data-manipulation-utilities 0.2.8.dev714__py3-none-any.whl → 0.2.8.dev720__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. {data_manipulation_utilities-0.2.8.dev714.dist-info → data_manipulation_utilities-0.2.8.dev720.dist-info}/METADATA +33 -3
  2. data_manipulation_utilities-0.2.8.dev720.dist-info/RECORD +45 -0
  3. {data_manipulation_utilities-0.2.8.dev714.dist-info → data_manipulation_utilities-0.2.8.dev720.dist-info}/WHEEL +1 -2
  4. data_manipulation_utilities-0.2.8.dev720.dist-info/entry_points.txt +8 -0
  5. data_manipulation_utilities-0.2.8.dev714.data/scripts/publish +0 -89
  6. data_manipulation_utilities-0.2.8.dev714.dist-info/RECORD +0 -93
  7. data_manipulation_utilities-0.2.8.dev714.dist-info/entry_points.txt +0 -7
  8. data_manipulation_utilities-0.2.8.dev714.dist-info/top_level.txt +0 -3
  9. dmu_data/__init__.py +0 -0
  10. dmu_data/ml/tests/diagnostics_from_file.yaml +0 -13
  11. dmu_data/ml/tests/diagnostics_from_model.yaml +0 -10
  12. dmu_data/ml/tests/diagnostics_multiple_methods.yaml +0 -10
  13. dmu_data/ml/tests/diagnostics_overlay.yaml +0 -33
  14. dmu_data/ml/tests/train_mva.yaml +0 -60
  15. dmu_data/ml/tests/train_mva_def.yaml +0 -75
  16. dmu_data/ml/tests/train_mva_with_diagnostics.yaml +0 -87
  17. dmu_data/ml/tests/train_mva_with_preffix.yaml +0 -58
  18. dmu_data/plotting/tests/2d.yaml +0 -24
  19. dmu_data/plotting/tests/fig_size.yaml +0 -13
  20. dmu_data/plotting/tests/high_stat.yaml +0 -22
  21. dmu_data/plotting/tests/legend.yaml +0 -12
  22. dmu_data/plotting/tests/line.yaml +0 -15
  23. dmu_data/plotting/tests/name.yaml +0 -14
  24. dmu_data/plotting/tests/no_bounds.yaml +0 -12
  25. dmu_data/plotting/tests/normalized.yaml +0 -9
  26. dmu_data/plotting/tests/plug_fwhm.yaml +0 -24
  27. dmu_data/plotting/tests/plug_stats.yaml +0 -19
  28. dmu_data/plotting/tests/simple.yaml +0 -9
  29. dmu_data/plotting/tests/stats.yaml +0 -9
  30. dmu_data/plotting/tests/styling.yaml +0 -18
  31. dmu_data/plotting/tests/title.yaml +0 -14
  32. dmu_data/plotting/tests/weights.yaml +0 -13
  33. dmu_data/rfile/friends.yaml +0 -13
  34. dmu_data/stats/fitter/test_simple.yaml +0 -28
  35. dmu_data/stats/kde_optimizer/control.json +0 -1
  36. dmu_data/stats/kde_optimizer/signal.json +0 -1
  37. dmu_data/stats/parameters/data.yaml +0 -178
  38. dmu_data/tests/config.json +0 -6
  39. dmu_data/tests/config.yaml +0 -4
  40. dmu_data/tests/pdf_to_tex.txt +0 -34
  41. dmu_data/text/transform.toml +0 -4
  42. dmu_data/text/transform.txt +0 -6
  43. dmu_data/text/transform_set.toml +0 -8
  44. dmu_data/text/transform_set.txt +0 -6
  45. dmu_data/text/transform_trf.txt +0 -12
  46. dmu_scripts/git/publish +0 -89
  47. dmu_scripts/kerberos/check_expiration +0 -21
  48. dmu_scripts/kerberos/convert_certificate +0 -22
  49. dmu_scripts/ml/compare_classifiers.py +0 -85
  50. dmu_scripts/physics/check_truth.py +0 -121
  51. dmu_scripts/rfile/compare_root_files.py +0 -299
  52. dmu_scripts/rfile/print_trees.py +0 -35
  53. dmu_scripts/ssh/coned.py +0 -168
  54. dmu_scripts/text/transform_text.py +0 -46
@@ -1,7 +1,36 @@
1
- Metadata-Version: 2.4
2
- Name: data_manipulation_utilities
3
- Version: 0.2.8.dev714
1
+ Metadata-Version: 2.3
2
+ Name: data-manipulation-utilities
3
+ Version: 0.2.8.dev720
4
4
  Summary: Project storing utilities needed to reduce boilerplate code when analyzing data
5
+ Requires-Python: >=3.10,<3.13
6
+ Classifier: Programming Language :: Python :: 3
7
+ Classifier: Programming Language :: Python :: 3.10
8
+ Classifier: Programming Language :: Python :: 3.11
9
+ Classifier: Programming Language :: Python :: 3.12
10
+ Provides-Extra: dev
11
+ Provides-Extra: fit
12
+ Provides-Extra: ml
13
+ Requires-Dist: PyYAML
14
+ Requires-Dist: awkward
15
+ Requires-Dist: awkward-pandas
16
+ Requires-Dist: dask[dataframe,distributed]
17
+ Requires-Dist: hist[plot]
18
+ Requires-Dist: joblib ; extra == "ml"
19
+ Requires-Dist: logzero
20
+ Requires-Dist: matplotlib
21
+ Requires-Dist: mplhep
22
+ Requires-Dist: numpy
23
+ Requires-Dist: omegaconf
24
+ Requires-Dist: optuna ; extra == "ml"
25
+ Requires-Dist: pandas
26
+ Requires-Dist: pytest ; extra == "dev"
27
+ Requires-Dist: scikit-learn ; extra == "ml"
28
+ Requires-Dist: scipy
29
+ Requires-Dist: tensorflow
30
+ Requires-Dist: toml
31
+ Requires-Dist: tqdm
32
+ Requires-Dist: uproot
33
+ Requires-Dist: zfit (==0.26.0) ; extra == "fit"
5
34
  Description-Content-Type: text/markdown
6
35
 
7
36
  [TOC]
@@ -1793,3 +1822,4 @@ lxplus:
1793
1822
  ```
1794
1823
 
1795
1824
  and should be placed in `$HOME/.config/dmu/ssh/servers.yaml`
1825
+
@@ -0,0 +1,45 @@
1
+ dmu/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ dmu/arrays/utilities.py,sha256=PKoYyybPptA2aU-V3KLnJXBudWxTXu4x1uGdIMQ49HY,1722
3
+ dmu/generic/hashing.py,sha256=QR5Gbv6-ANvi5hL232UNMrw9DONpU27BWTynXGxQLGU,1806
4
+ dmu/generic/utilities.py,sha256=0tT93vF_x0q8STRrTD0GvBEpALz-mqE-vJyen4zWCO8,6861
5
+ dmu/generic/version_management.py,sha256=j0ImlAq6SVNjTh3xRsF6G7DSoyr1w8kTRY84dNriGRE,3750
6
+ dmu/logging/log_store.py,sha256=eRSy8Y4fuiDFJK02Z6fq67XQzOrhQ7GMr2LvvJQbJ40,5172
7
+ dmu/logging/messages.py,sha256=Oj3O5EO2KOPtffyVq2P7RPzjpoXtxZ6yXO5HwTftVcM,2903
8
+ dmu/ml/cv_classifier.py,sha256=6rjezMahwL-WzLGKU-fzMzNxJZAGbM7YAbhaZVcJ3F0,4258
9
+ dmu/ml/cv_diagnostics.py,sha256=PLh41mSVE8Kagp9KcuRDN_7tDL9MjPxQzuewY8jDnNo,7600
10
+ dmu/ml/cv_performance.py,sha256=q9sLxIx7GP-dand3tnhHCBJnT6xqssNdRYv_TVjYWUM,1910
11
+ dmu/ml/cv_predict.py,sha256=0sc_OqwOewKvipcMyi3QqkgG30nkpZZjE-SOhHWHMd0,10778
12
+ dmu/ml/train_mva.py,sha256=7KAFX_zOx8MGbYx62U81JbdBkrZvqclSSkgmYvWX-60,34861
13
+ dmu/ml/utilities.py,sha256=A9j3tBh-jfaFdwwLUleo1QnttfawN7XDiQRh4VTvqVY,4597
14
+ dmu/pdataframe/utilities.py,sha256=xl6iLVKUccqVXYjuHsDUZ6UrCKQPw1k8D-f6407Yq30,2742
15
+ dmu/plotting/fwhm.py,sha256=4e8n6624pxWLcOOtayCQ_hDSSMKU21-3UsdmbkX1ojk,1949
16
+ dmu/plotting/matrix.py,sha256=s_5W8O3yXF3u8OX3f4J4hCoxIVZt1TF8S-qJsFBh2Go,5005
17
+ dmu/plotting/plotter.py,sha256=oc_n9ug0JPaQZycrW_TJkgNxjr0LHNrVJcijqmiLUR4,8136
18
+ dmu/plotting/plotter_1d.py,sha256=Kyoyh-QyZLXXqX19wqEDUWCD1nJEvEonGp9nlgEaoZE,10936
19
+ dmu/plotting/plotter_2d.py,sha256=dXC-7Rsquibe5cn7622ryoKpuv7KCAmouIIXwQ_VEFM,3172
20
+ dmu/plotting/utilities.py,sha256=SI9dvtZq2gr-PXVz71KE4o0i09rZOKgqJKD1jzf6KXk,1167
21
+ dmu/rdataframe/atr_mgr.py,sha256=FdhaQWVpsm4OOe1IRbm7rfrq8VenTNdORyI-lZ2Bs1M,2386
22
+ dmu/rdataframe/utilities.py,sha256=cY1Na8HbJ7kB2dwmBagRdsRyCA4ZT_vyIU86ewREj2Y,5322
23
+ dmu/rfile/ddfgetter.py,sha256=0jfNzpv72_NQUKOK5SBsn289rUqVt2BMvuL-Ro5oY7I,3316
24
+ dmu/rfile/rfprinter.py,sha256=mp5jd-oCJAnuokbdmGyL9i6tK2lY72jEfROuBIZ_ums,3941
25
+ dmu/rfile/utilities.py,sha256=XuYY7HuSBj46iSu3c60UYBHtI6KIPoJU_oofuhb-be0,945
26
+ dmu/stats/fit_stats.py,sha256=wzkQT9U32ljGe4azUj1Fj0ECF3zmnH2Ncn0O-_Pl1zQ,4070
27
+ dmu/stats/fitter.py,sha256=rm_fwjkq-0LSjXB_gt3y6BnHoK8Xvd4gHYwKBUJaItQ,19603
28
+ dmu/stats/function.py,sha256=yzi_Fvp_ASsFzbWFivIf-comquy21WoeY7is6dgY0Go,9491
29
+ dmu/stats/gof_calculator.py,sha256=63zNJJGKPy-j_hPNPfu9qNlhrHjYIgJOyL8-VDtbwuI,4894
30
+ dmu/stats/minimizers.py,sha256=db9R2G0SOV-k0BKi6m4EyB_yp6AtZdP23_28B0315oo,7094
31
+ dmu/stats/model_factory.py,sha256=0_o5OmiX0cNhp9_cNqBOYfasBgKlQkQPiy5nqi9qQKA,18966
32
+ dmu/stats/parameters.py,sha256=9lycexTT5ZcxXciiQY9HoJV8O1ahrTEkagd7dYXcfj8,3224
33
+ dmu/stats/utilities.py,sha256=7_tr1j-dl3lLNpxIMWruZs4yUtlNuUTknwGMERpfLhs,17338
34
+ dmu/stats/wdata.py,sha256=IbjZFU9SHTLSYfaBgqamDvqy1K7-3-SaKbU4bGsamK0,6799
35
+ dmu/stats/zfit.py,sha256=aSZj_4IHi9IBthfqlNJeA8YSoMmXO5WipgiKnXKGbnM,286
36
+ dmu/stats/zfit_models.py,sha256=SI61KJ-OG1UAabDICU1iTh6JPKM3giR2ErDraRjkCV8,1842
37
+ dmu/stats/zfit_plotter.py,sha256=gbN5KxhJcP4ItCi98c-fj5_UtvVWL_NA9jkTHiRjvnE,23854
38
+ dmu/testing/utilities.py,sha256=WYlz7Ve5lQjuWhhNL4gWe6_qcByBLV762Lhrc6A0P9E,7421
39
+ dmu/text/transformer.py,sha256=4lrGknbAWRm0-rxbvgzOO-eR1-9bkYk61boJUEV3cQ0,6100
40
+ dmu/workflow/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
+ dmu/workflow/cache.py,sha256=CtkGwxuF4UJlD55SmUJcRgWYLsbZOyUvYLI8oTVzk_g,8768
42
+ data_manipulation_utilities-0.2.8.dev720.dist-info/METADATA,sha256=RuHltvo8DQctnGYdFssfMv92oU6b7tgn3haFZ2HVk0E,51153
43
+ data_manipulation_utilities-0.2.8.dev720.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
44
+ data_manipulation_utilities-0.2.8.dev720.dist-info/entry_points.txt,sha256=M0C8_u9B_xSmyfemdPwdIBh9QuPIkjhEpG060Y5_Pjw,321
45
+ data_manipulation_utilities-0.2.8.dev720.dist-info/RECORD,,
@@ -1,5 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.9.0)
2
+ Generator: poetry-core 2.1.3
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
-
@@ -0,0 +1,8 @@
1
+ [console_scripts]
2
+ check_truth=dmu_scripts.physics.check_truth:main
3
+ compare_classifiers=dmu_scripts.ml.compare_classifiers:main
4
+ compare_root_files=dmu_scripts.rfile.compare_root_files:main
5
+ coned=dmu_scripts.ssh.coned:main
6
+ print_trees=dmu_scripts.rfile.print_trees:main
7
+ transform_text=dmu_scripts.text.transform_text:main
8
+
@@ -1,89 +0,0 @@
1
- #!/usr/bin/env bash
2
-
3
- # --------------------------
4
- display_help()
5
- {
6
- echo "Script meant to:"
7
- echo ""
8
- echo "1. Check if version in pyproject.toml has been modified"
9
- echo "2. If it has create new tag following version name"
10
- echo "3. Push to remote "
11
- }
12
- # --------------------------
13
- get_opts()
14
- {
15
- while getopts :hf: option; do
16
- case "${option}" in
17
- h)
18
- display_help
19
- exit 0
20
- ;;
21
- \?) echo "Invalid option: -${OPTARG}"
22
- display_help
23
- exit 1
24
- ;;
25
- :) echo "$0: Arguments needed"
26
- display_help
27
- exit 1
28
- ;;
29
- esac
30
- done
31
- }
32
- # --------------------------
33
- # Picks up version from pyproject.toml
34
- get_version()
35
- {
36
- if [[ ! -f pyproject.toml ]];then
37
- echo "Cannot find pyproject.toml"
38
- exit 1
39
- fi
40
-
41
- VERSION_LINE=$(grep version pyproject.toml)
42
-
43
- if [[ $? -ne 0 ]];then
44
- ehco "Could not extract version from pyproject.toml"
45
- exit 1
46
- fi
47
-
48
- if [[ "$VERSION_LINE" =~ .*([0-9]\.[0-9]\.[0-9]).* ]];then
49
- VERSION=${BASH_REMATCH[1]}
50
- echo "Using version: $VERSION"
51
- return
52
- fi
53
-
54
- echo "Could not extract version from: $VERSION_LINE"
55
- exit 1
56
- }
57
- # --------------------------
58
- create_tag()
59
- {
60
- git tag -n | grep $VERSION
61
-
62
- if [[ $? -eq 0 ]];then
63
- echo "Version found among tags, not tagging"
64
- return
65
- fi
66
-
67
- echo "Version $VERSION not found among tags, creating new tag"
68
-
69
- git tag -a $VERSION
70
- }
71
- # --------------------------
72
- push_all()
73
- {
74
- for REMOTE in $(git remote);do
75
- echo "Pushing tags and commits to remote: $REMOTE"
76
- git add pyproject.toml
77
- git commit -m "Publication commit"
78
-
79
- git pull $REMOTE HEAD
80
- git push -u $REMOTE HEAD
81
- git push $REMOTE --tags
82
- done
83
- }
84
- # --------------------------
85
- get_opts "$@"
86
-
87
- get_version
88
- create_tag
89
- push_all
@@ -1,93 +0,0 @@
1
- data_manipulation_utilities-0.2.8.dev714.data/scripts/publish,sha256=-3K_Y2_4CfWCV50rPB8CRuhjxDu7xMGswinRwPovgLs,1976
2
- dmu/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- dmu/arrays/utilities.py,sha256=PKoYyybPptA2aU-V3KLnJXBudWxTXu4x1uGdIMQ49HY,1722
4
- dmu/generic/hashing.py,sha256=QR5Gbv6-ANvi5hL232UNMrw9DONpU27BWTynXGxQLGU,1806
5
- dmu/generic/utilities.py,sha256=0tT93vF_x0q8STRrTD0GvBEpALz-mqE-vJyen4zWCO8,6861
6
- dmu/generic/version_management.py,sha256=j0ImlAq6SVNjTh3xRsF6G7DSoyr1w8kTRY84dNriGRE,3750
7
- dmu/logging/log_store.py,sha256=eRSy8Y4fuiDFJK02Z6fq67XQzOrhQ7GMr2LvvJQbJ40,5172
8
- dmu/logging/messages.py,sha256=Oj3O5EO2KOPtffyVq2P7RPzjpoXtxZ6yXO5HwTftVcM,2903
9
- dmu/ml/cv_classifier.py,sha256=6rjezMahwL-WzLGKU-fzMzNxJZAGbM7YAbhaZVcJ3F0,4258
10
- dmu/ml/cv_diagnostics.py,sha256=PLh41mSVE8Kagp9KcuRDN_7tDL9MjPxQzuewY8jDnNo,7600
11
- dmu/ml/cv_performance.py,sha256=q9sLxIx7GP-dand3tnhHCBJnT6xqssNdRYv_TVjYWUM,1910
12
- dmu/ml/cv_predict.py,sha256=0sc_OqwOewKvipcMyi3QqkgG30nkpZZjE-SOhHWHMd0,10778
13
- dmu/ml/train_mva.py,sha256=7KAFX_zOx8MGbYx62U81JbdBkrZvqclSSkgmYvWX-60,34861
14
- dmu/ml/utilities.py,sha256=A9j3tBh-jfaFdwwLUleo1QnttfawN7XDiQRh4VTvqVY,4597
15
- dmu/pdataframe/utilities.py,sha256=xl6iLVKUccqVXYjuHsDUZ6UrCKQPw1k8D-f6407Yq30,2742
16
- dmu/plotting/fwhm.py,sha256=4e8n6624pxWLcOOtayCQ_hDSSMKU21-3UsdmbkX1ojk,1949
17
- dmu/plotting/matrix.py,sha256=s_5W8O3yXF3u8OX3f4J4hCoxIVZt1TF8S-qJsFBh2Go,5005
18
- dmu/plotting/plotter.py,sha256=oc_n9ug0JPaQZycrW_TJkgNxjr0LHNrVJcijqmiLUR4,8136
19
- dmu/plotting/plotter_1d.py,sha256=Kyoyh-QyZLXXqX19wqEDUWCD1nJEvEonGp9nlgEaoZE,10936
20
- dmu/plotting/plotter_2d.py,sha256=dXC-7Rsquibe5cn7622ryoKpuv7KCAmouIIXwQ_VEFM,3172
21
- dmu/plotting/utilities.py,sha256=SI9dvtZq2gr-PXVz71KE4o0i09rZOKgqJKD1jzf6KXk,1167
22
- dmu/rdataframe/atr_mgr.py,sha256=FdhaQWVpsm4OOe1IRbm7rfrq8VenTNdORyI-lZ2Bs1M,2386
23
- dmu/rdataframe/utilities.py,sha256=cY1Na8HbJ7kB2dwmBagRdsRyCA4ZT_vyIU86ewREj2Y,5322
24
- dmu/rfile/ddfgetter.py,sha256=0jfNzpv72_NQUKOK5SBsn289rUqVt2BMvuL-Ro5oY7I,3316
25
- dmu/rfile/rfprinter.py,sha256=mp5jd-oCJAnuokbdmGyL9i6tK2lY72jEfROuBIZ_ums,3941
26
- dmu/rfile/utilities.py,sha256=XuYY7HuSBj46iSu3c60UYBHtI6KIPoJU_oofuhb-be0,945
27
- dmu/stats/fit_stats.py,sha256=wzkQT9U32ljGe4azUj1Fj0ECF3zmnH2Ncn0O-_Pl1zQ,4070
28
- dmu/stats/fitter.py,sha256=rm_fwjkq-0LSjXB_gt3y6BnHoK8Xvd4gHYwKBUJaItQ,19603
29
- dmu/stats/function.py,sha256=yzi_Fvp_ASsFzbWFivIf-comquy21WoeY7is6dgY0Go,9491
30
- dmu/stats/gof_calculator.py,sha256=63zNJJGKPy-j_hPNPfu9qNlhrHjYIgJOyL8-VDtbwuI,4894
31
- dmu/stats/minimizers.py,sha256=db9R2G0SOV-k0BKi6m4EyB_yp6AtZdP23_28B0315oo,7094
32
- dmu/stats/model_factory.py,sha256=0_o5OmiX0cNhp9_cNqBOYfasBgKlQkQPiy5nqi9qQKA,18966
33
- dmu/stats/parameters.py,sha256=9lycexTT5ZcxXciiQY9HoJV8O1ahrTEkagd7dYXcfj8,3224
34
- dmu/stats/utilities.py,sha256=7_tr1j-dl3lLNpxIMWruZs4yUtlNuUTknwGMERpfLhs,17338
35
- dmu/stats/wdata.py,sha256=IbjZFU9SHTLSYfaBgqamDvqy1K7-3-SaKbU4bGsamK0,6799
36
- dmu/stats/zfit.py,sha256=aSZj_4IHi9IBthfqlNJeA8YSoMmXO5WipgiKnXKGbnM,286
37
- dmu/stats/zfit_models.py,sha256=SI61KJ-OG1UAabDICU1iTh6JPKM3giR2ErDraRjkCV8,1842
38
- dmu/stats/zfit_plotter.py,sha256=gbN5KxhJcP4ItCi98c-fj5_UtvVWL_NA9jkTHiRjvnE,23854
39
- dmu/testing/utilities.py,sha256=WYlz7Ve5lQjuWhhNL4gWe6_qcByBLV762Lhrc6A0P9E,7421
40
- dmu/text/transformer.py,sha256=4lrGknbAWRm0-rxbvgzOO-eR1-9bkYk61boJUEV3cQ0,6100
41
- dmu/workflow/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
- dmu/workflow/cache.py,sha256=CtkGwxuF4UJlD55SmUJcRgWYLsbZOyUvYLI8oTVzk_g,8768
43
- dmu_data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
44
- dmu_data/ml/tests/diagnostics_from_file.yaml,sha256=quvXOPkRducnBsctyape_Rn5_aqMEpPo6nO_UweMORo,404
45
- dmu_data/ml/tests/diagnostics_from_model.yaml,sha256=rtCQlmGS9ld2xoQJEE35nA07yfRMklEfQEW0w3gRv2A,261
46
- dmu_data/ml/tests/diagnostics_multiple_methods.yaml,sha256=w8Fpmr7kX1Jsb_h6LL2hiuYKf5lYpckFCpYKzWetbA0,265
47
- dmu_data/ml/tests/diagnostics_overlay.yaml,sha256=ZVOsxLL8_JQtf41n8Ct-M9Ch10xBwHK54q1fttWPDlE,866
48
- dmu_data/ml/tests/train_mva.yaml,sha256=KArbTkaj6FqerrUhlkgyBde_4DfkpVza6kCMgMQPi9g,1388
49
- dmu_data/ml/tests/train_mva_def.yaml,sha256=UyPMo-9nshoB8BHxm9E6S0xd9ngRARdgUq6vnuMlhwI,1765
50
- dmu_data/ml/tests/train_mva_with_diagnostics.yaml,sha256=-2KKIJ8CiNgMlgpCXkmZRdPEo-sJmAqr01vizfeqkj0,2098
51
- dmu_data/ml/tests/train_mva_with_preffix.yaml,sha256=Q9SsJSXGbkHWGBvMZIkTZlKNUz5ZcSVBscrKgeMWBvE,1386
52
- dmu_data/plotting/tests/2d.yaml,sha256=40wKQmNbIabZ7CI8-2QnD6mG1a_B7vEcPdzvehHkseY,520
53
- dmu_data/plotting/tests/fig_size.yaml,sha256=7ROq49nwZ1A2EbPiySmu6n3G-Jq6YAOkc3d2X3YNZv0,294
54
- dmu_data/plotting/tests/high_stat.yaml,sha256=bLglBLCZK6ft0xMhQ5OltxE76cWsBMPMjO6GG0OkDr8,522
55
- dmu_data/plotting/tests/legend.yaml,sha256=wGpj58ig-GOlqbWoN894zrCet2Fj9f5QtY0rig_UC-c,213
56
- dmu_data/plotting/tests/line.yaml,sha256=EERDeTctbauwqAvmKFXC4Ot3Tgx-8kcIniGbepXwsKs,305
57
- dmu_data/plotting/tests/name.yaml,sha256=mkcPAVg8wBAmlSbSRQ1bcaMl4vOS6LXMtpqQeDrrtO4,312
58
- dmu_data/plotting/tests/no_bounds.yaml,sha256=8e1QdphBjz-suDr857DoeUC2DXiy6SE-gvkORJQYv80,257
59
- dmu_data/plotting/tests/normalized.yaml,sha256=Y0eKtyV5pvlSxvqfsLjytYtv8xYF3HZ5WEdCJdeHGQI,193
60
- dmu_data/plotting/tests/plug_fwhm.yaml,sha256=xl5LXc9Nt66anM-HOXAxCtlaxWNM7zzIXf1Y6U8M4Wg,449
61
- dmu_data/plotting/tests/plug_stats.yaml,sha256=ROO8soYXBbZIFYZcGngA_K5XHgIAFCmuAGfZCJgMmd0,384
62
- dmu_data/plotting/tests/simple.yaml,sha256=Xc59Pjfb3BKMicLVBxODVqomHFupcb5GvefKbKHCQWQ,195
63
- dmu_data/plotting/tests/stats.yaml,sha256=fSZjoV-xPnukpCH2OAXsz_SNPjI113qzDg8Ln3spaaA,165
64
- dmu_data/plotting/tests/styling.yaml,sha256=ZglA4fG6gr5Q_K2VinwVDPjIitiFizCzxr-KsHw2ERI,370
65
- dmu_data/plotting/tests/title.yaml,sha256=bawKp9aGpeRrHzv69BOCbFX8sq9bb3Es9tdsPTE7jIk,333
66
- dmu_data/plotting/tests/weights.yaml,sha256=RWQ1KxbCq-uO62WJ2AoY4h5Umc37zG35s-TpKnNMABI,312
67
- dmu_data/rfile/friends.yaml,sha256=sEGKFKK0q1U6b9qlfHUFBLZW0FeruR1t2LCOo6Ck1Rg,264
68
- dmu_data/stats/fitter/test_simple.yaml,sha256=lBw6igBT57BZnuG3GgoxOiXTMFHfs5LchbI3Ubb8Qz0,1549
69
- dmu_data/stats/kde_optimizer/control.json,sha256=EiArsHUAHBmzw4gmaNyOOW1ziYtNhdelIAqc3EH0K_M,1327616
70
- dmu_data/stats/kde_optimizer/signal.json,sha256=MocwnYizcKki4dlxEIsWwE8HzY-ZBQaUo-lrCR5N3Tw,1327616
71
- dmu_data/stats/parameters/data.yaml,sha256=lNmuolhUQmwB6sxHQvBRm-Kz5MUW_H1qAouynzBiWvs,2087
72
- dmu_data/tests/config.json,sha256=QSfx-irgPV-BHAVe1Xe1dgiVkZGPp0fxb9OhXeVaEBg,60
73
- dmu_data/tests/config.yaml,sha256=rFTk9PSFOgEVEcGDxr4K9vFIUrCVhbEMUoj683Py1AQ,38
74
- dmu_data/tests/pdf_to_tex.txt,sha256=yzzH1L7P2SOFrVxS737Ykg1SlcD0jhrrBwQGsui2oAQ,3854
75
- dmu_data/text/transform.toml,sha256=R-832BZalzHZ6c5gD6jtT_Hj8BCsM5vxa1v6oeiwaP4,94
76
- dmu_data/text/transform.txt,sha256=EX760da6Vkf-_EPxnQlC5hGSkfFhJCCGCD19NU-1Qto,44
77
- dmu_data/text/transform_set.toml,sha256=Jeh7BTz82idqvbOQJtl9-ur56mZkzDn5WtvmIb48LoE,150
78
- dmu_data/text/transform_set.txt,sha256=1KivMoP9LxPn9955QrRmOzjEqduEjhTetQ9MXykO5LY,46
79
- dmu_data/text/transform_trf.txt,sha256=zxBRTgcSmX7RdqfmWF88W1YqbyNHa4Ccruf1MmnYv2A,74
80
- dmu_scripts/git/publish,sha256=-3K_Y2_4CfWCV50rPB8CRuhjxDu7xMGswinRwPovgLs,1976
81
- dmu_scripts/kerberos/check_expiration,sha256=PRJopcyFSeiAHdWpLEZp6mu_OKctUdIJj0HZfC0EWxg,308
82
- dmu_scripts/kerberos/convert_certificate,sha256=_4k4fmxpK-MbSLkkRYEPLQc9twfYBqOIiYZqL9yAXKE,445
83
- dmu_scripts/ml/compare_classifiers.py,sha256=XuHdcVyDLFGoKfvfv6YrgIavRpjpMrnBSqUnlliD7ew,2312
84
- dmu_scripts/physics/check_truth.py,sha256=b1P_Pa9ef6VcFtyY6Y9KS9Om9L-QrCBjDKp4dqca0PQ,3964
85
- dmu_scripts/rfile/compare_root_files.py,sha256=T8lDnQxsRNMr37x1Y7YvWD8ySHrJOWZki7ZQynxXX9Q,9540
86
- dmu_scripts/rfile/print_trees.py,sha256=Ze4Ccl_iUldl4eVEDVnYBoe4amqBT1fSBR1zN5WSztk,941
87
- dmu_scripts/ssh/coned.py,sha256=lhilYNHWRCGxC-jtyJ3LQ4oUgWW33B2l1tYCcyHHsR0,4858
88
- dmu_scripts/text/transform_text.py,sha256=9akj1LB0HAyopOvkLjNOJiptZw5XoOQLe17SlcrGMD0,1456
89
- data_manipulation_utilities-0.2.8.dev714.dist-info/METADATA,sha256=M5n-tPUt3o_0kY4viuQj6lbP4JQxWhpxkSnWCW29PFg,50263
90
- data_manipulation_utilities-0.2.8.dev714.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
91
- data_manipulation_utilities-0.2.8.dev714.dist-info/entry_points.txt,sha256=-02cr8ibY6L_reX-_Owz2N7OUQyTAwydRIvLr9kKZK0,332
92
- data_manipulation_utilities-0.2.8.dev714.dist-info/top_level.txt,sha256=n_x5J6uWtSqy9mRImKtdA2V2NJNyU8Kn3u8DTOKJix0,25
93
- data_manipulation_utilities-0.2.8.dev714.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- [console_scripts]
2
- check_truth = dmu_scripts.physics.check_truth:main
3
- compare_classifiers = dmu_scripts.ml.compare_classifiers:main
4
- compare_root_files = dmu_scripts.rfile.compare_root_files:main
5
- coned = dmu_scripts.ssh.coned:main
6
- print_trees = dmu_scripts.rfile.print_trees:main
7
- transform_text = dmu_scripts.text.transform_text:main
@@ -1,3 +0,0 @@
1
- dmu
2
- dmu_data
3
- dmu_scripts
dmu_data/__init__.py DELETED
File without changes
@@ -1,13 +0,0 @@
1
- output : /tmp/tests/dmu/ml/cv_diagnostics/from_rdf
2
- # Will assume that the target is already in the input dataframe
3
- # and will use it, instead of evaluating models
4
- score_from_rdf : w
5
- correlations:
6
- # Variables with respect to which the correlations with the features will be measured
7
- target :
8
- name : z
9
- methods:
10
- - Pearson
11
- figure:
12
- title: Scores from file
13
- size : [10, 8]
@@ -1,10 +0,0 @@
1
- output : /tmp/tests/dmu/ml/cv_diagnostics/from_model
2
- correlations:
3
- # Variables with respect to which the correlations with the features will be measured
4
- target :
5
- name : z
6
- methods:
7
- - Pearson
8
- figure:
9
- size : [10, 8]
10
- rotate: 90
@@ -1,10 +0,0 @@
1
- output : /tmp/tests/dmu/ml/cv_diagnostics/multiple_methods
2
- correlations:
3
- # Variables with respect to which the correlations with the features will be measured
4
- target :
5
- name : z
6
- methods:
7
- - Pearson
8
- - Kendall-$\tau$
9
- figure:
10
- size : [10, 8]
@@ -1,33 +0,0 @@
1
- output : /tmp/tests/dmu/ml/cv_diagnostics/overlay
2
- # Will assume that the target is already in the input dataframe
3
- # and will use it, instead of evaluating models
4
- score_from_rdf : w
5
- correlations:
6
- # Variables with respect to which the correlations with the features will be measured
7
- target :
8
- name : z
9
- overlay :
10
- wp :
11
- - 0.2
12
- - 0.5
13
- - 0.7
14
- - 0.9
15
- general:
16
- size : [12, 10]
17
- saving:
18
- plt_dir : /tmp/tests/dmu/ml/cv_diagnostics/overlay
19
- plots:
20
- z :
21
- binning : [-4, 4, 10]
22
- yscale : 'linear'
23
- labels : ['$z$', 'Entries']
24
- normalized : true
25
- styling :
26
- linestyle: '-'
27
- methods:
28
- - Pearson
29
- - Kendall-$\tau$
30
- figure:
31
- title : Scores from file
32
- size : [12, 10]
33
- xlabelsize: 30
@@ -1,60 +0,0 @@
1
- dataset:
2
- define :
3
- r : z + x
4
- nan :
5
- x : -3
6
- y : -3
7
- training :
8
- nfold : 3
9
- features :
10
- - x
11
- - y
12
- - r
13
- rdm_stat : 1
14
- hyper :
15
- loss : log_loss
16
- max_features : sqrt
17
- n_estimators : 100
18
- max_depth : 5
19
- min_samples_split : 2
20
- subsample : 0.8
21
- learning_rate : 0.1
22
- saving:
23
- output : /tmp/tests/dmu/ml/train_mva
24
- plotting:
25
- roc :
26
- min : [0.0, 0.0]
27
- max : [1.2, 1.2]
28
- annotate:
29
- sig_eff : [0.5, 0.6, 0.7, 0.8, 0.9]
30
- form : '{:.2f}'
31
- color: 'green'
32
- xoff : -15
33
- yoff : -15
34
- size : 10
35
- correlation:
36
- title : 'Correlation matrix'
37
- size : [10, 10]
38
- mask_value : 0
39
- features:
40
- plots:
41
- r :
42
- binning : [-6, 6, 100]
43
- yscale : 'linear'
44
- labels : ['$r$', '']
45
- w :
46
- binning : [-4, 4, 100]
47
- yscale : 'linear'
48
- labels : ['$w$', '']
49
- x :
50
- binning : [-4, 4, 100]
51
- yscale : 'linear'
52
- labels : ['$x$', '']
53
- y :
54
- binning : [-4, 4, 100]
55
- yscale : 'linear'
56
- labels : ['$y$', '']
57
- z :
58
- binning : [-4, 4, 100]
59
- yscale : 'linear'
60
- labels : ['$z$', '']
@@ -1,75 +0,0 @@
1
- # This config file is used for testing training and evaluation
2
- # when there is a variable that is defined in different ways
3
- # for the `sig` and `bkg` samples
4
-
5
- dataset:
6
- samples:
7
- sig :
8
- definitions:
9
- n : x + y
10
- bkg :
11
- definitions:
12
- n : x - y
13
- define :
14
- r : z + x
15
- nan :
16
- n : -3
17
- y : -3
18
- training :
19
- nfold : 3
20
- features :
21
- - n
22
- - y
23
- - r
24
- rdm_stat : 1
25
- hyper :
26
- loss : log_loss
27
- max_features : sqrt
28
- n_estimators : 100
29
- max_depth : 5
30
- min_samples_split : 2
31
- subsample : 0.8
32
- learning_rate : 0.1
33
- saving:
34
- output : /tmp/tests/dmu/ml/train_mva
35
- plotting:
36
- roc :
37
- min : [0.0, 0.0]
38
- max : [1.2, 1.2]
39
- annotate:
40
- sig_eff : [0.5, 0.6, 0.7, 0.8, 0.9]
41
- form : '{:.2f}'
42
- color: 'green'
43
- xoff : -15
44
- yoff : -15
45
- size : 10
46
- correlation:
47
- title : 'Correlation matrix'
48
- size : [10, 10]
49
- mask_value : 0
50
- features:
51
- plots:
52
- r :
53
- binning : [-6, 6, 100]
54
- yscale : 'linear'
55
- labels : ['$r$', '']
56
- n :
57
- binning : [-4, 4, 100]
58
- yscale : 'linear'
59
- labels : ['$n$', '']
60
- w :
61
- binning : [-4, 4, 100]
62
- yscale : 'linear'
63
- labels : ['$w$', '']
64
- x :
65
- binning : [-4, 4, 100]
66
- yscale : 'linear'
67
- labels : ['$x$', '']
68
- y :
69
- binning : [-4, 4, 100]
70
- yscale : 'linear'
71
- labels : ['$y$', '']
72
- z :
73
- binning : [-4, 4, 100]
74
- yscale : 'linear'
75
- labels : ['$z$', '']
@@ -1,87 +0,0 @@
1
- dataset:
2
- define :
3
- r : z + x
4
- nan :
5
- x : -3
6
- y : -3
7
- training :
8
- nfold : 3
9
- features : [x, y, r]
10
- rdm_stat : 1
11
- hyper :
12
- loss : log_loss
13
- n_estimators : 100
14
- max_depth : 3
15
- learning_rate : 0.1
16
- min_samples_split : 2
17
- saving:
18
- output : /tmp/tests/dmu/ml/train_mva
19
- plotting:
20
- roc :
21
- min : [0.0, 0.0]
22
- max : [1.2, 1.2]
23
- annotate:
24
- sig_eff : [0.5, 0.6, 0.7, 0.8, 0.9]
25
- form : '{:.2f}'
26
- color: 'green'
27
- xoff : -15
28
- yoff : -15
29
- size : 10
30
- correlation:
31
- title : 'Correlation matrix'
32
- size : [10, 10]
33
- mask_value : 0
34
- val_dir : '/tmp/tests/dmu/ml/train_mva'
35
- features:
36
- saving:
37
- plt_dir : '/tmp/tests/dmu/ml/train_mva/features'
38
- plots:
39
- r :
40
- binning : [-6, 6, 100]
41
- yscale : 'linear'
42
- labels : ['$r$', '']
43
- w :
44
- binning : [-4, 4, 100]
45
- yscale : 'linear'
46
- labels : ['$w$', '']
47
- x :
48
- binning : [-4, 4, 100]
49
- yscale : 'linear'
50
- labels : ['$x$', '']
51
- y :
52
- binning : [-4, 4, 100]
53
- yscale : 'linear'
54
- labels : ['$y$', '']
55
- z :
56
- binning : [-4, 4, 100]
57
- yscale : 'linear'
58
- labels : ['$z$', '']
59
- diagnostics:
60
- output : /tmp/tests/dmu/ml/train_mva/diagnostics
61
- correlations:
62
- target :
63
- name : z
64
- overlay :
65
- wp :
66
- - 0.2
67
- - 0.6
68
- - 0.8
69
- - 0.9
70
- general:
71
- size : [20, 10]
72
- saving:
73
- plt_dir : /tmp/tests/dmu/ml/train_mva/diagnostics
74
- plots:
75
- z :
76
- binning : [-4, +4, 30]
77
- yscale : 'linear'
78
- labels : ['z', 'Entries']
79
- normalized : true
80
- styling :
81
- linestyle: '-'
82
- methods:
83
- - Pearson
84
- - Kendall-$\tau$
85
- figure:
86
- title: Training diagnostics
87
- size : [10, 8]
@@ -1,58 +0,0 @@
1
- dataset:
2
- define :
3
- r : z + preffix.x.suffix
4
- nan :
5
- preffix.x.suffix : -3
6
- y : -3
7
- training :
8
- nfold : 2
9
- features :
10
- - preffix.x.suffix
11
- - y
12
- - r
13
- rdm_stat : 1
14
- hyper :
15
- loss : log_loss
16
- n_estimators : 100
17
- max_depth : 3
18
- learning_rate : 0.1
19
- min_samples_split : 2
20
- saving:
21
- output : /tmp/tests/dmu/ml/train_mva
22
- plotting:
23
- roc :
24
- min : [0.0, 0.0]
25
- max : [1.2, 1.2]
26
- annotate:
27
- sig_eff : [0.5, 0.6, 0.7, 0.8, 0.9]
28
- form : '{:.2f}'
29
- color: 'green'
30
- xoff : -15
31
- yoff : -15
32
- size : 10
33
- correlation:
34
- title : 'Correlation matrix'
35
- size : [10, 10]
36
- mask_value : 0
37
- features:
38
- plots:
39
- r :
40
- binning : [-6, 6, 100]
41
- yscale : 'linear'
42
- labels : ['$r$', '']
43
- w :
44
- binning : [-4, 4, 100]
45
- yscale : 'linear'
46
- labels : ['$w$', '']
47
- preffix.x.suffix :
48
- binning : [-4, 4, 100]
49
- yscale : 'linear'
50
- labels : ['$x$', '']
51
- y :
52
- binning : [-4, 4, 100]
53
- yscale : 'linear'
54
- labels : ['$y$', '']
55
- z :
56
- binning : [-4, 4, 100]
57
- yscale : 'linear'
58
- labels : ['$z$', '']