data-designer 0.1.5__py3-none-any.whl → 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data_designer/_version.py +2 -2
- data_designer/cli/README.md +15 -1
- data_designer/cli/commands/download.py +56 -0
- data_designer/cli/commands/list.py +4 -18
- data_designer/cli/controllers/__init__.py +2 -1
- data_designer/cli/controllers/download_controller.py +217 -0
- data_designer/cli/controllers/model_controller.py +4 -3
- data_designer/cli/forms/field.py +65 -19
- data_designer/cli/forms/model_builder.py +251 -44
- data_designer/cli/main.py +11 -1
- data_designer/cli/repositories/persona_repository.py +88 -0
- data_designer/cli/services/__init__.py +2 -1
- data_designer/cli/services/download_service.py +97 -0
- data_designer/cli/ui.py +131 -0
- data_designer/cli/utils.py +34 -0
- data_designer/config/analysis/__init__.py +2 -0
- data_designer/config/analysis/column_profilers.py +75 -7
- data_designer/config/analysis/column_statistics.py +192 -48
- data_designer/config/analysis/dataset_profiler.py +23 -5
- data_designer/config/analysis/utils/reporting.py +3 -3
- data_designer/config/base.py +3 -3
- data_designer/config/column_configs.py +27 -6
- data_designer/config/column_types.py +24 -17
- data_designer/config/config_builder.py +36 -27
- data_designer/config/data_designer_config.py +7 -7
- data_designer/config/datastore.py +6 -6
- data_designer/config/default_model_settings.py +27 -34
- data_designer/config/exports.py +8 -0
- data_designer/config/models.py +155 -29
- data_designer/config/preview_results.py +6 -8
- data_designer/config/processors.py +63 -2
- data_designer/config/sampler_constraints.py +1 -2
- data_designer/config/sampler_params.py +50 -31
- data_designer/config/seed.py +1 -2
- data_designer/config/utils/code_lang.py +4 -5
- data_designer/config/utils/constants.py +31 -8
- data_designer/config/utils/io_helpers.py +5 -5
- data_designer/config/utils/misc.py +1 -4
- data_designer/config/utils/numerical_helpers.py +2 -2
- data_designer/config/utils/type_helpers.py +3 -3
- data_designer/config/utils/validation.py +7 -8
- data_designer/config/utils/visualization.py +32 -17
- data_designer/config/validator_params.py +4 -8
- data_designer/engine/analysis/column_profilers/base.py +0 -7
- data_designer/engine/analysis/column_profilers/judge_score_profiler.py +2 -3
- data_designer/engine/analysis/column_statistics.py +16 -16
- data_designer/engine/analysis/dataset_profiler.py +25 -4
- data_designer/engine/analysis/utils/column_statistics_calculations.py +71 -49
- data_designer/engine/analysis/utils/judge_score_processing.py +5 -5
- data_designer/engine/column_generators/generators/base.py +34 -0
- data_designer/engine/column_generators/generators/embedding.py +45 -0
- data_designer/engine/column_generators/generators/{llm_generators.py → llm_completion.py} +17 -49
- data_designer/engine/column_generators/registry.py +4 -2
- data_designer/engine/column_generators/utils/judge_score_factory.py +5 -6
- data_designer/engine/configurable_task.py +2 -2
- data_designer/engine/dataset_builders/artifact_storage.py +1 -2
- data_designer/engine/dataset_builders/column_wise_builder.py +58 -15
- data_designer/engine/dataset_builders/utils/concurrency.py +6 -6
- data_designer/engine/models/facade.py +66 -9
- data_designer/engine/models/litellm_overrides.py +5 -6
- data_designer/engine/models/parsers/errors.py +2 -4
- data_designer/engine/models/parsers/parser.py +2 -3
- data_designer/engine/models/parsers/postprocessors.py +3 -4
- data_designer/engine/models/parsers/types.py +4 -4
- data_designer/engine/models/registry.py +47 -12
- data_designer/engine/models/telemetry.py +355 -0
- data_designer/engine/models/usage.py +7 -9
- data_designer/engine/processing/ginja/ast.py +1 -2
- data_designer/engine/processing/utils.py +40 -2
- data_designer/engine/registry/base.py +12 -12
- data_designer/engine/sampling_gen/constraints.py +1 -2
- data_designer/engine/sampling_gen/data_sources/base.py +14 -14
- data_designer/engine/sampling_gen/entities/phone_number.py +1 -2
- data_designer/engine/sampling_gen/people_gen.py +3 -7
- data_designer/engine/validators/base.py +2 -2
- data_designer/logging.py +2 -2
- data_designer/plugin_manager.py +3 -3
- data_designer/plugins/plugin.py +3 -3
- data_designer/plugins/registry.py +2 -2
- {data_designer-0.1.5.dist-info → data_designer-0.2.1.dist-info}/METADATA +32 -1
- {data_designer-0.1.5.dist-info → data_designer-0.2.1.dist-info}/RECORD +84 -77
- {data_designer-0.1.5.dist-info → data_designer-0.2.1.dist-info}/WHEEL +0 -0
- {data_designer-0.1.5.dist-info → data_designer-0.2.1.dist-info}/entry_points.txt +0 -0
- {data_designer-0.1.5.dist-info → data_designer-0.2.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
# SPDX-License-Identifier: Apache-2.0
|
|
3
3
|
|
|
4
4
|
from enum import Enum
|
|
5
|
-
from typing import Literal
|
|
5
|
+
from typing import Literal
|
|
6
6
|
|
|
7
7
|
import pandas as pd
|
|
8
8
|
from pydantic import Field, field_validator, model_validator
|
|
@@ -54,12 +54,12 @@ class CategorySamplerParams(ConfigBase):
|
|
|
54
54
|
Larger weights result in higher sampling probability for the corresponding value.
|
|
55
55
|
"""
|
|
56
56
|
|
|
57
|
-
values: list[
|
|
57
|
+
values: list[str | int | float] = Field(
|
|
58
58
|
...,
|
|
59
59
|
min_length=1,
|
|
60
60
|
description="List of possible categorical values that can be sampled from.",
|
|
61
61
|
)
|
|
62
|
-
weights:
|
|
62
|
+
weights: list[float] | None = Field(
|
|
63
63
|
default=None,
|
|
64
64
|
description=(
|
|
65
65
|
"List of unnormalized probability weights to assigned to each value, in order. "
|
|
@@ -134,7 +134,7 @@ class SubcategorySamplerParams(ConfigBase):
|
|
|
134
134
|
"""
|
|
135
135
|
|
|
136
136
|
category: str = Field(..., description="Name of parent category to this subcategory.")
|
|
137
|
-
values: dict[str, list[
|
|
137
|
+
values: dict[str, list[str | int | float]] = Field(
|
|
138
138
|
...,
|
|
139
139
|
description="Mapping from each value of parent category to a list of subcategory values.",
|
|
140
140
|
)
|
|
@@ -214,7 +214,7 @@ class UUIDSamplerParams(ConfigBase):
|
|
|
214
214
|
lowercase UUIDs.
|
|
215
215
|
"""
|
|
216
216
|
|
|
217
|
-
prefix:
|
|
217
|
+
prefix: str | None = Field(default=None, description="String prepended to the front of the UUID.")
|
|
218
218
|
short_form: bool = Field(
|
|
219
219
|
default=False,
|
|
220
220
|
description="If true, all UUIDs sampled will be truncated at 8 characters.",
|
|
@@ -259,7 +259,7 @@ class ScipySamplerParams(ConfigBase):
|
|
|
259
259
|
...,
|
|
260
260
|
description="Parameters of the scipy.stats distribution given in `dist_name`.",
|
|
261
261
|
)
|
|
262
|
-
decimal_places:
|
|
262
|
+
decimal_places: int | None = Field(
|
|
263
263
|
default=None, description="Number of decimal places to round the sampled values to."
|
|
264
264
|
)
|
|
265
265
|
sampler_type: Literal[SamplerType.SCIPY] = SamplerType.SCIPY
|
|
@@ -356,7 +356,7 @@ class GaussianSamplerParams(ConfigBase):
|
|
|
356
356
|
|
|
357
357
|
mean: float = Field(..., description="Mean of the Gaussian distribution")
|
|
358
358
|
stddev: float = Field(..., description="Standard deviation of the Gaussian distribution")
|
|
359
|
-
decimal_places:
|
|
359
|
+
decimal_places: int | None = Field(
|
|
360
360
|
default=None, description="Number of decimal places to round the sampled values to."
|
|
361
361
|
)
|
|
362
362
|
sampler_type: Literal[SamplerType.GAUSSIAN] = SamplerType.GAUSSIAN
|
|
@@ -398,7 +398,7 @@ class UniformSamplerParams(ConfigBase):
|
|
|
398
398
|
|
|
399
399
|
low: float = Field(..., description="Lower bound of the uniform distribution, inclusive.")
|
|
400
400
|
high: float = Field(..., description="Upper bound of the uniform distribution, inclusive.")
|
|
401
|
-
decimal_places:
|
|
401
|
+
decimal_places: int | None = Field(
|
|
402
402
|
default=None, description="Number of decimal places to round the sampled values to."
|
|
403
403
|
)
|
|
404
404
|
sampler_type: Literal[SamplerType.UNIFORM] = SamplerType.UNIFORM
|
|
@@ -421,8 +421,8 @@ class PersonSamplerParams(ConfigBase):
|
|
|
421
421
|
|
|
422
422
|
Attributes:
|
|
423
423
|
locale: Locale string determining the language and geographic region for synthetic people.
|
|
424
|
-
|
|
425
|
-
|
|
424
|
+
Must be a locale supported by a managed Nemotron Personas dataset. The dataset must
|
|
425
|
+
be downloaded and available in the managed assets directory.
|
|
426
426
|
sex: If specified, filters to only sample people of the specified sex. Options: "Male" or
|
|
427
427
|
"Female". If None, samples both sexes.
|
|
428
428
|
city: If specified, filters to only sample people from the specified city or cities. Can be
|
|
@@ -447,11 +447,11 @@ class PersonSamplerParams(ConfigBase):
|
|
|
447
447
|
f"{', '.join(LOCALES_WITH_MANAGED_DATASETS)}."
|
|
448
448
|
),
|
|
449
449
|
)
|
|
450
|
-
sex:
|
|
450
|
+
sex: SexT | None = Field(
|
|
451
451
|
default=None,
|
|
452
452
|
description="If specified, then only synthetic people of the specified sex will be sampled.",
|
|
453
453
|
)
|
|
454
|
-
city:
|
|
454
|
+
city: str | list[str] | None = Field(
|
|
455
455
|
default=None,
|
|
456
456
|
description="If specified, then only synthetic people from these cities will be sampled.",
|
|
457
457
|
)
|
|
@@ -461,7 +461,7 @@ class PersonSamplerParams(ConfigBase):
|
|
|
461
461
|
min_length=2,
|
|
462
462
|
max_length=2,
|
|
463
463
|
)
|
|
464
|
-
select_field_values:
|
|
464
|
+
select_field_values: dict[str, list[str]] | None = Field(
|
|
465
465
|
default=None,
|
|
466
466
|
description=(
|
|
467
467
|
"Sample synthetic people with the specified field values. This is meant to be a flexible argument for "
|
|
@@ -522,6 +522,25 @@ class PersonSamplerParams(ConfigBase):
|
|
|
522
522
|
|
|
523
523
|
|
|
524
524
|
class PersonFromFakerSamplerParams(ConfigBase):
|
|
525
|
+
"""Parameters for sampling synthetic person data with demographic attributes from Faker.
|
|
526
|
+
|
|
527
|
+
Uses the Faker library to generate random personal information. The data is basic and not demographically
|
|
528
|
+
accurate, but is useful for quick testing, prototyping, or when realistic demographic distributions are not
|
|
529
|
+
relevant for your use case. For demographically accurate person data, use the `PersonSamplerParams` sampler.
|
|
530
|
+
|
|
531
|
+
Attributes:
|
|
532
|
+
locale: Locale string determining the language and geographic region for synthetic people.
|
|
533
|
+
Can be any locale supported by Faker.
|
|
534
|
+
sex: If specified, filters to only sample people of the specified sex. Options: "Male" or
|
|
535
|
+
"Female". If None, samples both sexes.
|
|
536
|
+
city: If specified, filters to only sample people from the specified city or cities. Can be
|
|
537
|
+
a single city name (string) or a list of city names.
|
|
538
|
+
age_range: Two-element list [min_age, max_age] specifying the age range to sample from
|
|
539
|
+
(inclusive). Defaults to a standard age range. Both values must be between the minimum and
|
|
540
|
+
maximum allowed ages.
|
|
541
|
+
sampler_type: Discriminator for the sampler type. Must be `SamplerType.PERSON_FROM_FAKER`.
|
|
542
|
+
"""
|
|
543
|
+
|
|
525
544
|
locale: str = Field(
|
|
526
545
|
default="en_US",
|
|
527
546
|
description=(
|
|
@@ -529,11 +548,11 @@ class PersonFromFakerSamplerParams(ConfigBase):
|
|
|
529
548
|
"that a synthetic person will be sampled from. E.g, en_US, en_GB, fr_FR, ..."
|
|
530
549
|
),
|
|
531
550
|
)
|
|
532
|
-
sex:
|
|
551
|
+
sex: SexT | None = Field(
|
|
533
552
|
default=None,
|
|
534
553
|
description="If specified, then only synthetic people of the specified sex will be sampled.",
|
|
535
554
|
)
|
|
536
|
-
city:
|
|
555
|
+
city: str | list[str] | None = Field(
|
|
537
556
|
default=None,
|
|
538
557
|
description="If specified, then only synthetic people from these cities will be sampled.",
|
|
539
558
|
)
|
|
@@ -585,22 +604,22 @@ class PersonFromFakerSamplerParams(ConfigBase):
|
|
|
585
604
|
return value
|
|
586
605
|
|
|
587
606
|
|
|
588
|
-
SamplerParamsT: TypeAlias =
|
|
589
|
-
SubcategorySamplerParams
|
|
590
|
-
CategorySamplerParams
|
|
591
|
-
DatetimeSamplerParams
|
|
592
|
-
PersonSamplerParams
|
|
593
|
-
PersonFromFakerSamplerParams
|
|
594
|
-
TimeDeltaSamplerParams
|
|
595
|
-
UUIDSamplerParams
|
|
596
|
-
BernoulliSamplerParams
|
|
597
|
-
BernoulliMixtureSamplerParams
|
|
598
|
-
BinomialSamplerParams
|
|
599
|
-
GaussianSamplerParams
|
|
600
|
-
PoissonSamplerParams
|
|
601
|
-
UniformSamplerParams
|
|
602
|
-
ScipySamplerParams
|
|
603
|
-
|
|
607
|
+
SamplerParamsT: TypeAlias = (
|
|
608
|
+
SubcategorySamplerParams
|
|
609
|
+
| CategorySamplerParams
|
|
610
|
+
| DatetimeSamplerParams
|
|
611
|
+
| PersonSamplerParams
|
|
612
|
+
| PersonFromFakerSamplerParams
|
|
613
|
+
| TimeDeltaSamplerParams
|
|
614
|
+
| UUIDSamplerParams
|
|
615
|
+
| BernoulliSamplerParams
|
|
616
|
+
| BernoulliMixtureSamplerParams
|
|
617
|
+
| BinomialSamplerParams
|
|
618
|
+
| GaussianSamplerParams
|
|
619
|
+
| PoissonSamplerParams
|
|
620
|
+
| UniformSamplerParams
|
|
621
|
+
| ScipySamplerParams
|
|
622
|
+
)
|
|
604
623
|
|
|
605
624
|
|
|
606
625
|
def is_numerical_sampler_type(sampler_type: SamplerType) -> bool:
|
data_designer/config/seed.py
CHANGED
|
@@ -3,7 +3,6 @@
|
|
|
3
3
|
|
|
4
4
|
from abc import ABC
|
|
5
5
|
from enum import Enum
|
|
6
|
-
from typing import Optional, Union
|
|
7
6
|
|
|
8
7
|
from pydantic import Field, field_validator, model_validator
|
|
9
8
|
from typing_extensions import Self
|
|
@@ -112,7 +111,7 @@ class SeedConfig(ConfigBase):
|
|
|
112
111
|
|
|
113
112
|
dataset: str
|
|
114
113
|
sampling_strategy: SamplingStrategy = SamplingStrategy.ORDERED
|
|
115
|
-
selection_strategy:
|
|
114
|
+
selection_strategy: IndexRange | PartitionBlock | None = None
|
|
116
115
|
|
|
117
116
|
|
|
118
117
|
class SeedDatasetReference(ABC, ConfigBase):
|
|
@@ -4,7 +4,6 @@
|
|
|
4
4
|
from __future__ import annotations
|
|
5
5
|
|
|
6
6
|
from enum import Enum
|
|
7
|
-
from typing import Union
|
|
8
7
|
|
|
9
8
|
|
|
10
9
|
class CodeLang(str, Enum):
|
|
@@ -26,17 +25,17 @@ class CodeLang(str, Enum):
|
|
|
26
25
|
SQL_ANSI = "sql:ansi"
|
|
27
26
|
|
|
28
27
|
@staticmethod
|
|
29
|
-
def parse(value:
|
|
28
|
+
def parse(value: str | CodeLang) -> tuple[str, str | None]:
|
|
30
29
|
value = value.value if isinstance(value, CodeLang) else value
|
|
31
30
|
split_vals = value.split(":")
|
|
32
31
|
return (split_vals[0], split_vals[1] if len(split_vals) > 1 else None)
|
|
33
32
|
|
|
34
33
|
@staticmethod
|
|
35
|
-
def parse_lang(value:
|
|
34
|
+
def parse_lang(value: str | CodeLang) -> str:
|
|
36
35
|
return CodeLang.parse(value)[0]
|
|
37
36
|
|
|
38
37
|
@staticmethod
|
|
39
|
-
def parse_dialect(value:
|
|
38
|
+
def parse_dialect(value: str | CodeLang) -> str | None:
|
|
40
39
|
return CodeLang.parse(value)[1]
|
|
41
40
|
|
|
42
41
|
@staticmethod
|
|
@@ -58,7 +57,7 @@ SQL_DIALECTS: set[CodeLang] = {
|
|
|
58
57
|
##########################################################
|
|
59
58
|
|
|
60
59
|
|
|
61
|
-
def code_lang_to_syntax_lexer(code_lang:
|
|
60
|
+
def code_lang_to_syntax_lexer(code_lang: CodeLang | str) -> str:
|
|
62
61
|
"""Convert the code language to a syntax lexer for Pygments.
|
|
63
62
|
|
|
64
63
|
Reference: https://pygments.org/docs/lexers/
|
|
@@ -97,8 +97,6 @@ DEFAULT_AGE_RANGE = [18, 114]
|
|
|
97
97
|
MIN_AGE = 0
|
|
98
98
|
MAX_AGE = 114
|
|
99
99
|
|
|
100
|
-
LOCALES_WITH_MANAGED_DATASETS = ["en_US", "ja_JP", "en_IN", "hi_IN"]
|
|
101
|
-
|
|
102
100
|
US_STATES_AND_MAJOR_TERRITORIES = {
|
|
103
101
|
# States
|
|
104
102
|
"AK",
|
|
@@ -299,15 +297,40 @@ PREDEFINED_PROVIDERS = [
|
|
|
299
297
|
},
|
|
300
298
|
]
|
|
301
299
|
|
|
300
|
+
|
|
301
|
+
DEFAULT_TEXT_INFERENCE_PARAMS = {"temperature": 0.85, "top_p": 0.95}
|
|
302
|
+
DEFAULT_REASONING_INFERENCE_PARAMS = {"temperature": 0.35, "top_p": 0.95}
|
|
303
|
+
DEFAULT_VISION_INFERENCE_PARAMS = {"temperature": 0.85, "top_p": 0.95}
|
|
304
|
+
DEFAULT_EMBEDDING_INFERENCE_PARAMS = {"encoding_format": "float"}
|
|
305
|
+
|
|
306
|
+
|
|
302
307
|
PREDEFINED_PROVIDERS_MODEL_MAP = {
|
|
303
308
|
NVIDIA_PROVIDER_NAME: {
|
|
304
|
-
"text": "nvidia/
|
|
305
|
-
"reasoning": "openai/gpt-oss-20b",
|
|
306
|
-
"vision": "nvidia/nemotron-nano-12b-v2-vl",
|
|
309
|
+
"text": {"model": "nvidia/nemotron-3-nano-30b-a3b", "inference_parameters": {"temperature": 1.0, "top_p": 1.0}},
|
|
310
|
+
"reasoning": {"model": "openai/gpt-oss-20b", "inference_parameters": DEFAULT_REASONING_INFERENCE_PARAMS},
|
|
311
|
+
"vision": {"model": "nvidia/nemotron-nano-12b-v2-vl", "inference_parameters": DEFAULT_VISION_INFERENCE_PARAMS},
|
|
312
|
+
"embedding": {
|
|
313
|
+
"model": "nvidia/llama-3.2-nv-embedqa-1b-v2",
|
|
314
|
+
"inference_parameters": DEFAULT_EMBEDDING_INFERENCE_PARAMS | {"extra_body": {"input_type": "query"}},
|
|
315
|
+
},
|
|
307
316
|
},
|
|
308
317
|
OPENAI_PROVIDER_NAME: {
|
|
309
|
-
"text": "gpt-4.1",
|
|
310
|
-
"reasoning": "gpt-5",
|
|
311
|
-
"vision": "gpt-5",
|
|
318
|
+
"text": {"model": "gpt-4.1", "inference_parameters": DEFAULT_TEXT_INFERENCE_PARAMS},
|
|
319
|
+
"reasoning": {"model": "gpt-5", "inference_parameters": DEFAULT_REASONING_INFERENCE_PARAMS},
|
|
320
|
+
"vision": {"model": "gpt-5", "inference_parameters": DEFAULT_VISION_INFERENCE_PARAMS},
|
|
321
|
+
"embedding": {"model": "text-embedding-3-large", "inference_parameters": DEFAULT_EMBEDDING_INFERENCE_PARAMS},
|
|
312
322
|
},
|
|
313
323
|
}
|
|
324
|
+
|
|
325
|
+
# Persona locale metadata - used by the CLI and the person sampler.
|
|
326
|
+
NEMOTRON_PERSONAS_DATASET_SIZES = {
|
|
327
|
+
"en_US": "1.24 GB",
|
|
328
|
+
"en_IN": "2.39 GB",
|
|
329
|
+
"hi_Deva_IN": "4.14 GB",
|
|
330
|
+
"hi_Latn_IN": "2.7 GB",
|
|
331
|
+
"ja_JP": "1.69 GB",
|
|
332
|
+
}
|
|
333
|
+
|
|
334
|
+
LOCALES_WITH_MANAGED_DATASETS = list[str](NEMOTRON_PERSONAS_DATASET_SIZES.keys())
|
|
335
|
+
|
|
336
|
+
NEMOTRON_PERSONAS_DATASET_PREFIX = "nemotron-personas-dataset-"
|
|
@@ -8,7 +8,7 @@ from datetime import date, datetime, timedelta
|
|
|
8
8
|
from decimal import Decimal
|
|
9
9
|
from numbers import Number
|
|
10
10
|
from pathlib import Path
|
|
11
|
-
from typing import Any
|
|
11
|
+
from typing import Any
|
|
12
12
|
|
|
13
13
|
import numpy as np
|
|
14
14
|
import pandas as pd
|
|
@@ -128,7 +128,7 @@ def write_seed_dataset(dataframe: pd.DataFrame, file_path: Path) -> None:
|
|
|
128
128
|
dataframe.to_json(file_path, orient="records", lines=True)
|
|
129
129
|
|
|
130
130
|
|
|
131
|
-
def validate_dataset_file_path(file_path:
|
|
131
|
+
def validate_dataset_file_path(file_path: str | Path, should_exist: bool = True) -> Path:
|
|
132
132
|
"""Validate that a dataset file path has a valid extension and optionally exists.
|
|
133
133
|
|
|
134
134
|
Args:
|
|
@@ -165,7 +165,7 @@ def validate_path_contains_files_of_type(path: str | Path, file_extension: str)
|
|
|
165
165
|
raise InvalidFilePathError(f"🛑 Path {path!r} does not contain files of type {file_extension!r}.")
|
|
166
166
|
|
|
167
167
|
|
|
168
|
-
def smart_load_dataframe(dataframe:
|
|
168
|
+
def smart_load_dataframe(dataframe: str | Path | pd.DataFrame) -> pd.DataFrame:
|
|
169
169
|
"""Load a dataframe from file if a path is given, otherwise return the dataframe.
|
|
170
170
|
|
|
171
171
|
Args:
|
|
@@ -197,7 +197,7 @@ def smart_load_dataframe(dataframe: Union[str, Path, pd.DataFrame]) -> pd.DataFr
|
|
|
197
197
|
raise ValueError(f"Unsupported file format: {dataframe}")
|
|
198
198
|
|
|
199
199
|
|
|
200
|
-
def smart_load_yaml(yaml_in:
|
|
200
|
+
def smart_load_yaml(yaml_in: str | Path | dict) -> dict:
|
|
201
201
|
"""Return the yaml config as a dict given flexible input types.
|
|
202
202
|
|
|
203
203
|
Args:
|
|
@@ -227,7 +227,7 @@ def smart_load_yaml(yaml_in: Union[str, Path, dict]) -> dict:
|
|
|
227
227
|
return yaml_out
|
|
228
228
|
|
|
229
229
|
|
|
230
|
-
def serialize_data(data:
|
|
230
|
+
def serialize_data(data: dict | list | str | Number, **kwargs) -> str:
|
|
231
231
|
if isinstance(data, dict):
|
|
232
232
|
return json.dumps(data, ensure_ascii=False, default=_convert_to_serializable, **kwargs)
|
|
233
233
|
elif isinstance(data, list):
|
|
@@ -5,7 +5,6 @@ from __future__ import annotations
|
|
|
5
5
|
|
|
6
6
|
import json
|
|
7
7
|
from contextlib import contextmanager
|
|
8
|
-
from typing import Optional, Union
|
|
9
8
|
|
|
10
9
|
from jinja2 import TemplateSyntaxError, meta
|
|
11
10
|
from jinja2.sandbox import ImmutableSandboxedEnvironment
|
|
@@ -58,9 +57,7 @@ def get_prompt_template_keywords(template: str) -> set[str]:
|
|
|
58
57
|
return keywords
|
|
59
58
|
|
|
60
59
|
|
|
61
|
-
def json_indent_list_of_strings(
|
|
62
|
-
column_names: list[str], *, indent: Optional[Union[int, str]] = None
|
|
63
|
-
) -> Optional[Union[list[str], str]]:
|
|
60
|
+
def json_indent_list_of_strings(column_names: list[str], *, indent: int | str | None = None) -> list[str] | str | None:
|
|
64
61
|
"""Convert a list of column names to a JSON string if the list is long.
|
|
65
62
|
|
|
66
63
|
This function helps keep Data Designer's __repr__ output clean and readable.
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
|
|
4
4
|
import numbers
|
|
5
5
|
from numbers import Number
|
|
6
|
-
from typing import Any
|
|
6
|
+
from typing import Any
|
|
7
7
|
|
|
8
8
|
from data_designer.config.utils.constants import REPORTING_PRECISION
|
|
9
9
|
|
|
@@ -18,7 +18,7 @@ def is_float(val: Any) -> bool:
|
|
|
18
18
|
|
|
19
19
|
def prepare_number_for_reporting(
|
|
20
20
|
value: Number,
|
|
21
|
-
target_type:
|
|
21
|
+
target_type: type[Number],
|
|
22
22
|
precision: int = REPORTING_PRECISION,
|
|
23
23
|
) -> Number:
|
|
24
24
|
"""Ensure native python types and round to `precision` decimal digits."""
|
|
@@ -3,7 +3,7 @@
|
|
|
3
3
|
|
|
4
4
|
import inspect
|
|
5
5
|
from enum import Enum
|
|
6
|
-
from typing import Any, Literal,
|
|
6
|
+
from typing import Any, Literal, get_args, get_origin
|
|
7
7
|
|
|
8
8
|
from pydantic import BaseModel
|
|
9
9
|
|
|
@@ -56,7 +56,7 @@ def create_str_enum_from_discriminated_type_union(
|
|
|
56
56
|
return StrEnum(enum_name, {v.replace("-", "_").upper(): v for v in set(discriminator_field_values)})
|
|
57
57
|
|
|
58
58
|
|
|
59
|
-
def get_sampler_params() -> dict[str,
|
|
59
|
+
def get_sampler_params() -> dict[str, type[BaseModel]]:
|
|
60
60
|
"""Returns a dictionary of sampler parameter classes."""
|
|
61
61
|
params_cls_list = [
|
|
62
62
|
params_cls
|
|
@@ -83,7 +83,7 @@ def get_sampler_params() -> dict[str, Type[BaseModel]]:
|
|
|
83
83
|
return params_cls_dict
|
|
84
84
|
|
|
85
85
|
|
|
86
|
-
def resolve_string_enum(enum_instance: Any, enum_type:
|
|
86
|
+
def resolve_string_enum(enum_instance: Any, enum_type: type[Enum]) -> Enum:
|
|
87
87
|
if not issubclass(enum_type, Enum):
|
|
88
88
|
raise InvalidEnumValueError(f"🛑 `enum_type` must be a subclass of Enum. You provided: {enum_type}")
|
|
89
89
|
invalid_enum_value_error = InvalidEnumValueError(
|
|
@@ -5,7 +5,6 @@ from __future__ import annotations
|
|
|
5
5
|
|
|
6
6
|
from enum import Enum
|
|
7
7
|
from string import Formatter
|
|
8
|
-
from typing import Optional
|
|
9
8
|
|
|
10
9
|
from jinja2 import meta
|
|
11
10
|
from jinja2.sandbox import ImmutableSandboxedEnvironment
|
|
@@ -15,8 +14,8 @@ from rich.console import Console, Group
|
|
|
15
14
|
from rich.padding import Padding
|
|
16
15
|
from rich.panel import Panel
|
|
17
16
|
|
|
18
|
-
from data_designer.config.column_types import ColumnConfigT, DataDesignerColumnType,
|
|
19
|
-
from data_designer.config.processors import
|
|
17
|
+
from data_designer.config.column_types import ColumnConfigT, DataDesignerColumnType, column_type_is_model_generated
|
|
18
|
+
from data_designer.config.processors import ProcessorConfigT, ProcessorType
|
|
20
19
|
from data_designer.config.utils.constants import RICH_CONSOLE_THEME
|
|
21
20
|
from data_designer.config.utils.misc import (
|
|
22
21
|
can_run_data_designer_locally,
|
|
@@ -45,7 +44,7 @@ class ViolationLevel(str, Enum):
|
|
|
45
44
|
|
|
46
45
|
|
|
47
46
|
class Violation(BaseModel):
|
|
48
|
-
column:
|
|
47
|
+
column: str | None = None
|
|
49
48
|
type: ViolationType
|
|
50
49
|
message: str
|
|
51
50
|
level: ViolationLevel
|
|
@@ -57,7 +56,7 @@ class Violation(BaseModel):
|
|
|
57
56
|
|
|
58
57
|
def validate_data_designer_config(
|
|
59
58
|
columns: list[ColumnConfigT],
|
|
60
|
-
processor_configs: list[
|
|
59
|
+
processor_configs: list[ProcessorConfigT],
|
|
61
60
|
allowed_references: list[str],
|
|
62
61
|
) -> list[Violation]:
|
|
63
62
|
violations = []
|
|
@@ -119,7 +118,7 @@ def validate_prompt_templates(
|
|
|
119
118
|
) -> list[Violation]:
|
|
120
119
|
env = ImmutableSandboxedEnvironment()
|
|
121
120
|
|
|
122
|
-
columns_with_prompts = [c for c in columns if
|
|
121
|
+
columns_with_prompts = [c for c in columns if column_type_is_model_generated(c.column_type)]
|
|
123
122
|
|
|
124
123
|
violations = []
|
|
125
124
|
for column in columns_with_prompts:
|
|
@@ -273,7 +272,7 @@ def validate_columns_not_all_dropped(
|
|
|
273
272
|
|
|
274
273
|
def validate_drop_columns_processor(
|
|
275
274
|
columns: list[ColumnConfigT],
|
|
276
|
-
processor_configs: list[
|
|
275
|
+
processor_configs: list[ProcessorConfigT],
|
|
277
276
|
) -> list[Violation]:
|
|
278
277
|
all_column_names = {c.name for c in columns}
|
|
279
278
|
for processor_config in processor_configs:
|
|
@@ -294,7 +293,7 @@ def validate_drop_columns_processor(
|
|
|
294
293
|
|
|
295
294
|
def validate_schema_transform_processor(
|
|
296
295
|
columns: list[ColumnConfigT],
|
|
297
|
-
processor_configs: list[
|
|
296
|
+
processor_configs: list[ProcessorConfigT],
|
|
298
297
|
) -> list[Violation]:
|
|
299
298
|
violations = []
|
|
300
299
|
|
|
@@ -8,7 +8,7 @@ import os
|
|
|
8
8
|
from collections import OrderedDict
|
|
9
9
|
from enum import Enum
|
|
10
10
|
from functools import cached_property
|
|
11
|
-
from typing import TYPE_CHECKING,
|
|
11
|
+
from typing import TYPE_CHECKING, Any
|
|
12
12
|
|
|
13
13
|
import numpy as np
|
|
14
14
|
import pandas as pd
|
|
@@ -36,11 +36,11 @@ if TYPE_CHECKING:
|
|
|
36
36
|
console = Console()
|
|
37
37
|
|
|
38
38
|
|
|
39
|
-
def get_nvidia_api_key() ->
|
|
39
|
+
def get_nvidia_api_key() -> str | None:
|
|
40
40
|
return os.getenv(NVIDIA_API_KEY_ENV_VAR_NAME)
|
|
41
41
|
|
|
42
42
|
|
|
43
|
-
def get_openai_api_key() ->
|
|
43
|
+
def get_openai_api_key() -> str | None:
|
|
44
44
|
return os.getenv(OPENAI_API_KEY_ENV_VAR_NAME)
|
|
45
45
|
|
|
46
46
|
|
|
@@ -77,12 +77,12 @@ class WithRecordSamplerMixin:
|
|
|
77
77
|
|
|
78
78
|
def display_sample_record(
|
|
79
79
|
self,
|
|
80
|
-
index:
|
|
80
|
+
index: int | None = None,
|
|
81
81
|
*,
|
|
82
82
|
hide_seed_columns: bool = False,
|
|
83
83
|
syntax_highlighting_theme: str = "dracula",
|
|
84
|
-
background_color:
|
|
85
|
-
processors_to_display:
|
|
84
|
+
background_color: str | None = None,
|
|
85
|
+
processors_to_display: list[str] | None = None,
|
|
86
86
|
) -> None:
|
|
87
87
|
"""Display a sample record from the Data Designer dataset preview.
|
|
88
88
|
|
|
@@ -134,11 +134,11 @@ class WithRecordSamplerMixin:
|
|
|
134
134
|
|
|
135
135
|
|
|
136
136
|
def create_rich_histogram_table(
|
|
137
|
-
data: dict[str,
|
|
137
|
+
data: dict[str, int | float],
|
|
138
138
|
column_names: tuple[int, int],
|
|
139
139
|
name_style: str = ColorPalette.BLUE.value,
|
|
140
140
|
value_style: str = ColorPalette.TEAL.value,
|
|
141
|
-
title:
|
|
141
|
+
title: str | None = None,
|
|
142
142
|
**kwargs,
|
|
143
143
|
) -> Table:
|
|
144
144
|
table = Table(title=title, **kwargs)
|
|
@@ -154,12 +154,12 @@ def create_rich_histogram_table(
|
|
|
154
154
|
|
|
155
155
|
|
|
156
156
|
def display_sample_record(
|
|
157
|
-
record:
|
|
157
|
+
record: dict | pd.Series | pd.DataFrame,
|
|
158
158
|
config_builder: DataDesignerConfigBuilder,
|
|
159
|
-
processor_data_to_display:
|
|
160
|
-
background_color:
|
|
159
|
+
processor_data_to_display: dict[str, list[str] | str] | None = None,
|
|
160
|
+
background_color: str | None = None,
|
|
161
161
|
syntax_highlighting_theme: str = "dracula",
|
|
162
|
-
record_index:
|
|
162
|
+
record_index: int | None = None,
|
|
163
163
|
hide_seed_columns: bool = False,
|
|
164
164
|
):
|
|
165
165
|
if isinstance(record, (dict, pd.Series)):
|
|
@@ -194,6 +194,7 @@ def display_sample_record(
|
|
|
194
194
|
+ config_builder.get_columns_of_type(DataDesignerColumnType.EXPRESSION)
|
|
195
195
|
+ config_builder.get_columns_of_type(DataDesignerColumnType.LLM_TEXT)
|
|
196
196
|
+ config_builder.get_columns_of_type(DataDesignerColumnType.LLM_STRUCTURED)
|
|
197
|
+
+ config_builder.get_columns_of_type(DataDesignerColumnType.EMBEDDING)
|
|
197
198
|
)
|
|
198
199
|
if len(non_code_columns) > 0:
|
|
199
200
|
table = Table(title="Generated Columns", **table_kws)
|
|
@@ -201,6 +202,10 @@ def display_sample_record(
|
|
|
201
202
|
table.add_column("Value")
|
|
202
203
|
for col in non_code_columns:
|
|
203
204
|
if not col.drop:
|
|
205
|
+
if col.column_type == DataDesignerColumnType.EMBEDDING:
|
|
206
|
+
record[col.name]["embeddings"] = [
|
|
207
|
+
get_truncated_list_as_string(embd) for embd in record[col.name].get("embeddings")
|
|
208
|
+
]
|
|
204
209
|
table.add_row(col.name, convert_to_row_element(record[col.name]))
|
|
205
210
|
render_list.append(pad_console_element(table))
|
|
206
211
|
|
|
@@ -269,9 +274,19 @@ def display_sample_record(
|
|
|
269
274
|
console.print(Group(*render_list), markup=False)
|
|
270
275
|
|
|
271
276
|
|
|
277
|
+
def get_truncated_list_as_string(long_list: list[Any], max_items: int = 2) -> str:
|
|
278
|
+
if max_items <= 0:
|
|
279
|
+
raise ValueError("max_items must be greater than 0")
|
|
280
|
+
if len(long_list) > max_items:
|
|
281
|
+
truncated_part = long_list[:max_items]
|
|
282
|
+
return f"[{', '.join(str(x) for x in truncated_part)}, ...]"
|
|
283
|
+
else:
|
|
284
|
+
return str(long_list)
|
|
285
|
+
|
|
286
|
+
|
|
272
287
|
def display_sampler_table(
|
|
273
288
|
sampler_params: dict[SamplerType, ConfigBase],
|
|
274
|
-
title:
|
|
289
|
+
title: str | None = None,
|
|
275
290
|
) -> None:
|
|
276
291
|
table = Table(expand=True)
|
|
277
292
|
table.add_column("Type")
|
|
@@ -306,15 +321,15 @@ def display_model_configs_table(model_configs: list[ModelConfig]) -> None:
|
|
|
306
321
|
table_model_configs.add_column("Alias")
|
|
307
322
|
table_model_configs.add_column("Model")
|
|
308
323
|
table_model_configs.add_column("Provider")
|
|
309
|
-
table_model_configs.add_column("
|
|
310
|
-
table_model_configs.add_column("Top P")
|
|
324
|
+
table_model_configs.add_column("Inference Parameters")
|
|
311
325
|
for model_config in model_configs:
|
|
326
|
+
params_display = model_config.inference_parameters.format_for_display()
|
|
327
|
+
|
|
312
328
|
table_model_configs.add_row(
|
|
313
329
|
model_config.alias,
|
|
314
330
|
model_config.model,
|
|
315
331
|
model_config.provider,
|
|
316
|
-
|
|
317
|
-
str(model_config.inference_parameters.top_p),
|
|
332
|
+
params_display,
|
|
318
333
|
)
|
|
319
334
|
group_args: list = [Rule(title="Model Configs"), table_model_configs]
|
|
320
335
|
if len(model_configs) == 0:
|
|
@@ -2,7 +2,7 @@
|
|
|
2
2
|
# SPDX-License-Identifier: Apache-2.0
|
|
3
3
|
|
|
4
4
|
from enum import Enum
|
|
5
|
-
from typing import Any
|
|
5
|
+
from typing import Any
|
|
6
6
|
|
|
7
7
|
from pydantic import Field, field_serializer, model_validator
|
|
8
8
|
from typing_extensions import Self, TypeAlias
|
|
@@ -51,7 +51,7 @@ class LocalCallableValidatorParams(ConfigBase):
|
|
|
51
51
|
validation_function: Any = Field(
|
|
52
52
|
description="Function (Callable[[pd.DataFrame], pd.DataFrame]) to validate the data"
|
|
53
53
|
)
|
|
54
|
-
output_schema:
|
|
54
|
+
output_schema: dict[str, Any] | None = Field(
|
|
55
55
|
default=None, description="Expected schema for local callable validator's output"
|
|
56
56
|
)
|
|
57
57
|
|
|
@@ -80,7 +80,7 @@ class RemoteValidatorParams(ConfigBase):
|
|
|
80
80
|
"""
|
|
81
81
|
|
|
82
82
|
endpoint_url: str = Field(description="URL of the remote endpoint")
|
|
83
|
-
output_schema:
|
|
83
|
+
output_schema: dict[str, Any] | None = Field(
|
|
84
84
|
default=None, description="Expected schema for remote validator's output"
|
|
85
85
|
)
|
|
86
86
|
timeout: float = Field(default=30.0, gt=0, description="The timeout for the HTTP request")
|
|
@@ -89,8 +89,4 @@ class RemoteValidatorParams(ConfigBase):
|
|
|
89
89
|
max_parallel_requests: int = Field(default=4, ge=1, description="The maximum number of parallel requests to make")
|
|
90
90
|
|
|
91
91
|
|
|
92
|
-
ValidatorParamsT: TypeAlias =
|
|
93
|
-
CodeValidatorParams,
|
|
94
|
-
LocalCallableValidatorParams,
|
|
95
|
-
RemoteValidatorParams,
|
|
96
|
-
]
|
|
92
|
+
ValidatorParamsT: TypeAlias = CodeValidatorParams | LocalCallableValidatorParams | RemoteValidatorParams
|
|
@@ -7,7 +7,6 @@ import logging
|
|
|
7
7
|
from abc import ABC, abstractmethod
|
|
8
8
|
|
|
9
9
|
import pandas as pd
|
|
10
|
-
import pyarrow as pa
|
|
11
10
|
from pydantic import BaseModel, model_validator
|
|
12
11
|
from typing_extensions import Self
|
|
13
12
|
|
|
@@ -29,12 +28,6 @@ class ColumnConfigWithDataFrame(ConfigBase):
|
|
|
29
28
|
raise ValueError(f"Column {self.column_config.name!r} not found in DataFrame")
|
|
30
29
|
return self
|
|
31
30
|
|
|
32
|
-
@model_validator(mode="after")
|
|
33
|
-
def ensure_pyarrow_backend(self) -> Self:
|
|
34
|
-
if not all(isinstance(dtype, pd.ArrowDtype) for dtype in self.df.dtypes):
|
|
35
|
-
self.df = pa.Table.from_pandas(self.df).to_pandas(types_mapper=pd.ArrowDtype)
|
|
36
|
-
return self
|
|
37
|
-
|
|
38
31
|
def as_tuple(self) -> tuple[SingleColumnConfig, pd.DataFrame]:
|
|
39
32
|
return (self.column_config, self.df)
|
|
40
33
|
|