data-science-document-ai 1.13.0__py3-none-any.whl → 1.56.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (57) hide show
  1. {data_science_document_ai-1.13.0.dist-info → data_science_document_ai-1.56.1.dist-info}/METADATA +7 -2
  2. data_science_document_ai-1.56.1.dist-info/RECORD +60 -0
  3. {data_science_document_ai-1.13.0.dist-info → data_science_document_ai-1.56.1.dist-info}/WHEEL +1 -1
  4. src/constants.py +42 -12
  5. src/constants_sandbox.py +2 -22
  6. src/docai.py +18 -7
  7. src/docai_processor_config.yaml +0 -64
  8. src/excel_processing.py +34 -15
  9. src/io.py +74 -6
  10. src/llm.py +12 -34
  11. src/pdf_processing.py +228 -78
  12. src/postprocessing/common.py +495 -618
  13. src/postprocessing/postprocess_partner_invoice.py +383 -27
  14. src/prompts/library/arrivalNotice/other/placeholders.json +70 -0
  15. src/prompts/library/arrivalNotice/other/prompt.txt +40 -0
  16. src/prompts/library/bookingConfirmation/evergreen/placeholders.json +17 -17
  17. src/prompts/library/bookingConfirmation/evergreen/prompt.txt +1 -0
  18. src/prompts/library/bookingConfirmation/hapag-lloyd/placeholders.json +18 -18
  19. src/prompts/library/bookingConfirmation/hapag-lloyd/prompt.txt +1 -1
  20. src/prompts/library/bookingConfirmation/maersk/placeholders.json +17 -17
  21. src/prompts/library/bookingConfirmation/maersk/prompt.txt +1 -1
  22. src/prompts/library/bookingConfirmation/msc/placeholders.json +17 -17
  23. src/prompts/library/bookingConfirmation/msc/prompt.txt +1 -1
  24. src/prompts/library/bookingConfirmation/oocl/placeholders.json +17 -17
  25. src/prompts/library/bookingConfirmation/oocl/prompt.txt +3 -1
  26. src/prompts/library/bookingConfirmation/other/placeholders.json +17 -17
  27. src/prompts/library/bookingConfirmation/other/prompt.txt +1 -1
  28. src/prompts/library/bookingConfirmation/yangming/placeholders.json +17 -17
  29. src/prompts/library/bookingConfirmation/yangming/prompt.txt +1 -1
  30. src/prompts/library/bundeskasse/other/placeholders.json +113 -0
  31. src/prompts/library/bundeskasse/other/prompt.txt +48 -0
  32. src/prompts/library/commercialInvoice/other/placeholders.json +125 -0
  33. src/prompts/library/commercialInvoice/other/prompt.txt +2 -1
  34. src/prompts/library/customsAssessment/other/placeholders.json +67 -16
  35. src/prompts/library/customsAssessment/other/prompt.txt +24 -37
  36. src/prompts/library/customsInvoice/other/placeholders.json +205 -0
  37. src/prompts/library/customsInvoice/other/prompt.txt +105 -0
  38. src/prompts/library/deliveryOrder/other/placeholders.json +79 -28
  39. src/prompts/library/deliveryOrder/other/prompt.txt +26 -40
  40. src/prompts/library/draftMbl/other/placeholders.json +33 -33
  41. src/prompts/library/draftMbl/other/prompt.txt +34 -44
  42. src/prompts/library/finalMbL/other/placeholders.json +34 -34
  43. src/prompts/library/finalMbL/other/prompt.txt +34 -44
  44. src/prompts/library/packingList/other/placeholders.json +98 -0
  45. src/prompts/library/packingList/other/prompt.txt +1 -1
  46. src/prompts/library/partnerInvoice/other/placeholders.json +165 -45
  47. src/prompts/library/partnerInvoice/other/prompt.txt +82 -44
  48. src/prompts/library/preprocessing/carrier/placeholders.json +0 -16
  49. src/prompts/library/shippingInstruction/other/placeholders.json +115 -0
  50. src/prompts/library/shippingInstruction/other/prompt.txt +28 -15
  51. src/setup.py +73 -63
  52. src/utils.py +207 -30
  53. data_science_document_ai-1.13.0.dist-info/RECORD +0 -55
  54. src/prompts/library/draftMbl/hapag-lloyd/prompt.txt +0 -44
  55. src/prompts/library/draftMbl/maersk/prompt.txt +0 -17
  56. src/prompts/library/finalMbL/hapag-lloyd/prompt.txt +0 -44
  57. src/prompts/library/finalMbL/maersk/prompt.txt +0 -17
src/setup.py CHANGED
@@ -1,11 +1,8 @@
1
1
  """Contains project setup parameters and initialization functions."""
2
- import argparse
3
-
4
- # import streamlit as st
2
+ import json
5
3
  import os
6
4
  import random
7
5
  import time
8
- from pathlib import Path
9
6
 
10
7
  import toml
11
8
  import vertexai
@@ -18,7 +15,7 @@ from src.constants import project_parameters
18
15
  from src.constants_sandbox import project_parameters_sandbox
19
16
 
20
17
  # Parent repos are imported without .
21
- from src.io import download_dir_from_bucket, get_storage_client, logger
18
+ from src.io import get_bq_client, get_storage_client, logger
22
19
  from src.llm import LlmClient
23
20
 
24
21
 
@@ -68,52 +65,16 @@ def get_docai_schema_client(params, async_=True):
68
65
  return client
69
66
 
70
67
 
71
- def parse_input():
72
- """Manage input parameters."""
73
- parser = argparse.ArgumentParser(description="", add_help=False)
74
- parser.add_argument(
75
- "--scope",
76
- type=str,
77
- dest="scope",
78
- required=False,
79
- help="Whether the function should 'upload' or 'download' documents",
80
- )
81
- parser.add_argument(
82
- "--document_name",
83
- type=str,
84
- dest="document_name",
85
- required=False,
86
- help="Category of the document (e.g., 'commercialInvoice', 'packingList')",
87
- )
88
- parser.add_argument(
89
- "--for_combinations",
90
- type=bool,
91
- default=False,
92
- dest="for_combinations",
93
- required=False,
94
- help="A flag to download documents into a special subfolder",
95
- )
96
- parser.add_argument(
97
- "--n_samples",
98
- type=int,
99
- default=50,
100
- dest="n_samples",
101
- required=False,
102
- help="A number of samples to download",
103
- )
104
-
105
- # Remove declared missing arguments (e.g. model_type)
106
- args = vars(parser.parse_args())
107
- args_no_null = {
108
- k: v.split(",") if isinstance(v, str) else v
109
- for k, v in args.items()
110
- if v is not None
111
- }
112
- return args_no_null
68
+ def setup_params(args=None):
69
+ """
70
+ Set up the application parameters.
113
71
 
72
+ Args:
73
+ args: Command-line arguments.
114
74
 
115
- def setup_params(args=None):
116
- """Manage setup parameters."""
75
+ Returns:
76
+ params: Dictionary containing application parameters.
77
+ """
117
78
  if args is None:
118
79
  args = {}
119
80
 
@@ -123,13 +84,22 @@ def setup_params(args=None):
123
84
  # Update parameters with constants
124
85
  params.update(project_parameters)
125
86
 
126
- # Update the parameters with the sandbox parameters if the cluster is not production
127
- if os.getenv("CLUSTER") != "production":
87
+ cluster = os.getenv("CLUSTER", "").lower()
88
+ # Update the parameters with the sandbox parameters if the cluster is not production and not ODE
89
+ if cluster not in ("production", "ode"):
128
90
  params.update(project_parameters_sandbox)
129
91
 
130
- params["environment"] = (
131
- "sandbox" if os.getenv("CLUSTER") != "production" else "production"
132
- )
92
+ # Set up the bucket constants for ODE environment
93
+ if cluster == "ode":
94
+ ode_env_vars = {
95
+ "doc_ai_bucket_project_name": "PROJECT_ID",
96
+ "doc_ai_bucket_name": "BUCKET_NAME",
97
+ "doc_ai_bucket_batch_input": "INPUT_BUCKET_NAME",
98
+ "doc_ai_bucket_batch_output": "OUTPUT_BUCKET_NAME",
99
+ }
100
+ params.update(
101
+ {key: os.getenv(env_var) for key, env_var in ode_env_vars.items()}
102
+ )
133
103
 
134
104
  # print cluster info
135
105
  logger.info(f"Cluster: {os.getenv('CLUSTER')}")
@@ -145,6 +115,10 @@ def setup_params(args=None):
145
115
 
146
116
  params = setup_docai_client_and_path(params)
147
117
 
118
+ # Set up BigQuery client for logging
119
+ bq_client, _ = get_bq_client(params)
120
+ params["bq_client"] = bq_client
121
+
148
122
  # Set up Vertex AI for text embeddings
149
123
  setup_vertexai(params)
150
124
 
@@ -156,18 +130,16 @@ def setup_params(args=None):
156
130
  assert params.keys() & yaml_content.keys() == set()
157
131
  params.update(yaml_content)
158
132
 
159
- # Get models meta data from cloud
160
- client = get_storage_client(params)
161
- bucket = client.bucket(params["doc_ai_bucket_name"])
162
- downloaded_meta = download_dir_from_bucket(
163
- bucket, params["g_model_data_folder"], Path(params["local_model_data_folder"])
164
- )
165
- if not downloaded_meta:
166
- logger.info(f"Could not load models metadata from cloud.")
167
-
133
+ # Set up LLM clients
168
134
  params["LlmClient"] = LlmClient(
169
135
  openai_key=os.getenv("OPENAI_KEY"), parameters=params["gemini_params"]
170
136
  )
137
+ params["LlmClient_Flash"] = LlmClient(
138
+ openai_key=os.getenv("OPENAI_KEY"), parameters=params["gemini_flash_params"]
139
+ )
140
+
141
+ # Load lookup data from GCS bucket
142
+ setup_lookup_data(params)
171
143
 
172
144
  return params
173
145
 
@@ -198,3 +170,41 @@ def setup_vertexai(params):
198
170
  project=params["g_ai_project_name"],
199
171
  location=params["g_region"],
200
172
  )
173
+
174
+
175
+ def setup_lookup_data(params):
176
+ """
177
+ Loads JSON mapping data from given GCP Bucket.
178
+ """
179
+ client = get_storage_client(params)
180
+ bucket = client.bucket(params["doc_ai_bucket_name"])
181
+
182
+ data = dict()
183
+
184
+ input_path_item_code = (
185
+ f'{params["g_model_fuzzy_lookup_folder"]}/{params["item_code_lookup"]}'
186
+ )
187
+ input_path_intermodal_partners = (
188
+ f'{params["g_model_fuzzy_lookup_folder"]}/{params["intermodal_partners"]}'
189
+ )
190
+ input_path_invoice_classification = f'{params["g_model_fuzzy_lookup_folder"]}/{params["invoice_classification_lookup"]}' # noqa: E501
191
+ input_path_reverse_charge = f'{params["g_model_fuzzy_lookup_folder"]}/{params["reverse_charge_sentence_lookup"]}'
192
+
193
+ def download_json_from_bucket(path):
194
+ """Download JSON data from a specified path in a GCP bucket."""
195
+ blob = bucket.blob(path)
196
+ downloaded_data = blob.download_as_text(encoding="utf-8")
197
+ return json.loads(downloaded_data)
198
+
199
+ data["item_code"] = download_json_from_bucket(input_path_item_code)
200
+ data["intermodal_partners"] = download_json_from_bucket(
201
+ input_path_intermodal_partners
202
+ )
203
+ data["invoice_classification"] = download_json_from_bucket(
204
+ input_path_invoice_classification
205
+ )
206
+ data["reverse_charge_sentences"] = download_json_from_bucket(
207
+ input_path_reverse_charge
208
+ )
209
+
210
+ params["lookup_data"] = data
src/utils.py CHANGED
@@ -6,36 +6,29 @@ import json
6
6
  import os
7
7
  import pickle
8
8
  from datetime import datetime
9
- from typing import Literal
9
+ from typing import Any, Dict, List, Literal, Optional
10
10
 
11
+ import httpx
12
+ import numpy as np
11
13
  import openpyxl
12
14
  import pandas as pd
13
15
  from google.cloud import documentai_v1beta3 as docu_ai_beta
16
+ from pypdf import PdfReader, PdfWriter
14
17
 
15
- from src.io import get_bq_client, get_storage_client, logger
18
+ from src.io import bq_logs, get_storage_client, logger
16
19
 
17
20
 
18
- def bq_logs(data_to_insert, params):
19
- """Insert logs into Google BigQuery.
21
+ def get_pdf_page_count(pdf_bytes):
22
+ """Get the number of pages in a PDF document efficiently.
20
23
 
21
24
  Args:
22
- data_to_insert (list): The data to insert into BigQuery.
23
- params (dict): The parameters dictionary.
25
+ pdf_bytes (bytes): The PDF content as bytes.
26
+
27
+ Returns:
28
+ int: The number of pages in the PDF.
24
29
  """
25
- # Get the BigQuery client
26
- bq_client, config = get_bq_client(params)
27
- # Get the table string
28
- table_string = f"{params['g_ai_project_name']}.{params['g_ai_gbq_db_schema']}.{params['g_ai_gbq_db_table_out']}"
29
-
30
- logger.info(f"Log table: {table_string}")
31
- # Insert the rows into the table
32
- insert_logs = bq_client.insert_rows_json(table_string, data_to_insert)
33
-
34
- # Check if there were any errors inserting the rows
35
- if not insert_logs:
36
- logger.info("New rows have been added.")
37
- else:
38
- logger.info("Errors occurred while inserting rows: ", insert_logs)
30
+ reader = PdfReader(io.BytesIO(pdf_bytes))
31
+ return len(reader.pages)
39
32
 
40
33
 
41
34
  async def get_data_set_schema_from_docai(
@@ -137,7 +130,12 @@ def store_json_in_gcs(
137
130
  bucket = storage_client.bucket(params.get("doc_ai_bucket_name"))
138
131
  full_object_name = folder_path + document_id
139
132
  blob = bucket.blob(full_object_name)
140
- blob.upload_from_string(json_data, content_type="application/json")
133
+
134
+ # Convert dict to JSON string if needed
135
+ json_string = (
136
+ json.dumps(json_data) if isinstance(json_data, dict) else json_data
137
+ )
138
+ blob.upload_from_string(json_string, content_type="application/json")
141
139
 
142
140
  logger.info(
143
141
  f"JSON object stored successfully in gs://{params.get('doc_ai_bucket_name')}/{full_object_name}" # noqa
@@ -156,6 +154,8 @@ async def run_background_tasks(
156
154
  store_data,
157
155
  processor_version,
158
156
  mime_type,
157
+ elapsed_time=None,
158
+ page_count=None,
159
159
  ):
160
160
  """
161
161
  Run background tasks asynchronously.
@@ -168,6 +168,8 @@ async def run_background_tasks(
168
168
  store_data: The data to store in GCS.
169
169
  processor_version: The processor version used to extract the data.
170
170
  mime_type: The MIME type of the document.
171
+ elapsed_time: The time taken to process the document.
172
+ page_count (int, optional): The number of pages in the document.
171
173
 
172
174
  Returns:
173
175
  None
@@ -176,13 +178,8 @@ async def run_background_tasks(
176
178
 
177
179
  await loop.run_in_executor(None, store_json_in_gcs, params, doc_id, store_data)
178
180
 
179
- # Keep the page count as 1 for Excel files.
180
- page_count = 1
181
- # calculate the number of pages processed for PDFs
182
- try:
183
- if mime_type == "application/pdf":
184
- page_count = len(json.loads(store_data.encode("utf-8"))["pages"])
185
- except AttributeError:
181
+ # Use the passed page_count or default to 0 if not provided
182
+ if page_count is None:
186
183
  page_count = 0
187
184
 
188
185
  # Log the request in BigQuery
@@ -200,6 +197,7 @@ async def run_background_tasks(
200
197
  "processor_version": processor_version,
201
198
  "page_count": page_count,
202
199
  "mime_type": mime_type,
200
+ "elapsed_time": elapsed_time,
203
201
  }
204
202
  ],
205
203
  params,
@@ -240,7 +238,6 @@ def generate_schema_structure(params, input_doc_type):
240
238
  Args:
241
239
  params (dict): Parameters dictionary.
242
240
  input_doc_type (str): Document type to select the appropriate schema.
243
- schema_client (documentai_v1beta3.DocumentServiceClient): Schema client.
244
241
 
245
242
  Returns:
246
243
  dict: The response schema structure.
@@ -254,7 +251,7 @@ def generate_schema_structure(params, input_doc_type):
254
251
  "type": "OBJECT",
255
252
  "properties": {
256
253
  prop.name: {
257
- "type": prop.value_type,
254
+ "type": "string",
258
255
  "nullable": True,
259
256
  "description": prop.description,
260
257
  }
@@ -347,3 +344,183 @@ async def update_response_schema_from_docai(params, schema_client):
347
344
 
348
345
  def get_data_set_schema(params, processor_name):
349
346
  return params["docai_schema_dict"][processor_name]
347
+
348
+
349
+ def extract_top_pages(pdf_bytes, num_pages=4):
350
+ """Extract the top pages from a PDF document."""
351
+ reader = PdfReader(io.BytesIO(pdf_bytes))
352
+ writer = PdfWriter()
353
+
354
+ for page_num in range(min(num_pages, len(reader.pages))):
355
+ writer.add_page(reader.pages[page_num])
356
+
357
+ output = io.BytesIO()
358
+ writer.write(output)
359
+
360
+ return output.getvalue()
361
+
362
+
363
+ async def get_tms_mappings(
364
+ input_list: List[str], embedding_type: str, llm_ports: Optional[List[str]] = None
365
+ ) -> Dict[str, Any]:
366
+ """Get TMS mappings for the given values.
367
+
368
+ Args:
369
+ input_list (list[str]): List of strings to get embeddings for.
370
+ embedding_type (str): Type of embedding to use
371
+ (e.g., "container_types", "ports", "depots", "lineitems", "terminals").
372
+ llm_ports (list[str], optional): List of LLM ports to use. Defaults to None.
373
+
374
+ Returns:
375
+ dict or string: A dictionary or a string with the mapping results.
376
+ """
377
+ base_url = (
378
+ "http://0.0.0.0:8080/"
379
+ if os.getenv("CLUSTER") is None
380
+ else "http://tms-mappings.api.svc.cluster.local./"
381
+ )
382
+
383
+ # Ensure clean inputs
384
+ if not input_list:
385
+ return {}
386
+
387
+ # Ensure input_list is a list
388
+ if not isinstance(input_list, list):
389
+ input_list = [input_list]
390
+
391
+ # Always send a dict with named keys
392
+ payload = {embedding_type: input_list}
393
+
394
+ if llm_ports:
395
+ payload["llm_ports"] = llm_ports if isinstance(llm_ports, list) else [llm_ports]
396
+
397
+ # Make the POST request to the TMS mappings API
398
+ url = f"{base_url}{embedding_type}"
399
+
400
+ # Use a timeout so the code doesn't hang forever
401
+ timeout = httpx.Timeout(60.0, connect=10.0)
402
+
403
+ async with httpx.AsyncClient(timeout=timeout) as client:
404
+ try:
405
+ response = await client.post(url, json=payload)
406
+ response.raise_for_status()
407
+
408
+ # Structure expected: {"response": {"data": {"desc1": "code1", "desc2": "code2"}}}
409
+ return response.json().get("response", {}).get("data", {})
410
+
411
+ except httpx.HTTPStatusError as exc:
412
+ logger.error(
413
+ f"Error from TMS mappings API: {exc.response.status_code} - {exc.response.text}"
414
+ )
415
+ return {}
416
+
417
+
418
+ async def batch_fetch_all_mappings(container_types, terminals, depots):
419
+ """Batch fetch all mappings for container types, terminals, and depots."""
420
+ # run batch calls concurrently
421
+ results = await asyncio.gather(
422
+ get_tms_mappings(list(container_types), "container_types"),
423
+ get_tms_mappings(list(terminals), "terminals"),
424
+ get_tms_mappings(list(depots), "depots"),
425
+ )
426
+
427
+ batch_container_map, batch_terminal_map, batch_depot_map = results
428
+
429
+ # Convert lists of tuples to dicts if necessary
430
+ return (
431
+ dict(batch_container_map or {}),
432
+ dict(batch_terminal_map or {}),
433
+ dict(batch_depot_map or {}),
434
+ )
435
+
436
+
437
+ def transform_schema_strings(schema):
438
+ """
439
+ Recursively transforms a schema dictionary, replacing all "type": "STRING"
440
+ definitions with a new object containing "value" and "page_number" fields.
441
+ It preserves 'nullable' and 'description' fields by moving them to the
442
+ new 'value' property.
443
+
444
+ Args:
445
+ schema (dict): The input schema dictionary.
446
+
447
+ Returns:
448
+ dict: The transformed schema dictionary.
449
+ """
450
+ if not isinstance(schema, dict):
451
+ return schema
452
+
453
+ schema_type = schema.get("type")
454
+ if not schema_type:
455
+ return schema
456
+
457
+ # Base case: STRING → OBJECT (only if not already transformed)
458
+ if schema_type.upper() == "STRING":
459
+ return {
460
+ "type": "OBJECT",
461
+ "properties": {
462
+ "value": {
463
+ "type": "STRING",
464
+ "nullable": schema.get("nullable", False),
465
+ "description": schema.get("description", ""),
466
+ },
467
+ "page_number": {
468
+ "type": "STRING",
469
+ "description": "Number of a page where the value was found in the document starting from 0.",
470
+ },
471
+ },
472
+ "required": [],
473
+ }
474
+
475
+ # Skip already transformed OBJECT (has both 'value' & 'page_number')
476
+ if (
477
+ schema_type.upper() == "OBJECT"
478
+ and "properties" in schema
479
+ and {"value", "page_number"}.issubset(schema["properties"].keys())
480
+ ):
481
+ return schema
482
+
483
+ # Recursive case for OBJECT
484
+ if schema_type.upper() == "OBJECT" and "properties" in schema:
485
+ new_schema = schema.copy()
486
+ new_schema["properties"] = {
487
+ k: transform_schema_strings(v) for k, v in schema["properties"].items()
488
+ }
489
+ return new_schema
490
+
491
+ # Recursive case for ARRAY
492
+ if schema_type.upper() == "ARRAY" and "items" in schema:
493
+ new_schema = schema.copy()
494
+ new_schema["items"] = transform_schema_strings(schema["items"])
495
+ return new_schema
496
+
497
+ return schema
498
+
499
+
500
+ def estimate_page_count(sheet):
501
+ """Assuming a page is 10 columns x 50 rows."""
502
+ if hasattr(sheet, "shape"):
503
+ pg_cnt = sheet.shape[0] * sheet.shape[1]
504
+ elif hasattr(sheet, "max_row"):
505
+ pg_cnt = sheet.max_column * sheet.max_row
506
+ else:
507
+ return None
508
+ return np.ceil(pg_cnt / 500)
509
+
510
+
511
+ def split_pdf_into_chunks(file_content: bytes, chunk_size: int = 1):
512
+ """Split PDF into smaller page chunks."""
513
+ pdf = PdfReader(io.BytesIO(file_content))
514
+ total_pages = len(pdf.pages)
515
+
516
+ # TODO: update the chunk_size based on doc length. However, it breaks the page number extraction logic.
517
+ for i in range(0, total_pages, chunk_size):
518
+ writer = PdfWriter()
519
+ for j in range(i, min(i + chunk_size, total_pages)):
520
+ writer.add_page(pdf.pages[j])
521
+
522
+ buffer = io.BytesIO()
523
+ writer.write(buffer)
524
+ buffer.seek(0)
525
+
526
+ yield buffer.getvalue()
@@ -1,55 +0,0 @@
1
- src/constants.py,sha256=AP5ZfxMGU745IUcSRR0z7aTssbAuJuyqhnVNN9I0L1I,2524
2
- src/constants_sandbox.py,sha256=vdEOaFzeUmsKK-K66BDgfw3R-_MeQ8XNo3bIfF4EOmA,1241
3
- src/docai.py,sha256=1UxBRO0oC7WbFgscQAyxjmhsvh-Oc8g60m368WFZrOw,5234
4
- src/docai_processor_config.yaml,sha256=_XN0g7t9EGU9-vVmK9_t_IQ6OUkXOvawYlOjSSHOUtQ,2295
5
- src/excel_processing.py,sha256=HZGIinyYXFRRAekBj0yBcTaI0MhzdGuxsTTYpEnzRm8,2559
6
- src/io.py,sha256=8DxtfvsNrx7QCVPQwttGX21o0NthxHfH6zBR6X4COvg,3511
7
- src/llm.py,sha256=93naoL3wviBtrA5JaQxldW6hO_Cwpc61whNuz881fDQ,7828
8
- src/log_setup.py,sha256=RhHnpXqcl-ii4EJzRt47CF2R-Q3YPF68tepg_Kg7tkw,2895
9
- src/pdf_processing.py,sha256=cVLrd-gZmbr9p_Od2ihC2LXxfW7pPhMS6SzhdKS4snM,14962
10
- src/postprocessing/common.py,sha256=zmTs97KYJhOvmURP_U7RlJUxzqV--Aw62qY78XA-Tl8,33760
11
- src/postprocessing/postprocess_booking_confirmation.py,sha256=nK32eDiBNbauyQz0oCa9eraysku8aqzrcoRFoWVumDU,4827
12
- src/postprocessing/postprocess_commercial_invoice.py,sha256=3I8ijluTZcOs_sMnFZxfkAPle0UFQ239EMuvZfDZVPg,1028
13
- src/postprocessing/postprocess_partner_invoice.py,sha256=lwHr9pWRQ3LoclZbL1g4_3HCGCWk_C0C_UvbpxYIgKI,2374
14
- src/prompts/library/bookingConfirmation/evergreen/placeholders.json,sha256=Re2wBgZoaJ5yImUUAwZOZxFcKXHxi83TCZwTuqd2v2k,1405
15
- src/prompts/library/bookingConfirmation/evergreen/prompt.txt,sha256=qlBMFDHy-gwr2PVeuHrfMEg_8Ibdym243DnaCgINa7g,2614
16
- src/prompts/library/bookingConfirmation/hapag-lloyd/placeholders.json,sha256=Re2wBgZoaJ5yImUUAwZOZxFcKXHxi83TCZwTuqd2v2k,1405
17
- src/prompts/library/bookingConfirmation/hapag-lloyd/prompt.txt,sha256=sg11U3lIhhS36BsimX7IOzR7Pez_9gScdNmJna2pPuw,3355
18
- src/prompts/library/bookingConfirmation/maersk/placeholders.json,sha256=PKWXySGAls6A8tujbSjokYp4ldc3c0DmSP2ITKYiUF8,1405
19
- src/prompts/library/bookingConfirmation/maersk/prompt.txt,sha256=-00tzWzXtQnXX3EPtaCBM39leCoLa4FB52_t7Z3eoQk,3148
20
- src/prompts/library/bookingConfirmation/msc/placeholders.json,sha256=Re2wBgZoaJ5yImUUAwZOZxFcKXHxi83TCZwTuqd2v2k,1405
21
- src/prompts/library/bookingConfirmation/msc/prompt.txt,sha256=9wdbLofnp5s1acD19jCmQuw__HMcVq1yr4vIJNJlKVM,4630
22
- src/prompts/library/bookingConfirmation/oocl/placeholders.json,sha256=NnXjMiEsTCzTDWs2WY7BIMo2p4_98-DL3v1r7x-FL3A,1403
23
- src/prompts/library/bookingConfirmation/oocl/prompt.txt,sha256=aGowVvOgl4w6TjX5O2RtD4QOiWC1JnXiWgg0t0chThU,2060
24
- src/prompts/library/bookingConfirmation/other/placeholders.json,sha256=Re2wBgZoaJ5yImUUAwZOZxFcKXHxi83TCZwTuqd2v2k,1405
25
- src/prompts/library/bookingConfirmation/other/prompt.txt,sha256=XOrq5Ns0nl8lDI9VvoOEbIMbOQdv8mcM8HqP8-eIjc4,3304
26
- src/prompts/library/bookingConfirmation/yangming/placeholders.json,sha256=Re2wBgZoaJ5yImUUAwZOZxFcKXHxi83TCZwTuqd2v2k,1405
27
- src/prompts/library/bookingConfirmation/yangming/prompt.txt,sha256=BSFy-6zDlAmOH2uZjsp-zZkR_Uy3RS5sGtdv9wysiSI,3151
28
- src/prompts/library/commercialInvoice/other/prompt.txt,sha256=fYUF7btc48Uqv4mJH5BgJdY4JVwj9I1xKX_HRBIrN7M,2590
29
- src/prompts/library/customsAssessment/other/placeholders.json,sha256=5nSGsMbpfKrpKoYImcTto_RlOvPCHyld2RlwU0Zbbqw,361
30
- src/prompts/library/customsAssessment/other/prompt.txt,sha256=wgJ8PYM0PKXiIKSljhFXEFBQ23GRs2E2DE9lVwHDvBU,2116
31
- src/prompts/library/deliveryOrder/other/placeholders.json,sha256=6b_6OVsxT7bjFnV_v0OZkGEy-GN5K4AjL0ATzuoLdOU,1286
32
- src/prompts/library/deliveryOrder/other/prompt.txt,sha256=MVSS5AhkiWT17G9X4xk_AgKzYElagvWjLPCMr_ZhmOs,2393
33
- src/prompts/library/draftMbl/hapag-lloyd/prompt.txt,sha256=0k1xLW4zWaenCSNQJxXMXenIwI-eYmGgpxnAAcM3HOg,2251
34
- src/prompts/library/draftMbl/maersk/prompt.txt,sha256=GxaIYlksORvD2uAbodRx_9JFJXD4XbDaVFYtpN9uzxc,2050
35
- src/prompts/library/draftMbl/other/placeholders.json,sha256=wIN06_NWsESDyNEDfOLPi3F2Vq-XPa4O3U32A32s-_Q,1736
36
- src/prompts/library/draftMbl/other/prompt.txt,sha256=gqbPm1joXKDUss0wU6vMc-269sx-fYWh90gWuNKOBQc,2166
37
- src/prompts/library/finalMbL/hapag-lloyd/prompt.txt,sha256=0k1xLW4zWaenCSNQJxXMXenIwI-eYmGgpxnAAcM3HOg,2251
38
- src/prompts/library/finalMbL/maersk/prompt.txt,sha256=GxaIYlksORvD2uAbodRx_9JFJXD4XbDaVFYtpN9uzxc,2050
39
- src/prompts/library/finalMbL/other/placeholders.json,sha256=K_yJYhQo2DnZV_Rg6xXjo6sHkSGB-SMO4IQnY47V43w,1735
40
- src/prompts/library/finalMbL/other/prompt.txt,sha256=gqbPm1joXKDUss0wU6vMc-269sx-fYWh90gWuNKOBQc,2166
41
- src/prompts/library/packingList/other/prompt.txt,sha256=Qw16n7_48GGFYWz2vRepNowZCX1UPXKetEZ1UqFXPdY,2764
42
- src/prompts/library/partnerInvoice/other/placeholders.json,sha256=tXkr1VVeb1qqAR0SSWYrKu1Np3LXB9o4_2Ponsu0e4k,2352
43
- src/prompts/library/partnerInvoice/other/prompt.txt,sha256=Ih5VSfVBBYbo2_ufyYvp1DNYoXDYCScw8b1ylVbftsQ,2913
44
- src/prompts/library/postprocessing/port_code/placeholders.json,sha256=2TiXf3zSzrglOMPtDOlCntIa5RSvyZQAKG2-IgrCY5A,22
45
- src/prompts/library/postprocessing/port_code/prompt_port_code.txt,sha256=--1wunSqEr2ox958lEhjO-0JFBfOLzA3qfKYIzG_Iok,884
46
- src/prompts/library/preprocessing/carrier/placeholders.json,sha256=1UmrQNqBEsjLIpOO-a39Az6bQ_g1lxDGlwqZFU3IEt0,408
47
- src/prompts/library/preprocessing/carrier/prompt.txt,sha256=NLvRZQCZ6aWC1yTr7Q93jK5z7Vi_b4HBaiFYYnIsO-w,134
48
- src/prompts/library/shippingInstruction/other/prompt.txt,sha256=fyC24ig4FyRNnLuQM69s4ZVajsK-LHIl2dvaaEXr-6Q,1327
49
- src/prompts/prompt_library.py,sha256=VJWHeXN-s501C2GiidIIvQQuZdU6T1R27hE2dKBiI40,2555
50
- src/setup.py,sha256=MiFIP8ZOD0-WhzStEme18pJ52N8YpVYNZKsaueacQd8,6531
51
- src/tms.py,sha256=UXbIo1QE--hIX6NZi5Qyp2R_CP338syrY9pCTPrfgnE,1741
52
- src/utils.py,sha256=30EgwvPGwmtBGkX_EWI0B-PdB1wgxqRW58JKsp6Nl3I,11740
53
- data_science_document_ai-1.13.0.dist-info/METADATA,sha256=Pq4RD1k4Is-HrJ9mYZu0W7N3EzJSK5BPflg10_NBEeI,1951
54
- data_science_document_ai-1.13.0.dist-info/WHEEL,sha256=XbeZDeTWKc1w7CSIyre5aMDU_-PohRwTQceYnisIYYY,88
55
- data_science_document_ai-1.13.0.dist-info/RECORD,,
@@ -1,44 +0,0 @@
1
- You are a document entity extraction specialist. Given a document, the explained datapoint need to extract.
2
-
3
- blNumber: Bill of Lading number.
4
- voyage: The journey or route code taken by the vessel.
5
- portOfLoading: The port where cargo is loaded.
6
- portOfDischarge: The port where cargo is unloaded.
7
- bookingNumber: A unique identifier for the booking.
8
- containers:
9
- containerType: Type of the shipping container, usually related to it's size.
10
- grossWeight: Total weight of the cargo, including the tare weight of the container.
11
- measurements: Dimensions of the cargo (length, width, height) for freight calculations.
12
- packageQuantity: package quantity.
13
- packageType: Type of packaging used (e.g., cartons, pallets, barrels).
14
- containerNumber: Unique ID for tracking the shipping container.
15
- sealNumber: Number of the container's seal.
16
- vessel: The name of the vessel.
17
-
18
-
19
- Your task is to extract the text value of the following entities:
20
-
21
- Keywords for datapoints:
22
- - blNumber: Bill of Lading number, bill of landing no., swb-no., b/l no.
23
- - voyage: voyage, voy. no, voyage-no.
24
- - portOfLoading: port of loading, pol, from.]
25
- - portOfDischarge: port of discharge, pod, delivery, to
26
- - bookingNumber: Our reference, booking no., carrier reference
27
- - containers:
28
- - containerType: x 40' container
29
- - grossWeight: gross weight
30
- - measurements: Dimensions of the cargo (length, width, height) for freight calculations
31
- - packageQuantity: package quantity, number and kind of packages
32
- - packageType: Type of packaging used (e.g., cartons, pallets, barrels), number and kind of packages, description of goods
33
- - containerNumber: container number, cntr. nos., it is a combination of 4 letters and 7 digits separated by space right above 'SEAL'
34
- - sealNumber: seal number, seal nos., shipper seal, seal.
35
- - vessel: vessel
36
-
37
-
38
- You must apply the following rules:
39
- - The JSON schema must be followed during the extraction.
40
- - The values must only include text found in the document
41
- - Do not normalize any entity value.
42
- - If 'sealNumber' is not found don't add it to the result.
43
- - Validate the JSON make sure it is a valid JSON ! No extra text, no missing comma!
44
- - Add an escape character (backwards slash) in from of all quotes in values
@@ -1,17 +0,0 @@
1
- Extract the following information from the sea waybill document.
2
-
3
- **blNumber:** Find the value labeled as "B/L No.".
4
- **voyage:** Get the "Voyage No." value.
5
- **portOfLoading:** Find the value in the "Port of Loading" field.
6
- **portOfDischarge:** Extract the text from the "Port of Discharge" field.
7
- **bookingNumber:** Look for the value associated with "Booking No.".
8
- **containers:**
9
- The document may contain multiple containers listed within the section "PARTICULARS FURNISHED BY SHIPPER" under the line starting with "Kind of Packages; Description of goods; Marks and Numbers; Container No./Seal No.". Look for container information that starts with a line that includes "Container Said to Contain" and continues until the next instance of "Container Said to Contain" or the end of the section. For each container, extract the following:
10
- * **containerType:** Extract the container type information. It is usually a combination of numbers, the word "DRY", and may include additional characters. It is found on the same line as the container number.
11
- * **grossWeight:** Find the value corresponding to the "gross weight" of the container. It is usually represented in KGS and is found on the same line as the container number.
12
- * **measurements:** Find the value corresponding to the "measurement" of the container. It is usually represented in CBM and is found on the same line as the container number.
13
- * **packageQuantity:** Extract the "package quantity" information. It is usually a whole number and precedes the text "PACKAGE". All container information will be on the same line as the "package quantity".
14
- * **packageType:** Extract the value from the "Kind of Packages" field.
15
- * **containerNumber:** Find the container number. It starts with "MRKU" and is followed by a sequence of digits. It is found on the same line as the text "Container Said to Contain".
16
- * **sealNumber:** Get the "Shipper Seal" value. It follows after the text "Shipper Seal :".
17
- **vessel:** Extract the text from the field "Vessel".
@@ -1,44 +0,0 @@
1
- You are a document entity extraction specialist. Given a document, the explained datapoint need to extract.
2
-
3
- blNumber: Bill of Lading number.
4
- voyage: The journey or route code taken by the vessel.
5
- portOfLoading: The port where cargo is loaded.
6
- portOfDischarge: The port where cargo is unloaded.
7
- bookingNumber: A unique identifier for the booking.
8
- containers:
9
- containerType: Type of the shipping container, usually related to it's size.
10
- grossWeight: Total weight of the cargo, including the tare weight of the container.
11
- measurements: Dimensions of the cargo (length, width, height) for freight calculations.
12
- packageQuantity: package quantity.
13
- packageType: Type of packaging used (e.g., cartons, pallets, barrels).
14
- containerNumber: Unique ID for tracking the shipping container.
15
- sealNumber: Number of the container's seal.
16
- vessel: The name of the vessel.
17
-
18
-
19
- Your task is to extract the text value of the following entities:
20
-
21
- Keywords for datapoints:
22
- - blNumber: Bill of Lading number, bill of landing no., swb-no., b/l no.
23
- - voyage: voyage, voy. no, voyage-no.
24
- - portOfLoading: port of loading, pol, from.]
25
- - portOfDischarge: port of discharge, pod, delivery, to
26
- - bookingNumber: Our reference, booking no., carrier reference
27
- - containers:
28
- - containerType: x 40' container
29
- - grossWeight: gross weight
30
- - measurements: Dimensions of the cargo (length, width, height) for freight calculations
31
- - packageQuantity: package quantity, number and kind of packages
32
- - packageType: Type of packaging used (e.g., cartons, pallets, barrels), number and kind of packages, description of goods
33
- - containerNumber: container number, cntr. nos., it is a combination of 4 letters and 7 digits separated by space right above 'SEAL'
34
- - sealNumber: seal number, seal nos., shipper seal, seal.
35
- - vessel: vessel
36
-
37
-
38
- You must apply the following rules:
39
- - The JSON schema must be followed during the extraction.
40
- - The values must only include text found in the document
41
- - Do not normalize any entity value.
42
- - If 'sealNumber' is not found don't add it to the result.
43
- - Validate the JSON make sure it is a valid JSON ! No extra text, no missing comma!
44
- - Add an escape character (backwards slash) in from of all quotes in values