data-science-document-ai 1.56.1__py3-none-any.whl → 1.58.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: data-science-document-ai
3
- Version: 1.56.1
3
+ Version: 1.58.0
4
4
  Summary: "Document AI repo for data science"
5
5
  Author: Naomi Nguyen
6
6
  Author-email: naomi.nguyen@forto.com
@@ -1,32 +1,32 @@
1
- src/constants.py,sha256=H43Az9AtoBKfcq9yY4TQQJY8DfdILV5kXy8EMtRaWYA,3583
1
+ src/constants.py,sha256=Mr5HcoMSFQlXY24shJ1EpNKtCBJP_Ai0LZj-0i3BVGk,2845
2
2
  src/constants_sandbox.py,sha256=Iu6HdjCoNSmOX0AwoL9qUQkhq_ZnIN5U9e-Q2UfNuGc,547
3
3
  src/docai.py,sha256=dHuR0ehVjUi1CnoNvdp_yxJtpU_HFXqAZ61ywdz7BEo,5655
4
- src/docai_processor_config.yaml,sha256=4yKKZPvFCA-3S56jDYSqMGKXGFND-768OiU2seRiAzE,604
4
+ src/docai_processor_config.yaml,sha256=ZewXqbyiftzmVAaS08BoNp5trY6WXx3HMWDfPwmKfaI,256
5
5
  src/excel_processing.py,sha256=TRgAzSHvL1WKbUgjHtpXL701bPhiWGH7kk3S6e1UPaA,3074
6
6
  src/io.py,sha256=rYjXVLlriEacw1uNuPIYhg12bXNu48Qs9GYMY2YcVTE,5563
7
7
  src/llm.py,sha256=a7UYA4ITUNjzct_2fHgM-bma_XWc28VC0FV71g9tnUI,7137
8
8
  src/log_setup.py,sha256=RhHnpXqcl-ii4EJzRt47CF2R-Q3YPF68tepg_Kg7tkw,2895
9
- src/pdf_processing.py,sha256=81fS2xL36n9QgB7DpXe7SCS-Lyz11cFDgccYMK3ZVkk,20026
10
- src/postprocessing/common.py,sha256=dagAg0hZGuZc03bXdfOolxekewMEVUfz917IGCiAtWI,26118
9
+ src/pdf_processing.py,sha256=Fx-Glb9niEUU3WUCrBZ02ZYV-E2vWoUM0ifN7-0A1Q4,19961
10
+ src/postprocessing/common.py,sha256=tyy97UBfcnSs8Oh5vVDp4D1qDRit32ri9IGqRlNZcaY,27254
11
11
  src/postprocessing/postprocess_booking_confirmation.py,sha256=nK32eDiBNbauyQz0oCa9eraysku8aqzrcoRFoWVumDU,4827
12
12
  src/postprocessing/postprocess_commercial_invoice.py,sha256=3I8ijluTZcOs_sMnFZxfkAPle0UFQ239EMuvZfDZVPg,1028
13
13
  src/postprocessing/postprocess_partner_invoice.py,sha256=WuaTQK5D09dV_QNrh29ZoKX9IvQn2Ub-WnAMyRjCsvI,14240
14
14
  src/prompts/library/arrivalNotice/other/placeholders.json,sha256=1vzly1amgyKt3jr2JJQbb24kNZsnI289iduvoUo5dJU,3061
15
15
  src/prompts/library/arrivalNotice/other/prompt.txt,sha256=QNuU-BvMA8VbdupVNapad4O3WmCotH5cKNxImRMbKDk,2906
16
- src/prompts/library/bookingConfirmation/evergreen/placeholders.json,sha256=IpM9nmSPdyroliZfXB1-NDCjiHZX_Ff5BH7-scNhGqE,1406
17
- src/prompts/library/bookingConfirmation/evergreen/prompt.txt,sha256=5ivskCG831M2scW3oqQaoltXIyHV-n6DYUygWycXxjw,2755
18
- src/prompts/library/bookingConfirmation/hapag-lloyd/placeholders.json,sha256=hMPNt9s3LuxR85AxYy7bPcCDleug6gSwVjefm3ismWY,1405
19
- src/prompts/library/bookingConfirmation/hapag-lloyd/prompt.txt,sha256=XgfhrFTXLJ467L4Cer77K0KTPtWTg_-QJXCsltvLlpI,3430
20
- src/prompts/library/bookingConfirmation/maersk/placeholders.json,sha256=6p_IQMA1PUgGZqjf_by4ja9jK27ba4loYhEpIa7Oxx4,1406
21
- src/prompts/library/bookingConfirmation/maersk/prompt.txt,sha256=t-yh1dOrcRa0fm0VPFC1xCRBf0R0Zjp9j_Hb31aZS1w,3223
22
- src/prompts/library/bookingConfirmation/msc/placeholders.json,sha256=IpM9nmSPdyroliZfXB1-NDCjiHZX_Ff5BH7-scNhGqE,1406
23
- src/prompts/library/bookingConfirmation/msc/prompt.txt,sha256=_Jfioislp7SNs2BEXoklvnTPVXe6Z0M6myD1IWnBFYQ,4705
24
- src/prompts/library/bookingConfirmation/oocl/placeholders.json,sha256=JTtWvLSsoxN7huXY8ZNqqPkODM-DOs5wu3YvNHOna3k,1404
25
- src/prompts/library/bookingConfirmation/oocl/prompt.txt,sha256=xNTrJdUtDalcP3AKkfRiOnHjAdRCbcTvehcBQKurRj0,2201
26
- src/prompts/library/bookingConfirmation/other/placeholders.json,sha256=IpM9nmSPdyroliZfXB1-NDCjiHZX_Ff5BH7-scNhGqE,1406
27
- src/prompts/library/bookingConfirmation/other/prompt.txt,sha256=kUK7NgVNDYFMnqOcIblCwWSw2SC0YQEtHsYrspiVUMo,3379
28
- src/prompts/library/bookingConfirmation/yangming/placeholders.json,sha256=IpM9nmSPdyroliZfXB1-NDCjiHZX_Ff5BH7-scNhGqE,1406
29
- src/prompts/library/bookingConfirmation/yangming/prompt.txt,sha256=fYKfusDajDFw0v54-nv2iAqUSp2yCeOzc6G7AFe-h2w,3226
16
+ src/prompts/library/bookingConfirmation/evergreen/placeholders.json,sha256=5efq6b--KGWeqGbvASZFTqXJgUEAvsC-0ljo-q0Lhew,5855
17
+ src/prompts/library/bookingConfirmation/evergreen/prompt.txt,sha256=OxNfXZaWppwsFMprthzJpOOr8ApQL4KYEmlu9fSUvxk,3485
18
+ src/prompts/library/bookingConfirmation/hapag-lloyd/placeholders.json,sha256=en83Em25e5PF2OAgFJC8w-MONVnketPZ3J_3zCjIVfE,5915
19
+ src/prompts/library/bookingConfirmation/hapag-lloyd/prompt.txt,sha256=bLHQgGR9e8X4UvFpiyd1OasD00XGvUMG6HSLQy4IgQ4,5157
20
+ src/prompts/library/bookingConfirmation/maersk/placeholders.json,sha256=5efq6b--KGWeqGbvASZFTqXJgUEAvsC-0ljo-q0Lhew,5855
21
+ src/prompts/library/bookingConfirmation/maersk/prompt.txt,sha256=S-C5cq8AkEoGKilCO0XiXLZXgZPwz9udQOTm557GG64,3984
22
+ src/prompts/library/bookingConfirmation/msc/placeholders.json,sha256=5efq6b--KGWeqGbvASZFTqXJgUEAvsC-0ljo-q0Lhew,5855
23
+ src/prompts/library/bookingConfirmation/msc/prompt.txt,sha256=bojE6BytnEoQfdXrQebaXYTToDF1Fbyn4YdIGMke2Jo,5463
24
+ src/prompts/library/bookingConfirmation/oocl/placeholders.json,sha256=LqjzD-8LkX9hAq3eOBMwit6tLrSLmVMUXTIyhBEaYxk,6037
25
+ src/prompts/library/bookingConfirmation/oocl/prompt.txt,sha256=pCsj2BNnP-_kwgUEDt8IehO-tyMv6qeD5nyIzXJL3c0,2925
26
+ src/prompts/library/bookingConfirmation/other/placeholders.json,sha256=LqjzD-8LkX9hAq3eOBMwit6tLrSLmVMUXTIyhBEaYxk,6037
27
+ src/prompts/library/bookingConfirmation/other/prompt.txt,sha256=-629upv9-ciO6eG3A0_2TTjy7iLlInMsmQfSwAukjLg,4919
28
+ src/prompts/library/bookingConfirmation/yangming/placeholders.json,sha256=LqjzD-8LkX9hAq3eOBMwit6tLrSLmVMUXTIyhBEaYxk,6037
29
+ src/prompts/library/bookingConfirmation/yangming/prompt.txt,sha256=gySDhfRdQHy3IIomOR3qwY49wlO63Xw73GUSPrEkkr4,3990
30
30
  src/prompts/library/bundeskasse/other/placeholders.json,sha256=7xKzi_ypkIICO9nrEl45W9G7-h33uWVRVWnpg2b5lUg,4288
31
31
  src/prompts/library/bundeskasse/other/prompt.txt,sha256=miNYoqRZEd6Z1LNisTahX1-tenzr5kEpRA6gvPH7NCw,3316
32
32
  src/prompts/library/commercialInvoice/other/placeholders.json,sha256=zUK2mg9MnHiEQRYF6VgTiUiq68WGy5f7_4qL63CWyR0,4700
@@ -52,9 +52,9 @@ src/prompts/library/preprocessing/carrier/prompt.txt,sha256=NLvRZQCZ6aWC1yTr7Q93
52
52
  src/prompts/library/shippingInstruction/other/placeholders.json,sha256=eK4AeMfORkGMWVYcqH7NjB56Zb4swHTvcQD5UQbTryg,6374
53
53
  src/prompts/library/shippingInstruction/other/prompt.txt,sha256=CbrqlKMtB-sVY-8E460KP1KNmz169YVPMrH3-uEldPg,2135
54
54
  src/prompts/prompt_library.py,sha256=VJWHeXN-s501C2GiidIIvQQuZdU6T1R27hE2dKBiI40,2555
55
- src/setup.py,sha256=yb0Pz1RI-uId5lEjgQrj1Pqo9FvwG9vs0HXRVbyST2M,7186
55
+ src/setup.py,sha256=8-vZWjC8Iwa3xxdk3iR4412VCjtNtgzVqkXcFon7UBE,7309
56
56
  src/tms.py,sha256=UXbIo1QE--hIX6NZi5Qyp2R_CP338syrY9pCTPrfgnE,1741
57
- src/utils.py,sha256=Ow5_Jals88o8mbZ1BoHfZpHZoCfig_UQb5aalH-mpWE,17278
58
- data_science_document_ai-1.56.1.dist-info/METADATA,sha256=4rIhyVd5XG02M7f9l2UYjH6r-pjzpNiobuZ-v-trvtE,2152
59
- data_science_document_ai-1.56.1.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
60
- data_science_document_ai-1.56.1.dist-info/RECORD,,
57
+ src/utils.py,sha256=8BpuJJLiJZntZAI86cQMNa-FGjl9jbOjlCWIG27mjJo,17418
58
+ data_science_document_ai-1.58.0.dist-info/METADATA,sha256=8MWt4KlixrpV8lQhKmFo5i1UZn02o16vMaR3uEe94Js,2152
59
+ data_science_document_ai-1.58.0.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
60
+ data_science_document_ai-1.58.0.dist-info/RECORD,,
src/constants.py CHANGED
@@ -37,6 +37,8 @@ project_parameters = {
37
37
  # models metadata (confidence),
38
38
  "g_model_data_folder": "models",
39
39
  "local_model_data_folder": "data",
40
+ "if_use_docai": False,
41
+ "if_use_llm": True, # Keep it always True
40
42
  "released_doc_types": {
41
43
  "bookingConfirmation",
42
44
  "packingList",
@@ -51,16 +53,6 @@ project_parameters = {
51
53
  "customsInvoice",
52
54
  "bundeskasse",
53
55
  },
54
- "model_selector": {
55
- "stable": {
56
- "bookingConfirmation": 1,
57
- },
58
- "beta": {
59
- "bookingConfirmation": 0,
60
- },
61
- },
62
- # this is the model selector for the model to be used from the model_config.yaml
63
- # file based on the environment, 0 mean the first model in the list
64
56
  # LLM model parameters
65
57
  "gemini_params": {
66
58
  "temperature": 0,
@@ -78,25 +70,15 @@ project_parameters = {
78
70
  "seed": 42,
79
71
  "model_id": "gemini-2.5-flash",
80
72
  },
81
- # Key to combine the LLM results with the Doc Ai results
82
- "key_to_combine": {
83
- "bookingConfirmation": ["transportLegs"],
84
- "arrivalNotice": ["containers"],
85
- "finalMbL": ["containers"],
86
- "draftMbl": ["containers"],
87
- "deliveryOrder": ["Equipment", "TransportLeg"],
88
- "customsAssessment": ["containers"],
89
- "packingList": ["skuData"],
90
- "commercialInvoice": ["skus"],
91
- "shippingInstruction": ["containers"],
92
- "partnerInvoice": ["lineItem"],
93
- "customsInvoice": ["lineItem"],
94
- "bundeskasse": ["lineItem"],
95
- },
96
73
  }
97
74
 
98
75
  # Hardcoded rules for data points formatting that can't be based on label name alone
99
76
  formatting_rules = {
100
- "bookingConfirmation": {"pickUpTerminal": "depot", "gateInTerminal": "terminal"},
77
+ "bookingConfirmation": {
78
+ "pickUpDepotCode": "depot",
79
+ "dropOffDepotCode": "depot",
80
+ "gateInTerminalCode": "terminal",
81
+ "pickUpTerminalCode": "terminal",
82
+ },
101
83
  "deliveryOrder": {"pickUpTerminal": "terminal", "EmptyContainerDepot": "depot"},
102
84
  }
@@ -7,16 +7,3 @@ model_config:
7
7
  display_name: "doc_cap_bookingConfirmation"
8
8
  author: "reet.kanjilal@forto.com"
9
9
  created_date: ""
10
- - id: "3c280b11bdb3ed89"
11
- details:
12
- display_name: "doc_cap_BC_mlg"
13
- author: "igor.tonko@forto.com"
14
- created_date: ""
15
-
16
- beta:
17
- bookingConfirmation:
18
- - id: "3c280b11bdb3ed89"
19
- details:
20
- display_name: "doc_cap_BC_mlg"
21
- author: "igor.tonko@forto.com"
22
- created_date: ""
src/pdf_processing.py CHANGED
@@ -201,9 +201,6 @@ async def process_file_w_llm(params, file_content, input_doc_type, llm_client):
201
201
  number_of_pages = get_pdf_page_count(file_content)
202
202
  logger.info(f"processing {input_doc_type} with {number_of_pages} pages...")
203
203
 
204
- # get the schema placeholder
205
- response_schema = prompt_library.library[input_doc_type]["other"]["placeholders"]
206
-
207
204
  carrier = "other"
208
205
  carrier_schema = (
209
206
  prompt_library.library.get("preprocessing", {})
@@ -240,6 +237,9 @@ async def process_file_w_llm(params, file_content, input_doc_type, llm_client):
240
237
  # get the related prompt from predefined prompt library
241
238
  prompt = prompt_library.library[input_doc_type][carrier]["prompt"]
242
239
 
240
+ # get the schema placeholder
241
+ response_schema = prompt_library.library[input_doc_type][carrier]["placeholders"]
242
+
243
243
  # Add page-number extraction for moderately large docs
244
244
  use_chunking = number_of_pages >= params["chunk_after"]
245
245
 
@@ -353,8 +353,7 @@ async def extract_data_from_pdf_w_llm(params, input_doc_type, file_content, llm_
353
353
  # Add currency from the amount field
354
354
  if input_doc_type in ["commercialInvoice"]:
355
355
  result = postprocessing_commercial_invoice(result, params, input_doc_type)
356
- elif input_doc_type == "bookingConfirmation":
357
- result = postprocess_booking_confirmation(result)
356
+
358
357
  return result, llm_client.model_id
359
358
 
360
359
 
@@ -373,13 +372,14 @@ def combine_llm_results_w_doc_ai(
373
372
  Returns:
374
373
  combined result
375
374
  """
376
- result = doc_ai.copy()
377
- llm = remove_none_values(llm)
378
- if not llm:
375
+ result = remove_none_values(llm)
376
+
377
+ docAi = doc_ai.copy()
378
+ if not docAi:
379
379
  return result
380
380
 
381
381
  # Merge top-level keys
382
- result.update({k: v for k, v in llm.items() if k not in result})
382
+ result.update({k: v for k, v in docAi.items() if k not in result})
383
383
 
384
384
  if (
385
385
  input_doc_type
@@ -387,28 +387,28 @@ def combine_llm_results_w_doc_ai(
387
387
  and keys_to_combine
388
388
  ):
389
389
  result.update(
390
- {key: llm.get(key) for key in keys_to_combine if key in llm.keys()}
390
+ {key: docAi.get(key) for key in keys_to_combine if key in docAi.keys()}
391
391
  )
392
392
  return result
393
393
 
394
394
  # Handle specific key-based merging logic for multiple keys
395
395
  if keys_to_combine:
396
396
  for key in keys_to_combine:
397
- if key in llm.keys():
397
+ if key in docAi.keys():
398
398
  # Merge the list of dictionaries
399
- # If the length of the LLM list is less than the Doc AI result, replace with the LLM list
400
- if len(llm[key]) < len(result[key]):
401
- result[key] = llm[key]
399
+ # If the length of the docAi list is less than the LLM result, replace with the docAi list
400
+ if len(docAi[key]) < len(result[key]):
401
+ result[key] = docAi[key]
402
402
  else:
403
- # If the length of the LLM list is greater than or equal to the Doc AI result,
403
+ # If the length of the docAi list is greater than or equal to the LLM result,
404
404
  # add & merge the dictionaries
405
- if isinstance(llm[key], list):
406
- for i in range(len(llm[key])):
405
+ if isinstance(docAi[key], list):
406
+ for i in range(len(docAi[key])):
407
407
  if i == len(result[key]):
408
- result[key].append(llm[key][i])
408
+ result[key].append(docAi[key][i])
409
409
  else:
410
- for sub_key in llm[key][i].keys():
411
- result[key][i][sub_key] = llm[key][i][sub_key]
410
+ for sub_key in docAi[key][i].keys():
411
+ result[key][i][sub_key] = docAi[key][i][sub_key]
412
412
  return result
413
413
 
414
414
 
@@ -502,13 +502,15 @@ async def data_extraction_manual_flow(
502
502
  page_count = None
503
503
  # Validate the file type
504
504
  if mime_type == "application/pdf":
505
+ if_use_docai = params["if_use_docai"]
506
+
505
507
  # Enable Doc Ai only for certain document types.
506
- if_use_docai = (
507
- True if meta.documentTypeCode in params["model_config"]["stable"] else False
508
- )
509
- if_use_llm = (
510
- True if meta.documentTypeCode in params["key_to_combine"].keys() else False
511
- )
508
+ if params["if_use_docai"]:
509
+ if_use_docai = (
510
+ True
511
+ if meta.documentTypeCode in params["model_config"]["stable"]
512
+ else False
513
+ )
512
514
 
513
515
  (
514
516
  extracted_data,
@@ -520,7 +522,7 @@ async def data_extraction_manual_flow(
520
522
  meta.documentTypeCode,
521
523
  processor_client,
522
524
  if_use_docai=if_use_docai,
523
- if_use_llm=if_use_llm,
525
+ if_use_llm=params["if_use_llm"],
524
526
  llm_client=llm_client,
525
527
  isBetaTest=False,
526
528
  )
@@ -723,10 +723,45 @@ async def format_all_entities(result, document_type_code, params, mime_type):
723
723
  if document_type_code in ["partnerInvoice", "bundeskasse"]:
724
724
  await process_partner_invoice(params, aggregated_data, document_type_code)
725
725
 
726
+ if document_type_code in ["bookingConfirmation"]:
727
+ aggregated_data["legalEntity"] = await get_legal_entity(
728
+ aggregated_data.get("carrierName", {}).get("documentValue", None),
729
+ aggregated_data.get("carrierAddress", {}).get("documentValue", None),
730
+ )
731
+
726
732
  logger.info("Data Extraction completed successfully")
727
733
  return aggregated_data
728
734
 
729
735
 
736
+ async def get_legal_entity(name, address):
737
+ """Get legal entity mapping from TMS mappings.
738
+
739
+ Args:
740
+ name (str): The name of the legal entity. Mandatory.
741
+ address (str): The address of the legal entity. Optional for better matching.
742
+
743
+ Returns:
744
+ dict or None: The mapping result from TMS embeddings, or None if not found.
745
+ """
746
+ # Name is mandatory for legal entity mapping
747
+ if not name:
748
+ return {"documentValue": None, "mappedValue": None}
749
+
750
+ # Build input safely
751
+ input_text = name if not address else f"{name} | {address}"
752
+
753
+ api_results = await get_tms_mappings(
754
+ input_list=[input_text],
755
+ embedding_type="legal_entities",
756
+ input_key="partnerNameAddress",
757
+ )
758
+
759
+ return {
760
+ "documentValue": None,
761
+ "formattedValue": api_results.get(input_text),
762
+ }
763
+
764
+
730
765
  def add_text_without_space(text):
731
766
  """If the cleaned text is different from the original text, append it.
732
767
  Useful for port names like QUINHON - Quinhon"""
@@ -1,32 +1,146 @@
1
1
  {
2
2
  "type": "OBJECT",
3
3
  "properties": {
4
- "cfsCutOff": {"type": "STRING", "nullable": true, "description": "the date by which an LCL (Less than Container Load) shipment needs to be checked in to a CFS (Container Freight Station) to meet its scheduled sailing"},
5
- "bookingNumber": {"type": "STRING", "nullable": true},
6
- "cyCutOff": {"type": "STRING", "nullable": true},
7
- "gateInReference": {"type": "STRING", "nullable": true},
8
- "gateInTerminal": {"type": "STRING", "nullable": true},
9
- "mblNumber": {"type": "STRING", "nullable": true},
10
- "pickUpReference": {"type": "STRING", "nullable": true},
11
- "pickUpTerminal": {"type": "STRING", "nullable": true},
12
- "siCutOff": {"type": "STRING", "nullable": true},
13
- "vgmCutOff": {"type": "STRING", "nullable": true},
4
+ "bookingNumber": {
5
+ "type": "STRING",
6
+ "nullable": true,
7
+ "description": "A unique identifier assigned to the shipment booking, used for tracking and reference. They are often referred to as 'Booking No.', 'Booking Reference', 'Our Reference', or 'Order Ref'."
8
+ },
9
+ "contractNumber": {
10
+ "type": "STRING",
11
+ "nullable": true,
12
+ "description": "It's a contract number between the carrier and Forto Logistics SE & Co KG."
13
+ },
14
+ "pickUpTerminalCode": {
15
+ "type": "STRING",
16
+ "nullable": true,
17
+ "description": "The specific terminal for cargo pickup during the import shipment."
18
+ },
19
+ "gateInTerminalCode": {
20
+ "type": "STRING",
21
+ "nullable": true,
22
+ "description": "The specific terminal where cargo is gated in especially Export terminal delivery address. E.g., Export terminal delivery address, Export terminal location, or Export terminal name."
23
+ },
24
+ "performaDate": {
25
+ "type": "STRING",
26
+ "nullable": true,
27
+ "description": "The date considered to apply the rates and charges specified in the booking confirmation"
28
+ },
29
+ "cyCutOff": {
30
+ "type": "STRING",
31
+ "nullable": true,
32
+ "description": "The datetime by which the cargo to be delivered to the Container Yard. It can be found with keys FCL delivery cut-off, FCL DG delivery cut-off, CY CUT OFF, CY Closing."
33
+ },
34
+ "gateInReference": {
35
+ "type": "STRING",
36
+ "nullable": true,
37
+ "description": "A reference code for cargo entering the terminal to drop the loaded cargo for Export. Sometimes it can be 'Our Reference'."
38
+ },
39
+ "mblNumber": {
40
+ "type": "STRING",
41
+ "nullable": true,
42
+ "description": "Bill of Lading number (B/L NO.), a document issued by the carrier."
43
+ },
44
+ "pickUpReference": {
45
+ "type": "STRING",
46
+ "nullable": true,
47
+ "description": "A reference code for cargo pickup during the import shipment. Sometimes it can be 'Our Reference'."
48
+ },
49
+ "siCutOff": {
50
+ "type": "STRING",
51
+ "nullable": true,
52
+ "description": "The deadline datetime for submitting the Shipping Instructions (SI) to the carrier. It can be found with keys Shipping Instruction Closing."
53
+ },
54
+ "vgmCutOff": {
55
+ "type": "STRING",
56
+ "nullable": true,
57
+ "description": "The deadline datetime for submitting the Verified Gross Mass (VGM) to the carrier. It can be found with keys VGM DEADLINE, VGM DUE, VGM CUT OFF."
58
+ },
59
+ "containers": {
60
+ "type": "ARRAY",
61
+ "items": {
62
+ "type": "OBJECT",
63
+ "properties": {
64
+ "containerType": {
65
+ "type": "STRING",
66
+ "nullable": true,
67
+ "description": "The size / type of the container, such as 20ft, 40ft, 40HC, 20DC etc under Type/Size column."
68
+ },
69
+ "pickUpDepotCode": {
70
+ "type": "STRING",
71
+ "nullable": true,
72
+ "description": "The depot code where the empty container will be picked up. It is identified as Empty Pick Up Depot or Export Empty Pick Up Depot(s)."
73
+ },
74
+ "dropOffDepotCode": {
75
+ "type": "STRING",
76
+ "nullable": true,
77
+ "description": "The depot code where the empty container will be dropped off."
78
+ }
79
+ }
80
+ },
81
+ "required": ["containerType", "pickupDepotCode", "dropoffDepotCode"]
82
+ },
14
83
  "transportLegs": {
15
84
  "type": "ARRAY",
16
85
  "items": {
17
86
  "type": "OBJECT",
18
87
  "properties": {
19
- "eta": {"type": "STRING", "nullable": true},
20
- "etd": {"type": "STRING", "nullable": true},
21
- "imoNumber": {"type": "STRING", "nullable": true},
22
- "portOfDischarge": {"type": "STRING", "nullable": true},
23
- "portOfLoading": {"type": "STRING", "nullable": true},
24
- "vesselName": {"type": "STRING", "nullable": true},
25
- "voyage": {"type": "STRING", "nullable": true}
26
- },
27
- "required": []
28
- }
88
+ "eta": {
89
+ "type": "STRING",
90
+ "nullable": true,
91
+ "description": "Estimated Time of Arrival (ETA) is the expected date when the shipment will arrive at its destination."
92
+ },
93
+ "etd": {
94
+ "type": "STRING",
95
+ "nullable": true,
96
+ "description": "Estimated Time of Departure (ETD) is the expected date when the shipment will leave the origin port."
97
+ },
98
+ "imoNumber": {
99
+ "type": "STRING",
100
+ "nullable": true,
101
+ "description": "The International Maritime Organization number for a specific leg. It can be found as IMO No, IMO number."
102
+ },
103
+ "portOfDischarge": {
104
+ "type": "STRING",
105
+ "nullable": true,
106
+ "description": "The port where the goods are discharged from the vessel. This is the destination port for the shipment. It can be found at POD, Port of Discharge, To, Discharge Port"
107
+ },
108
+ "portOfLoading": {
109
+ "type": "STRING",
110
+ "nullable": true,
111
+ "description": "The port where the goods are loaded onto the vessel. This is the origin port for the shipment. It can be found at POL, Port of Loading, From, Load Port"
112
+ },
113
+ "vesselName": {
114
+ "type": "STRING",
115
+ "nullable": true,
116
+ "description": "The name of the vessel carrying the shipment. It can be found at vessel, INTENDED VESSEL/VOYAGE"
117
+ },
118
+ "voyage": {
119
+ "type": "STRING",
120
+ "nullable": true,
121
+ "description": "The journey or route taken by the vessel for a specific leg. It can be found at Voy. no, INTENDED VESSEL/VOYAGE"
122
+ }
123
+ }
124
+ },
125
+ "required": [
126
+ "eta",
127
+ "etd",
128
+ "portOfDischarge",
129
+ "portOfLoading",
130
+ "vesselName",
131
+ "voyage"
132
+ ]
133
+ },
134
+ "carrierAddress": {
135
+ "type": "STRING",
136
+ "nullable": true,
137
+ "description": "The address of the carrier who provides service and issued the document."
138
+ },
139
+ "carrierName": {
140
+ "type": "STRING",
141
+ "nullable": true,
142
+ "description": "The name of the carrier who issued the document e,g, Hapag-Lloyd."
29
143
  }
30
144
  },
31
- "required": []
145
+ "required": ["bookingNumber", "transportLegs", "containers", "cyCutOff", "vgmCutOff", "siCutOff"]
32
146
  }
@@ -1,6 +1,14 @@
1
- your task is to extract the text value of the following entities and page numbers starting from 0 where the value was found in the document:
2
- ```json
3
- {
1
+ <PERSONA> You are an efficient document entity data extraction specialist working for a Freight Forwarding company. <PERSONA>
2
+
3
+ <TASK> Your task is to extract data from Booking Confirmation documents as per the given response schema structure. <TASK>
4
+
5
+ <CONTEXT>
6
+ The Freight Forwarding company receives Booking Confirmation from EverGreen Carrier (Shipping Lines) partner.
7
+ These Booking Confirmations contain various details related to booking, container pick up and drop off depot details, vessel details, as well as other transport Legs data.
8
+ They may be written in different languages such as English, German, Vietnamese, Chinese, and other European languages, and can appear in a variety of formats and layouts.
9
+ Your role is to accurately extract specific entities from these Booking Confirmations to support efficient processing and accurate record-keeping.
10
+ <CONTEXT>
11
+
4
12
  "mblNumber": "Extract the value after the label 'BOOKING NO.'.",
5
13
  "gateInReference": "Extract the value after the label 'BOOKING NO.'.",
6
14
  "pickUpReference": "Extract the value after the label 'BOOKING NO.'.",
@@ -14,23 +22,19 @@ your task is to extract the text value of the following entities and page number
14
22
  "portOfDischarge": "Extract the text after the label 'PORT OF DISCHARGING:' and before 'FINAL DESTINATION'.",
15
23
  "pickUpTerminal": "Extract the text after the label 'EMPTY PICK UP AT:' removing any extra spaces or line breaks.",
16
24
  "gateInTerminal": "Extract the text after the label 'FULL RETURN TO:' removing any extra spaces or line breaks.",
17
- "transportLegs": [
18
- {
19
- "portOfLoading": "For the first leg, use the extracted 'portOfLoading'.",
20
- "portOfDischarge": "Extract the text after the label 'T/S PORT OF LOADING:'.",
21
- "vesselName": "For the first leg, use the extracted 'vesselName'.",
22
- "voyage": "Voyage is a code of numbers and letters sometimes separated by '-'. For the first leg, use the extracted 'voyage'.",
23
- "eta": "Extract the date after the label 'ETA DATE' that appears within the section starting with 'FINAL DESTINATION:' and ending with 'T/S PORT OF LOADING:'.",
24
- "etd": "Extract the date after the label 'ETD DATE' that appears within the section starting with 'PORT OF LOADING:' and ending with 'FINAL DESTINATION:'.",
25
- },
26
- {
25
+
26
+ "transportLegs":
27
+ "portOfLoading": "For the first leg, use the extracted 'portOfLoading'.",
28
+ "portOfDischarge": "Extract the text after the label 'T/S PORT OF LOADING:'.",
29
+ "vesselName": "For the first leg, use the extracted 'vesselName'.",
30
+ "voyage": "Voyage is a code of numbers and letters sometimes separated by '-'. For the first leg, use the extracted 'voyage'.",
31
+ "eta": "Extract the date after the label 'ETA DATE' that appears within the section starting with 'FINAL DESTINATION:' and ending with 'T/S PORT OF LOADING:'.",
32
+ "etd": "Extract the date after the label 'ETD DATE' that appears within the section starting with 'PORT OF LOADING:' and ending with 'FINAL DESTINATION:'.",
33
+
34
+
27
35
  "portOfLoading": "For the second leg, use the 'portOfDischarge' from the previous leg.",
28
36
  "portOfDischarge": "For the second leg, use the extracted 'portOfDischarge' from the main extraction.",
29
37
  "vesselName": "Extract the text after the label 'EST. CONNECT VSL/VOY:' and before the hyphen and numbers.",
30
38
  "voyage": "Voyage is a code of numbers and letters sometimes separated by '-'. Extract the code after the label 'EST. CONNECT VSL/VOY:' and after the vessel name.",
31
39
  "eta": "Extract the date after the label 'ETA DATE' that is after the line that contains 'T/S PORT OF LOADING'",
32
40
  "etd": "Extract the date after the label 'ETD DATE' that is related to the 'EST. CONNECT VSL/VOY:'. "
33
- }
34
- ]
35
- }
36
- ```