data-manipulation-utilities 0.2.2__py3-none-any.whl → 0.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: data_manipulation_utilities
3
- Version: 0.2.2
3
+ Version: 0.2.3
4
4
  Description-Content-Type: text/markdown
5
5
  Requires-Dist: logzero
6
6
  Requires-Dist: PyYAML
@@ -578,6 +578,24 @@ These are utility functions meant to be used with ROOT dataframes.
578
578
 
579
579
  ## Adding a column from a numpy array
580
580
 
581
+ ### With numba
582
+
583
+ For this do:
584
+
585
+ ```python
586
+ import dmu.rdataframe.utilities as ut
587
+
588
+ arr_val = numpy.array([10, 20, 30])
589
+ rdf = ut.add_column_with_numba(rdf, arr_val, 'values', identifier='some_name')
590
+ ```
591
+
592
+ where the identifier needs to be unique, every time the function is called.
593
+ This is the case, because the addition is done internally by declaring a numba function whose name
594
+ cannot be repeated as mentioned
595
+ [here](https://root-forum.cern.ch/t/ways-to-work-around-the-redefinition-of-compiled-functions-in-one-single-notebook-session/41442/1)
596
+
597
+ ### With awkward
598
+
581
599
  For this do:
582
600
 
583
601
  ```python
@@ -1,4 +1,4 @@
1
- data_manipulation_utilities-0.2.2.data/scripts/publish,sha256=-3K_Y2_4CfWCV50rPB8CRuhjxDu7xMGswinRwPovgLs,1976
1
+ data_manipulation_utilities-0.2.3.data/scripts/publish,sha256=-3K_Y2_4CfWCV50rPB8CRuhjxDu7xMGswinRwPovgLs,1976
2
2
  dmu/arrays/utilities.py,sha256=PKoYyybPptA2aU-V3KLnJXBudWxTXu4x1uGdIMQ49HY,1722
3
3
  dmu/generic/utilities.py,sha256=0Xnq9t35wuebAqKxbyAiMk1ISB7IcXK4cFH25MT1fgw,1741
4
4
  dmu/logging/log_store.py,sha256=umdvjNDuV3LdezbG26b0AiyTglbvkxST19CQu9QATbA,4184
@@ -13,7 +13,7 @@ dmu/plotting/plotter_1d.py,sha256=g6H2xAgsL9a6vRkpbqHICb3qwV_qMiQPZxxw_oOSf9M,51
13
13
  dmu/plotting/plotter_2d.py,sha256=J-gKnagoHGfJFU7HBrhDFpGYH5Rxy0_zF5l8eE_7ZHE,2944
14
14
  dmu/plotting/utilities.py,sha256=SI9dvtZq2gr-PXVz71KE4o0i09rZOKgqJKD1jzf6KXk,1167
15
15
  dmu/rdataframe/atr_mgr.py,sha256=FdhaQWVpsm4OOe1IRbm7rfrq8VenTNdORyI-lZ2Bs1M,2386
16
- dmu/rdataframe/utilities.py,sha256=MDY3u_y0s-ANvHAWRzGyeuuZUKoaqilfmb8mqlgfrVc,2771
16
+ dmu/rdataframe/utilities.py,sha256=pNcQARMP7txMhy6k27UnDcYf0buNy5U2fshaJDl_h8o,3661
17
17
  dmu/rfile/rfprinter.py,sha256=mp5jd-oCJAnuokbdmGyL9i6tK2lY72jEfROuBIZ_ums,3941
18
18
  dmu/rfile/utilities.py,sha256=XuYY7HuSBj46iSu3c60UYBHtI6KIPoJU_oofuhb-be0,945
19
19
  dmu/stats/fitter.py,sha256=vHNZ16U3apoQyeyM8evq-if49doF48sKB3q9wmA96Fw,18387
@@ -47,8 +47,8 @@ dmu_scripts/rfile/compare_root_files.py,sha256=T8lDnQxsRNMr37x1Y7YvWD8ySHrJOWZki
47
47
  dmu_scripts/rfile/print_trees.py,sha256=Ze4Ccl_iUldl4eVEDVnYBoe4amqBT1fSBR1zN5WSztk,941
48
48
  dmu_scripts/ssh/coned.py,sha256=lhilYNHWRCGxC-jtyJ3LQ4oUgWW33B2l1tYCcyHHsR0,4858
49
49
  dmu_scripts/text/transform_text.py,sha256=9akj1LB0HAyopOvkLjNOJiptZw5XoOQLe17SlcrGMD0,1456
50
- data_manipulation_utilities-0.2.2.dist-info/METADATA,sha256=0QwhQmQML65qk2kaXf1znMZOVNuvaY3l35E7cXLRCZ8,27359
51
- data_manipulation_utilities-0.2.2.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
52
- data_manipulation_utilities-0.2.2.dist-info/entry_points.txt,sha256=1TIZDed651KuOH-DgaN5AoBdirKmrKE_oM1b6b7zTUU,270
53
- data_manipulation_utilities-0.2.2.dist-info/top_level.txt,sha256=n_x5J6uWtSqy9mRImKtdA2V2NJNyU8Kn3u8DTOKJix0,25
54
- data_manipulation_utilities-0.2.2.dist-info/RECORD,,
50
+ data_manipulation_utilities-0.2.3.dist-info/METADATA,sha256=STJ7vYfcSIM9dtMRzywGLwDzH1sUBE5DL9FqvskMcxo,27923
51
+ data_manipulation_utilities-0.2.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
52
+ data_manipulation_utilities-0.2.3.dist-info/entry_points.txt,sha256=1TIZDed651KuOH-DgaN5AoBdirKmrKE_oM1b6b7zTUU,270
53
+ data_manipulation_utilities-0.2.3.dist-info/top_level.txt,sha256=n_x5J6uWtSqy9mRImKtdA2V2NJNyU8Kn3u8DTOKJix0,25
54
+ data_manipulation_utilities-0.2.3.dist-info/RECORD,,
@@ -1,6 +1,7 @@
1
1
  '''
2
2
  Module containing utility functions to be used with ROOT dataframes
3
3
  '''
4
+ # pylint: disable=no-name-in-module
4
5
 
5
6
  import re
6
7
  from dataclasses import dataclass
@@ -10,7 +11,7 @@ import pandas as pnd
10
11
  import awkward as ak
11
12
  import numpy
12
13
 
13
- from ROOT import RDataFrame, RDF
14
+ from ROOT import RDataFrame, RDF, Numba
14
15
 
15
16
  from dmu.logging.log_store import LogStore
16
17
 
@@ -34,6 +35,8 @@ def add_column(rdf : RDataFrame, arr_val : Union[numpy.ndarray,None], name : str
34
35
  exclude_re : Regex with patter of column names that we won't pick
35
36
  '''
36
37
 
38
+ log.warning(f'Adding column {name} with awkward')
39
+
37
40
  d_opt = {} if d_opt is None else d_opt
38
41
  if arr_val is None:
39
42
  raise ValueError('Array of values not introduced')
@@ -72,6 +75,29 @@ def add_column(rdf : RDataFrame, arr_val : Union[numpy.ndarray,None], name : str
72
75
 
73
76
  return rdf
74
77
  # ---------------------------------------------------------------------
78
+ def add_column_with_numba(
79
+ rdf : RDataFrame,
80
+ arr_val : Union[numpy.ndarray,None],
81
+ name : str,
82
+ identifier : str) -> RDataFrame:
83
+ '''
84
+ Will take a dataframe, an array of numbers and a string
85
+ Will add the array as a colunm to the dataframe
86
+
87
+ The `identifier` argument is a string need in order to avoid collisions
88
+ when using Numba to define a function to get the value from.
89
+ '''
90
+ identifier=f'fun_{identifier}'
91
+
92
+ @Numba.Declare(['int'], 'float', name=identifier)
93
+ def get_value(index):
94
+ return arr_val[index]
95
+
96
+ log.debug(f'Adding column {name} with numba')
97
+ rdf = rdf.Define(name, f'Numba::{identifier}(rdfentry_)')
98
+
99
+ return rdf
100
+ # ---------------------------------------------------------------------
75
101
  def rdf_report_to_df(rep : RDF.RCutFlowReport) -> pnd.DataFrame:
76
102
  '''
77
103
  Takes the output of rdf.Report(), i.e. an RDataFrame cutflow report.