,
496
+ missing_df: DataFrame,
497
+ catalog: str,
498
+ schema: str,
499
+ table_name: str,
500
+ ) -> DataFrame:
501
+ sample_query = sampler.build_query(missing_df)
502
+ return reader.read_data(
503
+ catalog=catalog,
504
+ schema=schema,
505
+ table=table_name,
506
+ query=sample_query,
507
+ options=None,
508
+ )