data-science-document-ai 1.51.1__py3-none-any.whl → 1.52.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: data-science-document-ai
3
- Version: 1.51.1
3
+ Version: 1.52.1
4
4
  Summary: "Document AI repo for data science"
5
5
  Author: Naomi Nguyen
6
6
  Author-email: naomi.nguyen@forto.com
@@ -10,7 +10,7 @@ src/pdf_processing.py,sha256=oKVPnIu_keiN17XLOGImeyJ4iMT2H51x4OD1Tp9yw1s,19992
10
10
  src/postprocessing/common.py,sha256=dagAg0hZGuZc03bXdfOolxekewMEVUfz917IGCiAtWI,26118
11
11
  src/postprocessing/postprocess_booking_confirmation.py,sha256=nK32eDiBNbauyQz0oCa9eraysku8aqzrcoRFoWVumDU,4827
12
12
  src/postprocessing/postprocess_commercial_invoice.py,sha256=3I8ijluTZcOs_sMnFZxfkAPle0UFQ239EMuvZfDZVPg,1028
13
- src/postprocessing/postprocess_partner_invoice.py,sha256=Fv4Y6Lc8e6aFFcwX0kLOal2y4TrR-XfAzjtuQnBwo0o,12815
13
+ src/postprocessing/postprocess_partner_invoice.py,sha256=JwKEJ2QVvUGYfOzvQ2Nvzy0-HduTRlv9quhIlDa9IdA,12866
14
14
  src/prompts/library/arrivalNotice/other/placeholders.json,sha256=1vzly1amgyKt3jr2JJQbb24kNZsnI289iduvoUo5dJU,3061
15
15
  src/prompts/library/arrivalNotice/other/prompt.txt,sha256=QNuU-BvMA8VbdupVNapad4O3WmCotH5cKNxImRMbKDk,2906
16
16
  src/prompts/library/bookingConfirmation/evergreen/placeholders.json,sha256=IpM9nmSPdyroliZfXB1-NDCjiHZX_Ff5BH7-scNhGqE,1406
@@ -55,6 +55,6 @@ src/prompts/prompt_library.py,sha256=VJWHeXN-s501C2GiidIIvQQuZdU6T1R27hE2dKBiI40
55
55
  src/setup.py,sha256=EHfAl3Pvb082dl_s6Tk93IjtE3vBmrW_fp2GW4955HQ,6952
56
56
  src/tms.py,sha256=UXbIo1QE--hIX6NZi5Qyp2R_CP338syrY9pCTPrfgnE,1741
57
57
  src/utils.py,sha256=Ow5_Jals88o8mbZ1BoHfZpHZoCfig_UQb5aalH-mpWE,17278
58
- data_science_document_ai-1.51.1.dist-info/METADATA,sha256=vJ9ivHgPOvyMkfqtL2893McNMupkNvNHYJd95IF4CMQ,2152
59
- data_science_document_ai-1.51.1.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
60
- data_science_document_ai-1.51.1.dist-info/RECORD,,
58
+ data_science_document_ai-1.52.1.dist-info/METADATA,sha256=6_J7u5WjA8v8IXx15_s8KgG837C4FrexUy7pNLillPs,2152
59
+ data_science_document_ai-1.52.1.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
60
+ data_science_document_ai-1.52.1.dist-info/RECORD,,
@@ -285,11 +285,14 @@ def if_reverse_charge_sentence(sentence: str, params):
285
285
  return False
286
286
 
287
287
  # Check if the sentence is similar to any of the reverse charge sentences
288
- _, is_reverse_charge = get_fuzzy_match_score(
289
- sentence, reverse_charge_sentences, threshold
288
+ match, _ = get_fuzzy_match_score(
289
+ sentence, list(reverse_charge_sentences.keys()), threshold
290
290
  )
291
291
 
292
- return is_reverse_charge
292
+ if match:
293
+ return reverse_charge_sentences[match]
294
+
295
+ return False
293
296
 
294
297
 
295
298
  def find_matching_lineitem(new_lineitem: str, kvp_dict: dict, threshold=90):