data-designer-engine 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (114) hide show
  1. data_designer/engine/__init__.py +2 -0
  2. data_designer/engine/_version.py +34 -0
  3. data_designer/engine/analysis/column_profilers/base.py +49 -0
  4. data_designer/engine/analysis/column_profilers/judge_score_profiler.py +153 -0
  5. data_designer/engine/analysis/column_profilers/registry.py +22 -0
  6. data_designer/engine/analysis/column_statistics.py +145 -0
  7. data_designer/engine/analysis/dataset_profiler.py +149 -0
  8. data_designer/engine/analysis/errors.py +9 -0
  9. data_designer/engine/analysis/utils/column_statistics_calculations.py +234 -0
  10. data_designer/engine/analysis/utils/judge_score_processing.py +132 -0
  11. data_designer/engine/column_generators/__init__.py +2 -0
  12. data_designer/engine/column_generators/generators/__init__.py +2 -0
  13. data_designer/engine/column_generators/generators/base.py +122 -0
  14. data_designer/engine/column_generators/generators/embedding.py +35 -0
  15. data_designer/engine/column_generators/generators/expression.py +55 -0
  16. data_designer/engine/column_generators/generators/llm_completion.py +116 -0
  17. data_designer/engine/column_generators/generators/samplers.py +69 -0
  18. data_designer/engine/column_generators/generators/seed_dataset.py +144 -0
  19. data_designer/engine/column_generators/generators/validation.py +140 -0
  20. data_designer/engine/column_generators/registry.py +60 -0
  21. data_designer/engine/column_generators/utils/errors.py +15 -0
  22. data_designer/engine/column_generators/utils/generator_classification.py +43 -0
  23. data_designer/engine/column_generators/utils/judge_score_factory.py +58 -0
  24. data_designer/engine/column_generators/utils/prompt_renderer.py +100 -0
  25. data_designer/engine/compiler.py +97 -0
  26. data_designer/engine/configurable_task.py +71 -0
  27. data_designer/engine/dataset_builders/artifact_storage.py +283 -0
  28. data_designer/engine/dataset_builders/column_wise_builder.py +354 -0
  29. data_designer/engine/dataset_builders/errors.py +15 -0
  30. data_designer/engine/dataset_builders/multi_column_configs.py +46 -0
  31. data_designer/engine/dataset_builders/utils/__init__.py +2 -0
  32. data_designer/engine/dataset_builders/utils/concurrency.py +212 -0
  33. data_designer/engine/dataset_builders/utils/config_compiler.py +62 -0
  34. data_designer/engine/dataset_builders/utils/dag.py +62 -0
  35. data_designer/engine/dataset_builders/utils/dataset_batch_manager.py +200 -0
  36. data_designer/engine/dataset_builders/utils/errors.py +15 -0
  37. data_designer/engine/dataset_builders/utils/progress_tracker.py +122 -0
  38. data_designer/engine/errors.py +51 -0
  39. data_designer/engine/model_provider.py +77 -0
  40. data_designer/engine/models/__init__.py +2 -0
  41. data_designer/engine/models/errors.py +300 -0
  42. data_designer/engine/models/facade.py +284 -0
  43. data_designer/engine/models/factory.py +42 -0
  44. data_designer/engine/models/litellm_overrides.py +179 -0
  45. data_designer/engine/models/parsers/__init__.py +2 -0
  46. data_designer/engine/models/parsers/errors.py +34 -0
  47. data_designer/engine/models/parsers/parser.py +235 -0
  48. data_designer/engine/models/parsers/postprocessors.py +93 -0
  49. data_designer/engine/models/parsers/tag_parsers.py +62 -0
  50. data_designer/engine/models/parsers/types.py +84 -0
  51. data_designer/engine/models/recipes/base.py +81 -0
  52. data_designer/engine/models/recipes/response_recipes.py +293 -0
  53. data_designer/engine/models/registry.py +151 -0
  54. data_designer/engine/models/telemetry.py +362 -0
  55. data_designer/engine/models/usage.py +73 -0
  56. data_designer/engine/models/utils.py +101 -0
  57. data_designer/engine/processing/ginja/__init__.py +2 -0
  58. data_designer/engine/processing/ginja/ast.py +65 -0
  59. data_designer/engine/processing/ginja/environment.py +463 -0
  60. data_designer/engine/processing/ginja/exceptions.py +56 -0
  61. data_designer/engine/processing/ginja/record.py +32 -0
  62. data_designer/engine/processing/gsonschema/__init__.py +2 -0
  63. data_designer/engine/processing/gsonschema/exceptions.py +15 -0
  64. data_designer/engine/processing/gsonschema/schema_transformers.py +83 -0
  65. data_designer/engine/processing/gsonschema/types.py +10 -0
  66. data_designer/engine/processing/gsonschema/validators.py +202 -0
  67. data_designer/engine/processing/processors/base.py +13 -0
  68. data_designer/engine/processing/processors/drop_columns.py +42 -0
  69. data_designer/engine/processing/processors/registry.py +25 -0
  70. data_designer/engine/processing/processors/schema_transform.py +71 -0
  71. data_designer/engine/processing/utils.py +169 -0
  72. data_designer/engine/registry/base.py +99 -0
  73. data_designer/engine/registry/data_designer_registry.py +39 -0
  74. data_designer/engine/registry/errors.py +12 -0
  75. data_designer/engine/resources/managed_dataset_generator.py +39 -0
  76. data_designer/engine/resources/managed_dataset_repository.py +197 -0
  77. data_designer/engine/resources/managed_storage.py +65 -0
  78. data_designer/engine/resources/resource_provider.py +77 -0
  79. data_designer/engine/resources/seed_reader.py +154 -0
  80. data_designer/engine/sampling_gen/column.py +91 -0
  81. data_designer/engine/sampling_gen/constraints.py +100 -0
  82. data_designer/engine/sampling_gen/data_sources/base.py +217 -0
  83. data_designer/engine/sampling_gen/data_sources/errors.py +12 -0
  84. data_designer/engine/sampling_gen/data_sources/sources.py +347 -0
  85. data_designer/engine/sampling_gen/entities/__init__.py +2 -0
  86. data_designer/engine/sampling_gen/entities/assets/zip_area_code_map.parquet +0 -0
  87. data_designer/engine/sampling_gen/entities/dataset_based_person_fields.py +90 -0
  88. data_designer/engine/sampling_gen/entities/email_address_utils.py +171 -0
  89. data_designer/engine/sampling_gen/entities/errors.py +10 -0
  90. data_designer/engine/sampling_gen/entities/national_id_utils.py +102 -0
  91. data_designer/engine/sampling_gen/entities/person.py +144 -0
  92. data_designer/engine/sampling_gen/entities/phone_number.py +128 -0
  93. data_designer/engine/sampling_gen/errors.py +26 -0
  94. data_designer/engine/sampling_gen/generator.py +122 -0
  95. data_designer/engine/sampling_gen/jinja_utils.py +64 -0
  96. data_designer/engine/sampling_gen/people_gen.py +199 -0
  97. data_designer/engine/sampling_gen/person_constants.py +56 -0
  98. data_designer/engine/sampling_gen/schema.py +147 -0
  99. data_designer/engine/sampling_gen/schema_builder.py +61 -0
  100. data_designer/engine/sampling_gen/utils.py +46 -0
  101. data_designer/engine/secret_resolver.py +82 -0
  102. data_designer/engine/testing/__init__.py +12 -0
  103. data_designer/engine/testing/stubs.py +133 -0
  104. data_designer/engine/testing/utils.py +20 -0
  105. data_designer/engine/validation.py +367 -0
  106. data_designer/engine/validators/__init__.py +19 -0
  107. data_designer/engine/validators/base.py +38 -0
  108. data_designer/engine/validators/local_callable.py +39 -0
  109. data_designer/engine/validators/python.py +254 -0
  110. data_designer/engine/validators/remote.py +89 -0
  111. data_designer/engine/validators/sql.py +65 -0
  112. data_designer_engine-0.4.0.dist-info/METADATA +50 -0
  113. data_designer_engine-0.4.0.dist-info/RECORD +114 -0
  114. data_designer_engine-0.4.0.dist-info/WHEEL +4 -0
@@ -0,0 +1,62 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025-2026 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ from __future__ import annotations
5
+
6
+ from data_designer.config.column_types import DataDesignerColumnType
7
+ from data_designer.config.data_designer_config import DataDesignerConfig
8
+ from data_designer.config.processors import ProcessorConfig
9
+ from data_designer.engine.dataset_builders.multi_column_configs import (
10
+ DatasetBuilderColumnConfigT,
11
+ SamplerMultiColumnConfig,
12
+ SeedDatasetMultiColumnConfig,
13
+ )
14
+ from data_designer.engine.dataset_builders.utils.dag import topologically_sort_column_configs
15
+ from data_designer.engine.dataset_builders.utils.errors import ConfigCompilationError
16
+
17
+
18
+ def compile_dataset_builder_column_configs(config: DataDesignerConfig) -> list[DatasetBuilderColumnConfigT]:
19
+ seed_column_configs = []
20
+ sampler_column_configs = []
21
+ generated_column_configs = []
22
+
23
+ for column_config in topologically_sort_column_configs(config.columns):
24
+ if column_config.column_type == DataDesignerColumnType.SEED_DATASET:
25
+ seed_column_configs.append(column_config)
26
+ elif column_config.column_type == DataDesignerColumnType.SAMPLER:
27
+ sampler_column_configs.append(column_config)
28
+ else:
29
+ generated_column_configs.append(column_config)
30
+
31
+ compiled_column_configs = []
32
+
33
+ if len(seed_column_configs) > 0:
34
+ if config.seed_config is None:
35
+ raise ConfigCompilationError("🛑 Seed column configs require a seed configuration.")
36
+ compiled_column_configs.append(
37
+ SeedDatasetMultiColumnConfig(
38
+ columns=seed_column_configs,
39
+ source=config.seed_config.source,
40
+ sampling_strategy=config.seed_config.sampling_strategy,
41
+ selection_strategy=config.seed_config.selection_strategy,
42
+ )
43
+ )
44
+
45
+ if len(sampler_column_configs) > 0:
46
+ compiled_column_configs.append(
47
+ SamplerMultiColumnConfig(
48
+ columns=sampler_column_configs,
49
+ constraints=config.constraints or [],
50
+ )
51
+ )
52
+
53
+ if len(generated_column_configs) > 0:
54
+ compiled_column_configs.extend(generated_column_configs)
55
+
56
+ return compiled_column_configs
57
+
58
+
59
+ def compile_dataset_builder_processor_configs(
60
+ config: DataDesignerConfig,
61
+ ) -> list[ProcessorConfig]:
62
+ return config.processors or []
@@ -0,0 +1,62 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025-2026 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ from __future__ import annotations
5
+
6
+ import logging
7
+ from typing import TYPE_CHECKING
8
+
9
+ from data_designer.config.column_types import ColumnConfigT
10
+ from data_designer.engine.column_generators.utils.generator_classification import column_type_used_in_execution_dag
11
+ from data_designer.engine.dataset_builders.utils.errors import DAGCircularDependencyError
12
+ from data_designer.lazy_heavy_imports import nx
13
+
14
+ if TYPE_CHECKING:
15
+ import networkx as nx
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ def topologically_sort_column_configs(column_configs: list[ColumnConfigT]) -> list[ColumnConfigT]:
21
+ dag = nx.DiGraph()
22
+
23
+ non_dag_column_config_list = [
24
+ col for col in column_configs if not column_type_used_in_execution_dag(col.column_type)
25
+ ]
26
+ dag_column_config_dict = {
27
+ col.name: col for col in column_configs if column_type_used_in_execution_dag(col.column_type)
28
+ }
29
+
30
+ if len(dag_column_config_dict) == 0:
31
+ return non_dag_column_config_list
32
+
33
+ side_effect_dict = {n: list(c.side_effect_columns) for n, c in dag_column_config_dict.items()}
34
+
35
+ logger.info("⛓️ Sorting column configs into a Directed Acyclic Graph")
36
+ for name, col in dag_column_config_dict.items():
37
+ dag.add_node(name)
38
+ for req_col_name in col.required_columns:
39
+ if req_col_name in list(dag_column_config_dict.keys()):
40
+ logger.debug(f" |-- 🔗 `{name}` depends on `{req_col_name}`")
41
+ dag.add_edge(req_col_name, name)
42
+
43
+ # If the required column is a side effect of another column,
44
+ # add an edge from the parent column to the current column.
45
+ elif req_col_name in sum(side_effect_dict.values(), []):
46
+ for parent, cols in side_effect_dict.items():
47
+ if req_col_name in cols:
48
+ logger.debug(f" |-- 🔗 `{name}` depends on `{parent}` via `{req_col_name}`")
49
+ dag.add_edge(parent, name)
50
+ break
51
+
52
+ if not nx.is_directed_acyclic_graph(dag):
53
+ raise DAGCircularDependencyError(
54
+ "🛑 The Data Designer column configurations contain cyclic dependencies. Please "
55
+ "inspect the column configurations and ensure they can be sorted without "
56
+ "circular references."
57
+ )
58
+
59
+ sorted_columns = non_dag_column_config_list
60
+ sorted_columns.extend([dag_column_config_dict[n] for n in list(nx.topological_sort(dag))])
61
+
62
+ return sorted_columns
@@ -0,0 +1,200 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025-2026 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ from __future__ import annotations
5
+
6
+ import logging
7
+ import shutil
8
+ from pathlib import Path
9
+ from typing import TYPE_CHECKING, Callable, Container, Iterator
10
+
11
+ from data_designer.engine.dataset_builders.artifact_storage import ArtifactStorage, BatchStage
12
+ from data_designer.engine.dataset_builders.utils.errors import DatasetBatchManagementError
13
+ from data_designer.lazy_heavy_imports import pd, pq
14
+
15
+ if TYPE_CHECKING:
16
+ import pandas as pd
17
+ import pyarrow.parquet as pq
18
+
19
+ logger = logging.getLogger(__name__)
20
+
21
+
22
+ class DatasetBatchManager:
23
+ def __init__(self, artifact_storage: ArtifactStorage):
24
+ self._buffer: list[dict] = []
25
+ self._current_batch_number = 0
26
+ self._num_records_list: list[int] | None = None
27
+ self._buffer_size: int | None = None
28
+ self.artifact_storage = artifact_storage
29
+
30
+ @property
31
+ def num_batches(self) -> int:
32
+ if self._num_records_list is None:
33
+ return 0
34
+ return len(self._num_records_list)
35
+
36
+ @property
37
+ def num_records_batch(self) -> int:
38
+ if self._num_records_list is None or self._current_batch_number >= len(self._num_records_list):
39
+ raise DatasetBatchManagementError("🛑 Invalid batch number or num_records_list not set.")
40
+ return self._num_records_list[self._current_batch_number]
41
+
42
+ @property
43
+ def num_records_list(self) -> list[int]:
44
+ if self._num_records_list is None:
45
+ raise DatasetBatchManagementError("🛑 `num_records_list` is not set. Call start() first.")
46
+ return self._num_records_list
47
+
48
+ @property
49
+ def num_records_in_buffer(self) -> int:
50
+ return len(self._buffer)
51
+
52
+ @property
53
+ def buffer_is_empty(self) -> bool:
54
+ return len(self._buffer) == 0
55
+
56
+ @property
57
+ def buffer_size(self) -> int:
58
+ if self._buffer_size is None:
59
+ raise DatasetBatchManagementError("🛑 `buffer_size` is not set. Call start() first.")
60
+ return self._buffer_size
61
+
62
+ def add_record(self, record: dict) -> None:
63
+ self.add_records([record])
64
+
65
+ def add_records(self, records: list[dict]) -> None:
66
+ self._buffer.extend(records)
67
+ if len(self._buffer) > self.buffer_size:
68
+ raise DatasetBatchManagementError(
69
+ f"🛑 Buffer size exceeded. Current: {len(self._buffer)}, Max: {self.buffer_size}. "
70
+ "Flush the batch before adding more records."
71
+ )
72
+
73
+ def drop_records(self, index: Container[int]) -> None:
74
+ self._buffer = [record for i, record in enumerate(self._buffer) if i not in index]
75
+
76
+ def finish_batch(self, on_complete: Callable[[Path], None] | None = None) -> Path | None:
77
+ """Finish the batch by moving the results from the partial results path to the final parquet folder.
78
+
79
+ Returns:
80
+ The path to the written parquet file.
81
+ """
82
+ if self._current_batch_number >= self.num_batches:
83
+ raise DatasetBatchManagementError("🛑 All batches have been processed.")
84
+
85
+ if self.write() is not None:
86
+ final_file_path = self.artifact_storage.move_partial_result_to_final_file_path(self._current_batch_number)
87
+
88
+ self.artifact_storage.write_metadata(
89
+ {
90
+ "target_num_records": sum(self.num_records_list),
91
+ "total_num_batches": self.num_batches,
92
+ "buffer_size": self._buffer_size,
93
+ "schema": {field.name: str(field.type) for field in pq.read_schema(final_file_path)},
94
+ "file_paths": self.artifact_storage.get_file_paths(),
95
+ "num_completed_batches": self._current_batch_number + 1,
96
+ "dataset_name": self.artifact_storage.dataset_name,
97
+ }
98
+ )
99
+
100
+ if on_complete:
101
+ on_complete(final_file_path)
102
+ else:
103
+ final_file_path = None
104
+
105
+ logger.warning(
106
+ f"⚠️ Batch {self._current_batch_number + 1} finished without any results to write. "
107
+ "A partial dataset containing the currently available columns has been written to the partial results "
108
+ f"directory: {self.artifact_storage.partial_results_path}"
109
+ )
110
+
111
+ self._current_batch_number += 1
112
+ self._buffer: list[dict] = []
113
+
114
+ return final_file_path
115
+
116
+ def finish(self) -> None:
117
+ """Finish the dataset writing process by deleting the partial results path if it exists and is empty."""
118
+
119
+ # If the partial results path is empty, delete it.
120
+ if not any(self.artifact_storage.partial_results_path.iterdir()):
121
+ self.artifact_storage.partial_results_path.rmdir()
122
+
123
+ # Otherwise, log a warning, since existing partial results means the dataset is not complete.
124
+ else:
125
+ logger.warning("⚠️ Dataset writing finished with partial results.")
126
+
127
+ self.reset()
128
+
129
+ def get_current_batch_number(self) -> int:
130
+ return self._current_batch_number
131
+
132
+ def get_current_batch(self, *, as_dataframe: bool = False) -> pd.DataFrame | list[dict]:
133
+ if as_dataframe:
134
+ return pd.DataFrame(self._buffer)
135
+ return self._buffer
136
+
137
+ def iter_current_batch(self) -> Iterator[tuple[int, dict]]:
138
+ for i, record in enumerate(self._buffer):
139
+ yield i, record
140
+
141
+ def reset(self, delete_files: bool = False) -> None:
142
+ self._current_batch_number = 0
143
+ self._buffer: list[dict] = []
144
+ if delete_files:
145
+ for dir_path in [
146
+ self.artifact_storage.final_dataset_path,
147
+ self.artifact_storage.partial_results_path,
148
+ self.artifact_storage.dropped_columns_dataset_path,
149
+ self.artifact_storage.base_dataset_path,
150
+ ]:
151
+ if dir_path.exists():
152
+ try:
153
+ shutil.rmtree(dir_path)
154
+ except OSError as e:
155
+ raise DatasetBatchManagementError(f"🛑 Failed to delete directory {dir_path}: {e}")
156
+
157
+ def start(self, *, num_records: int, buffer_size: int) -> None:
158
+ if num_records <= 0:
159
+ raise DatasetBatchManagementError("🛑 num_records must be positive.")
160
+ if buffer_size <= 0:
161
+ raise DatasetBatchManagementError("🛑 buffer_size must be positive.")
162
+
163
+ self._buffer_size = buffer_size
164
+ self._num_records_list = [buffer_size] * (num_records // buffer_size)
165
+ if remaining_records := num_records % buffer_size:
166
+ self._num_records_list.append(remaining_records)
167
+ self.reset()
168
+
169
+ def write(self) -> Path | None:
170
+ """Write the current batch to a parquet file.
171
+
172
+ This method always writes results to the partial results path.
173
+
174
+ Returns:
175
+ The path to the written parquet file. If the buffer is empty, returns None.
176
+ """
177
+ if len(self._buffer) == 0:
178
+ return None
179
+ try:
180
+ file_path = self.artifact_storage.write_batch_to_parquet_file(
181
+ batch_number=self._current_batch_number,
182
+ dataframe=pd.DataFrame(self._buffer),
183
+ batch_stage=BatchStage.PARTIAL_RESULT,
184
+ )
185
+ return file_path
186
+ except Exception as e:
187
+ raise DatasetBatchManagementError(f"🛑 Failed to write batch {self._current_batch_number}: {e}")
188
+
189
+ def update_record(self, index: int, record: dict) -> None:
190
+ if index < 0 or index >= len(self._buffer):
191
+ raise IndexError(f"🛑 Index {index} is out of bounds for buffer of size {len(self._buffer)}.")
192
+ self._buffer[index] = record
193
+
194
+ def update_records(self, records: list[dict]) -> None:
195
+ if len(records) != len(self._buffer):
196
+ raise DatasetBatchManagementError(
197
+ f"🛑 Number of records to update ({len(records)}) must match "
198
+ f"the number of records in the buffer ({len(self._buffer)})."
199
+ )
200
+ self._buffer = records
@@ -0,0 +1,15 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025-2026 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ from __future__ import annotations
5
+
6
+ from data_designer.engine.errors import DataDesignerError
7
+
8
+
9
+ class DatasetBatchManagementError(DataDesignerError): ...
10
+
11
+
12
+ class ConfigCompilationError(DataDesignerError): ...
13
+
14
+
15
+ class DAGCircularDependencyError(DataDesignerError): ...
@@ -0,0 +1,122 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2026 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ from __future__ import annotations
5
+
6
+ import logging
7
+ import time
8
+ from threading import Lock
9
+
10
+ from data_designer.logging import RandomEmoji
11
+
12
+ logger = logging.getLogger(__name__)
13
+
14
+
15
+ class ProgressTracker:
16
+ """
17
+ Thread-safe progress tracker for monitoring concurrent task completion.
18
+
19
+ Tracks completed, successful, and failed task counts and logs progress
20
+ at configurable intervals. Designed for use with ConcurrentThreadExecutor
21
+ to provide visibility into long-running batch operations.
22
+
23
+ Example usage:
24
+ tracker = ProgressTracker(total_records=100, label="LLM_TEXT column 'response'")
25
+ tracker.log_start(max_workers=8)
26
+
27
+ # In callbacks from ConcurrentThreadExecutor:
28
+ tracker.record_success() # or tracker.record_failure()
29
+
30
+ # After executor completes:
31
+ tracker.log_final()
32
+ """
33
+
34
+ def __init__(self, total_records: int, label: str, log_interval_percent: int = 10):
35
+ """
36
+ Initialize the progress tracker.
37
+
38
+ Args:
39
+ total_records: Total number of records to process.
40
+ label: Human-readable label for log messages (e.g., "LLM_TEXT column 'response'").
41
+ log_interval_percent: How often to log progress as a percentage (default 10%).
42
+ """
43
+ self.total_records = total_records
44
+ self.label = label
45
+
46
+ self.completed = 0
47
+ self.success = 0
48
+ self.failed = 0
49
+
50
+ interval_fraction = max(1, log_interval_percent) / 100.0
51
+ self.log_interval = max(1, int(total_records * interval_fraction)) if total_records > 0 else 1
52
+ self.next_log_at = self.log_interval
53
+
54
+ self.start_time = time.perf_counter()
55
+ self.lock = Lock()
56
+ self._random_emoji = RandomEmoji()
57
+
58
+ def log_start(self, max_workers: int) -> None:
59
+ """Log the start of processing with worker count and interval information."""
60
+ logger.info(
61
+ "🐙 Processing %s with %d concurrent workers",
62
+ self.label,
63
+ max_workers,
64
+ )
65
+ logger.info(
66
+ "🧭 %s will report progress every %d record(s).",
67
+ self.label,
68
+ self.log_interval,
69
+ )
70
+
71
+ def record_success(self) -> None:
72
+ """Record a successful task completion and log progress if at interval."""
73
+ self._record_completion(success=True)
74
+
75
+ def record_failure(self) -> None:
76
+ """Record a failed task completion and log progress if at interval."""
77
+ self._record_completion(success=False)
78
+
79
+ def log_final(self) -> None:
80
+ """Log final progress summary."""
81
+ with self.lock:
82
+ if self.completed > 0:
83
+ self._log_progress_unlocked()
84
+
85
+ def _record_completion(self, *, success: bool) -> None:
86
+ should_log = False
87
+ with self.lock:
88
+ self.completed += 1
89
+ if success:
90
+ self.success += 1
91
+ else:
92
+ self.failed += 1
93
+
94
+ if self.completed >= self.next_log_at and self.completed < self.total_records:
95
+ should_log = True
96
+ while self.next_log_at <= self.completed:
97
+ self.next_log_at += self.log_interval
98
+
99
+ if should_log:
100
+ with self.lock:
101
+ self._log_progress_unlocked()
102
+
103
+ def _log_progress_unlocked(self) -> None:
104
+ """Log current progress. Must be called while holding the lock."""
105
+ elapsed = time.perf_counter() - self.start_time
106
+ rate = self.completed / elapsed if elapsed > 0 else 0.0
107
+ remaining = max(0, self.total_records - self.completed)
108
+ eta = f"{(remaining / rate):.1f}s" if rate > 0 else "unknown"
109
+ percent = (self.completed / self.total_records) * 100 if self.total_records else 100.0
110
+
111
+ logger.info(
112
+ " |-- %s %s progress: %d/%d (%.0f%%) complete, %d ok, %d failed, %.2f rec/s, eta %s",
113
+ self._random_emoji.progress(percent),
114
+ self.label,
115
+ self.completed,
116
+ self.total_records,
117
+ percent,
118
+ self.success,
119
+ self.failed,
120
+ rate,
121
+ eta,
122
+ )
@@ -0,0 +1,51 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025-2026 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ from __future__ import annotations
5
+
6
+ from pydantic import BaseModel, Field
7
+
8
+ from data_designer.errors import DataDesignerError
9
+
10
+
11
+ class DataDesignerRuntimeError(DataDesignerError): ...
12
+
13
+
14
+ class UnknownModelAliasError(DataDesignerError): ...
15
+
16
+
17
+ class UnknownProviderError(DataDesignerError): ...
18
+
19
+
20
+ class NoModelProvidersError(DataDesignerError): ...
21
+
22
+
23
+ class SecretResolutionError(DataDesignerError): ...
24
+
25
+
26
+ class RemoteValidationSchemaError(DataDesignerError): ...
27
+
28
+
29
+ class LocalCallableValidationError(DataDesignerError): ...
30
+
31
+
32
+ class ErrorTrap(BaseModel):
33
+ error_count: int = 0
34
+ task_errors: dict[str, int] = Field(default_factory=dict)
35
+
36
+ def _track_error(self, error: DataDesignerError) -> None:
37
+ """
38
+ Track a specific error type.
39
+ """
40
+ error_type = type(error).__name__
41
+ if error_type not in self.task_errors:
42
+ self.task_errors[error_type] = 0
43
+ self.task_errors[error_type] += 1
44
+
45
+ def handle_error(self, error: Exception) -> None:
46
+ self.error_count += 1
47
+
48
+ if not isinstance(error, DataDesignerError):
49
+ error = DataDesignerError(str(error))
50
+
51
+ self._track_error(error)
@@ -0,0 +1,77 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025-2026 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ from __future__ import annotations
5
+
6
+ from functools import cached_property
7
+
8
+ from pydantic import BaseModel, field_validator, model_validator
9
+ from typing_extensions import Self
10
+
11
+ from data_designer.config.models import ModelProvider
12
+ from data_designer.engine.errors import NoModelProvidersError, UnknownProviderError
13
+
14
+
15
+ class ModelProviderRegistry(BaseModel):
16
+ providers: list[ModelProvider]
17
+ default: str | None = None
18
+
19
+ @field_validator("providers", mode="after")
20
+ @classmethod
21
+ def validate_providers_not_empty(cls, v: list[ModelProvider]) -> list[ModelProvider]:
22
+ if len(v) == 0:
23
+ raise ValueError("At least one model provider must be defined")
24
+ return v
25
+
26
+ @field_validator("providers", mode="after")
27
+ @classmethod
28
+ def validate_providers_have_unique_names(cls, v: list[ModelProvider]) -> list[ModelProvider]:
29
+ names = set()
30
+ dupes = set()
31
+ for provider in v:
32
+ if provider.name in names:
33
+ dupes.add(provider.name)
34
+ names.add(provider.name)
35
+
36
+ if len(dupes) > 0:
37
+ raise ValueError(f"Model providers must have unique names, found duplicates: {dupes}")
38
+ return v
39
+
40
+ @model_validator(mode="after")
41
+ def check_implicit_default(self) -> Self:
42
+ if self.default is None and len(self.providers) != 1:
43
+ raise ValueError("A default provider must be specified if multiple model providers are defined")
44
+ return self
45
+
46
+ @model_validator(mode="after")
47
+ def check_default_exists(self) -> Self:
48
+ if self.default and self.default not in self._providers_dict:
49
+ raise ValueError(f"Specified default {self.default!r} not found in providers list")
50
+ return self
51
+
52
+ def get_default_provider_name(self) -> str:
53
+ return self.default or self.providers[0].name
54
+
55
+ @cached_property
56
+ def _providers_dict(self) -> dict[str, ModelProvider]:
57
+ return {p.name: p for p in self.providers}
58
+
59
+ def get_provider(self, name: str | None) -> ModelProvider:
60
+ if name is None:
61
+ name = self.get_default_provider_name()
62
+
63
+ try:
64
+ return self._providers_dict[name]
65
+ except KeyError:
66
+ raise UnknownProviderError(f"No provider named {name!r} registered")
67
+
68
+
69
+ def resolve_model_provider_registry(
70
+ model_providers: list[ModelProvider], default_provider_name: str | None = None
71
+ ) -> ModelProviderRegistry:
72
+ if len(model_providers) == 0:
73
+ raise NoModelProvidersError("At least one model provider must be defined")
74
+ return ModelProviderRegistry(
75
+ providers=model_providers,
76
+ default=default_provider_name or model_providers[0].name,
77
+ )
@@ -0,0 +1,2 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2026 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0