dashscope 1.21.0__py3-none-any.whl → 1.22.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of dashscope might be problematic. Click here for more details.
- dashscope/aigc/chat_completion.py +271 -0
- dashscope/api_entities/aiohttp_request.py +0 -1
- dashscope/api_entities/api_request_data.py +0 -1
- dashscope/api_entities/api_request_factory.py +3 -1
- dashscope/api_entities/chat_completion_types.py +349 -0
- dashscope/api_entities/dashscope_response.py +1 -1
- dashscope/api_entities/http_request.py +0 -1
- dashscope/api_entities/websocket_request.py +26 -3
- dashscope/audio/asr/__init__.py +10 -1
- dashscope/audio/asr/recognition.py +61 -22
- dashscope/audio/asr/translation_recognizer.py +1004 -0
- dashscope/audio/tts_v2/enrollment.py +1 -1
- dashscope/audio/tts_v2/speech_synthesizer.py +16 -1
- dashscope/client/base_api.py +4 -5
- dashscope/common/utils.py +0 -1
- dashscope/embeddings/batch_text_embedding_response.py +0 -1
- dashscope/utils/oss_utils.py +0 -1
- dashscope/utils/temporary_storage.py +160 -0
- dashscope/version.py +1 -1
- {dashscope-1.21.0.dist-info → dashscope-1.22.1.dist-info}/METADATA +2 -3
- {dashscope-1.21.0.dist-info → dashscope-1.22.1.dist-info}/RECORD +25 -25
- {dashscope-1.21.0.dist-info → dashscope-1.22.1.dist-info}/entry_points.txt +0 -1
- dashscope/audio/asr/transcribe.py +0 -270
- dashscope/deployment.py +0 -163
- dashscope/file.py +0 -94
- dashscope/finetune.py +0 -175
- {dashscope-1.21.0.dist-info → dashscope-1.22.1.dist-info}/LICENSE +0 -0
- {dashscope-1.21.0.dist-info → dashscope-1.22.1.dist-info}/WHEEL +0 -0
- {dashscope-1.21.0.dist-info → dashscope-1.22.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,271 @@
|
|
|
1
|
+
import json
|
|
2
|
+
from typing import Any, Dict, Generator, List, Union
|
|
3
|
+
|
|
4
|
+
import dashscope
|
|
5
|
+
from dashscope.api_entities.dashscope_response import (GenerationResponse,
|
|
6
|
+
Message)
|
|
7
|
+
from dashscope.client.base_api import BaseAioApi, CreateMixin
|
|
8
|
+
from dashscope.common import constants
|
|
9
|
+
from dashscope.common.error import InputRequired, ModelRequired
|
|
10
|
+
from dashscope.common.utils import _get_task_group_and_task
|
|
11
|
+
from dashscope.api_entities.chat_completion_types import ChatCompletion, ChatCompletionChunk
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class Completions(CreateMixin):
|
|
15
|
+
"""Support openai compatible chat completion interface.
|
|
16
|
+
|
|
17
|
+
"""
|
|
18
|
+
SUB_PATH = ''
|
|
19
|
+
@classmethod
|
|
20
|
+
def create(
|
|
21
|
+
cls,
|
|
22
|
+
*,
|
|
23
|
+
model: str,
|
|
24
|
+
messages: List[Message],
|
|
25
|
+
stream: bool = False,
|
|
26
|
+
temperature: float = None,
|
|
27
|
+
top_p: float = None,
|
|
28
|
+
top_k: int = None,
|
|
29
|
+
stop: Union[List[str], List[List[int]]] = None,
|
|
30
|
+
max_tokens: int = None,
|
|
31
|
+
repetition_penalty: float = None,
|
|
32
|
+
api_key: str = None,
|
|
33
|
+
workspace: str = None,
|
|
34
|
+
extra_headers: Dict = None,
|
|
35
|
+
extra_body: Dict = None,
|
|
36
|
+
**kwargs
|
|
37
|
+
) -> Union[ChatCompletion, Generator[ChatCompletionChunk, None, None]]:
|
|
38
|
+
"""Call openai compatible chat completion model service.
|
|
39
|
+
|
|
40
|
+
Args:
|
|
41
|
+
model (str): The requested model, such as qwen-long
|
|
42
|
+
messages (list): The generation messages.
|
|
43
|
+
examples:
|
|
44
|
+
[{'role': 'user',
|
|
45
|
+
'content': 'The weather is fine today.'},
|
|
46
|
+
{'role': 'assistant', 'content': 'Suitable for outings'}]
|
|
47
|
+
stream(bool, `optional`): Enable server-sent events
|
|
48
|
+
(ref: https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events) # noqa E501
|
|
49
|
+
the result will back partially[qwen-turbo,bailian-v1].
|
|
50
|
+
temperature(float, `optional`): Used to control the degree
|
|
51
|
+
of randomness and diversity. Specifically, the temperature
|
|
52
|
+
value controls the degree to which the probability distribution
|
|
53
|
+
of each candidate word is smoothed when generating text.
|
|
54
|
+
A higher temperature value will reduce the peak value of
|
|
55
|
+
the probability, allowing more low-probability words to be
|
|
56
|
+
selected, and the generated results will be more diverse;
|
|
57
|
+
while a lower temperature value will enhance the peak value
|
|
58
|
+
of the probability, making it easier for high-probability
|
|
59
|
+
words to be selected, the generated results are more
|
|
60
|
+
deterministic.
|
|
61
|
+
top_p(float, `optional`): A sampling strategy, called nucleus
|
|
62
|
+
sampling, where the model considers the results of the
|
|
63
|
+
tokens with top_p probability mass. So 0.1 means only
|
|
64
|
+
the tokens comprising the top 10% probability mass are
|
|
65
|
+
considered.
|
|
66
|
+
top_k(int, `optional`): The size of the sample candidate set when generated. # noqa E501
|
|
67
|
+
For example, when the value is 50, only the 50 highest-scoring tokens # noqa E501
|
|
68
|
+
in a single generation form a randomly sampled candidate set. # noqa E501
|
|
69
|
+
The larger the value, the higher the randomness generated; # noqa E501
|
|
70
|
+
the smaller the value, the higher the certainty generated. # noqa E501
|
|
71
|
+
The default value is 0, which means the top_k policy is # noqa E501
|
|
72
|
+
not enabled. At this time, only the top_p policy takes effect. # noqa E501
|
|
73
|
+
stop(list[str] or list[list[int]], `optional`): Used to control the generation to stop # noqa E501
|
|
74
|
+
when encountering setting str or token ids, the result will not include # noqa E501
|
|
75
|
+
stop words or tokens.
|
|
76
|
+
max_tokens(int, `optional`): The maximum token num expected to be output. It should be # noqa E501
|
|
77
|
+
noted that the length generated by the model will only be less than max_tokens, # noqa E501
|
|
78
|
+
not necessarily equal to it. If max_tokens is set too large, the service will # noqa E501
|
|
79
|
+
directly prompt that the length exceeds the limit. It is generally # noqa E501
|
|
80
|
+
not recommended to set this value.
|
|
81
|
+
repetition_penalty(float, `optional`): Used to control the repeatability when generating models. # noqa E501
|
|
82
|
+
Increasing repetition_penalty can reduce the duplication of model generation. # noqa E501
|
|
83
|
+
1.0 means no punishment.
|
|
84
|
+
api_key (str, optional): The api api_key, can be None,
|
|
85
|
+
if None, will get by default rule.
|
|
86
|
+
workspace (str, optional): The bailian workspace id.
|
|
87
|
+
**kwargs:
|
|
88
|
+
timeout: set request timeout.
|
|
89
|
+
Raises:
|
|
90
|
+
InvalidInput: The history and auto_history are mutually exclusive.
|
|
91
|
+
|
|
92
|
+
Returns:
|
|
93
|
+
Union[ChatCompletion,
|
|
94
|
+
Generator[ChatCompletionChunk, None, None]]: If
|
|
95
|
+
stream is True, return Generator, otherwise ChatCompletion.
|
|
96
|
+
"""
|
|
97
|
+
if messages is None or not messages:
|
|
98
|
+
raise InputRequired('Messages is required!')
|
|
99
|
+
if model is None or not model:
|
|
100
|
+
raise ModelRequired('Model is required!')
|
|
101
|
+
data = {}
|
|
102
|
+
data['model'] = model
|
|
103
|
+
data['messages'] = messages
|
|
104
|
+
if temperature is not None:
|
|
105
|
+
data['temperature'] = temperature
|
|
106
|
+
if top_p is not None:
|
|
107
|
+
data['top_p'] = top_p
|
|
108
|
+
if top_k is not None:
|
|
109
|
+
data['top_k'] = top_k
|
|
110
|
+
if stop is not None:
|
|
111
|
+
data['stop'] = stop
|
|
112
|
+
if max_tokens is not None:
|
|
113
|
+
data[max_tokens] = max_tokens
|
|
114
|
+
if repetition_penalty is not None:
|
|
115
|
+
data['repetition_penalty'] = repetition_penalty
|
|
116
|
+
if extra_body is not None and extra_body:
|
|
117
|
+
data = {**data, **extra_body}
|
|
118
|
+
|
|
119
|
+
if extra_headers is not None and extra_headers:
|
|
120
|
+
kwargs = {'headers': extra_headers} if kwargs else {**kwargs, **{'headers': extra_headers}}
|
|
121
|
+
|
|
122
|
+
response = super().call(data=data,
|
|
123
|
+
path='chat/completions',
|
|
124
|
+
base_address=dashscope.base_compatible_api_url,
|
|
125
|
+
api_key=api_key,
|
|
126
|
+
flattened_output=True,
|
|
127
|
+
stream=stream,
|
|
128
|
+
workspace=workspace,
|
|
129
|
+
**kwargs)
|
|
130
|
+
if stream:
|
|
131
|
+
return (ChatCompletionChunk(**item) for _, item in response)
|
|
132
|
+
else:
|
|
133
|
+
return ChatCompletion(**response)
|
|
134
|
+
|
|
135
|
+
|
|
136
|
+
class AioGeneration(BaseAioApi):
|
|
137
|
+
task = 'text-generation'
|
|
138
|
+
"""API for AI-Generated Content(AIGC) models.
|
|
139
|
+
|
|
140
|
+
"""
|
|
141
|
+
class Models:
|
|
142
|
+
"""@deprecated, use qwen_turbo instead"""
|
|
143
|
+
qwen_v1 = 'qwen-v1'
|
|
144
|
+
"""@deprecated, use qwen_plus instead"""
|
|
145
|
+
qwen_plus_v1 = 'qwen-plus-v1'
|
|
146
|
+
|
|
147
|
+
bailian_v1 = 'bailian-v1'
|
|
148
|
+
dolly_12b_v2 = 'dolly-12b-v2'
|
|
149
|
+
qwen_turbo = 'qwen-turbo'
|
|
150
|
+
qwen_plus = 'qwen-plus'
|
|
151
|
+
qwen_max = 'qwen-max'
|
|
152
|
+
|
|
153
|
+
@classmethod
|
|
154
|
+
async def call(
|
|
155
|
+
cls,
|
|
156
|
+
model: str,
|
|
157
|
+
prompt: Any = None,
|
|
158
|
+
history: list = None,
|
|
159
|
+
api_key: str = None,
|
|
160
|
+
messages: List[Message] = None,
|
|
161
|
+
plugins: Union[str, Dict[str, Any]] = None,
|
|
162
|
+
workspace: str = None,
|
|
163
|
+
**kwargs
|
|
164
|
+
) -> Union[GenerationResponse, Generator[GenerationResponse, None, None]]:
|
|
165
|
+
"""Call generation model service.
|
|
166
|
+
|
|
167
|
+
Args:
|
|
168
|
+
model (str): The requested model, such as qwen-turbo
|
|
169
|
+
prompt (Any): The input prompt.
|
|
170
|
+
history (list):The user provided history, deprecated
|
|
171
|
+
examples:
|
|
172
|
+
[{'user':'The weather is fine today.',
|
|
173
|
+
'bot': 'Suitable for outings'}].
|
|
174
|
+
Defaults to None.
|
|
175
|
+
api_key (str, optional): The api api_key, can be None,
|
|
176
|
+
if None, will get by default rule(TODO: api key doc).
|
|
177
|
+
messages (list): The generation messages.
|
|
178
|
+
examples:
|
|
179
|
+
[{'role': 'user',
|
|
180
|
+
'content': 'The weather is fine today.'},
|
|
181
|
+
{'role': 'assistant', 'content': 'Suitable for outings'}]
|
|
182
|
+
plugins (Any): The plugin config. Can be plugins config str, or dict.
|
|
183
|
+
**kwargs:
|
|
184
|
+
stream(bool, `optional`): Enable server-sent events
|
|
185
|
+
(ref: https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events) # noqa E501
|
|
186
|
+
the result will back partially[qwen-turbo,bailian-v1].
|
|
187
|
+
temperature(float, `optional`): Used to control the degree
|
|
188
|
+
of randomness and diversity. Specifically, the temperature
|
|
189
|
+
value controls the degree to which the probability distribution
|
|
190
|
+
of each candidate word is smoothed when generating text.
|
|
191
|
+
A higher temperature value will reduce the peak value of
|
|
192
|
+
the probability, allowing more low-probability words to be
|
|
193
|
+
selected, and the generated results will be more diverse;
|
|
194
|
+
while a lower temperature value will enhance the peak value
|
|
195
|
+
of the probability, making it easier for high-probability
|
|
196
|
+
words to be selected, the generated results are more
|
|
197
|
+
deterministic, range(0, 2) .[qwen-turbo,qwen-plus].
|
|
198
|
+
top_p(float, `optional`): A sampling strategy, called nucleus
|
|
199
|
+
sampling, where the model considers the results of the
|
|
200
|
+
tokens with top_p probability mass. So 0.1 means only
|
|
201
|
+
the tokens comprising the top 10% probability mass are
|
|
202
|
+
considered[qwen-turbo,bailian-v1].
|
|
203
|
+
top_k(int, `optional`): The size of the sample candidate set when generated. # noqa E501
|
|
204
|
+
For example, when the value is 50, only the 50 highest-scoring tokens # noqa E501
|
|
205
|
+
in a single generation form a randomly sampled candidate set. # noqa E501
|
|
206
|
+
The larger the value, the higher the randomness generated; # noqa E501
|
|
207
|
+
the smaller the value, the higher the certainty generated. # noqa E501
|
|
208
|
+
The default value is 0, which means the top_k policy is # noqa E501
|
|
209
|
+
not enabled. At this time, only the top_p policy takes effect. # noqa E501
|
|
210
|
+
enable_search(bool, `optional`): Whether to enable web search(quark). # noqa E501
|
|
211
|
+
Currently works best only on the first round of conversation.
|
|
212
|
+
Default to False, support model: [qwen-turbo].
|
|
213
|
+
customized_model_id(str, required) The enterprise-specific
|
|
214
|
+
large model id, which needs to be generated from the
|
|
215
|
+
operation background of the enterprise-specific
|
|
216
|
+
large model product, support model: [bailian-v1].
|
|
217
|
+
result_format(str, `optional`): [message|text] Set result result format. # noqa E501
|
|
218
|
+
Default result is text
|
|
219
|
+
incremental_output(bool, `optional`): Used to control the streaming output mode. # noqa E501
|
|
220
|
+
If true, the subsequent output will include the previously input content. # noqa E501
|
|
221
|
+
Otherwise, the subsequent output will not include the previously output # noqa E501
|
|
222
|
+
content. Default false.
|
|
223
|
+
stop(list[str] or list[list[int]], `optional`): Used to control the generation to stop # noqa E501
|
|
224
|
+
when encountering setting str or token ids, the result will not include # noqa E501
|
|
225
|
+
stop words or tokens.
|
|
226
|
+
max_tokens(int, `optional`): The maximum token num expected to be output. It should be # noqa E501
|
|
227
|
+
noted that the length generated by the model will only be less than max_tokens, # noqa E501
|
|
228
|
+
not necessarily equal to it. If max_tokens is set too large, the service will # noqa E501
|
|
229
|
+
directly prompt that the length exceeds the limit. It is generally # noqa E501
|
|
230
|
+
not recommended to set this value.
|
|
231
|
+
repetition_penalty(float, `optional`): Used to control the repeatability when generating models. # noqa E501
|
|
232
|
+
Increasing repetition_penalty can reduce the duplication of model generation. # noqa E501
|
|
233
|
+
1.0 means no punishment.
|
|
234
|
+
workspace (str): The dashscope workspace id.
|
|
235
|
+
Raises:
|
|
236
|
+
InvalidInput: The history and auto_history are mutually exclusive.
|
|
237
|
+
|
|
238
|
+
Returns:
|
|
239
|
+
Union[GenerationResponse,
|
|
240
|
+
Generator[GenerationResponse, None, None]]: If
|
|
241
|
+
stream is True, return Generator, otherwise GenerationResponse.
|
|
242
|
+
"""
|
|
243
|
+
if (prompt is None or not prompt) and (messages is None
|
|
244
|
+
or not messages):
|
|
245
|
+
raise InputRequired('prompt or messages is required!')
|
|
246
|
+
if model is None or not model:
|
|
247
|
+
raise ModelRequired('Model is required!')
|
|
248
|
+
task_group, function = _get_task_group_and_task(__name__)
|
|
249
|
+
if plugins is not None:
|
|
250
|
+
headers = kwargs.pop('headers', {})
|
|
251
|
+
if isinstance(plugins, str):
|
|
252
|
+
headers['X-DashScope-Plugin'] = plugins
|
|
253
|
+
else:
|
|
254
|
+
headers['X-DashScope-Plugin'] = json.dumps(plugins)
|
|
255
|
+
kwargs['headers'] = headers
|
|
256
|
+
input, parameters = Generation._build_input_parameters(
|
|
257
|
+
model, prompt, history, messages, **kwargs)
|
|
258
|
+
response = await super().call(model=model,
|
|
259
|
+
task_group=task_group,
|
|
260
|
+
task=Generation.task,
|
|
261
|
+
function=function,
|
|
262
|
+
api_key=api_key,
|
|
263
|
+
input=input,
|
|
264
|
+
workspace=workspace,
|
|
265
|
+
**parameters)
|
|
266
|
+
is_stream = kwargs.get('stream', False)
|
|
267
|
+
if is_stream:
|
|
268
|
+
return (GenerationResponse.from_api_response(rsp)
|
|
269
|
+
async for rsp in response)
|
|
270
|
+
else:
|
|
271
|
+
return GenerationResponse.from_api_response(response)
|
|
@@ -2,7 +2,6 @@ import json
|
|
|
2
2
|
from http import HTTPStatus
|
|
3
3
|
|
|
4
4
|
import aiohttp
|
|
5
|
-
|
|
6
5
|
from dashscope.api_entities.base_request import AioBaseRequest
|
|
7
6
|
from dashscope.api_entities.dashscope_response import DashScopeAPIResponse
|
|
8
7
|
from dashscope.common.constants import (DEFAULT_REQUEST_TIMEOUT_SECONDS,
|
|
@@ -81,13 +81,15 @@ def _build_api_request(model: str,
|
|
|
81
81
|
websocket_url = base_address
|
|
82
82
|
else:
|
|
83
83
|
websocket_url = dashscope.base_websocket_api_url
|
|
84
|
+
pre_task_id = kwargs.pop('pre_task_id', None)
|
|
84
85
|
request = WebSocketRequest(url=websocket_url,
|
|
85
86
|
api_key=api_key,
|
|
86
87
|
stream=stream,
|
|
87
88
|
ws_stream_mode=ws_stream_mode,
|
|
88
89
|
is_binary_input=is_binary_input,
|
|
89
90
|
timeout=request_timeout,
|
|
90
|
-
flattened_output=flattened_output
|
|
91
|
+
flattened_output=flattened_output,
|
|
92
|
+
pre_task_id=pre_task_id)
|
|
91
93
|
else:
|
|
92
94
|
raise UnsupportedApiProtocol(
|
|
93
95
|
'Unsupported protocol: %s, support [http, https, websocket]' %
|
|
@@ -0,0 +1,349 @@
|
|
|
1
|
+
# adapter from openai sdk
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
from typing import Dict, List, Literal, Optional
|
|
4
|
+
|
|
5
|
+
from dashscope.common.base_type import BaseObjectMixin
|
|
6
|
+
"""
|
|
7
|
+
{
|
|
8
|
+
"choices": [
|
|
9
|
+
{
|
|
10
|
+
"message": {
|
|
11
|
+
"role": "assistant",
|
|
12
|
+
"content": "很抱歉,由于您提供的信息不完整,我无法直接比较两篇文章的内容。但是,一般而言,大型语言模型的训练通常确实涉及两个主要阶段:\n\n1. **预训练阶段 (Pre-Training Phase)**:在这个阶段,模型在大规模无标注文本数据集(如互联网上的网页、书籍、新闻等)上进行训练。目的是让模型学习语言的通用模式和结构。常见的预训练技术包括自回归(Autoregressive)模型如GPT系列,以及transformer架构下的编码器-解码器模型如BERT系列。\n\n2. **微调阶段 (Fine-Tuning Phase)**:预训练模型在特定任务的数据集上进行进一步训练,以适应下游任务,如问答、文本分类、机器翻译等。这个阶段允许模型根据具体任务的需求调整权重,从而提高性能。\n\n如果您能提供更详细的信息或两篇文章的具体内容,我可以给出更准确的比较分析。"
|
|
13
|
+
},
|
|
14
|
+
"finish_reason": "stop",
|
|
15
|
+
"index": 0,
|
|
16
|
+
"logprobs": null
|
|
17
|
+
}
|
|
18
|
+
],
|
|
19
|
+
"object": "chat.completion",
|
|
20
|
+
"usage": {
|
|
21
|
+
"prompt_tokens": 66,
|
|
22
|
+
"completion_tokens": 195,
|
|
23
|
+
"total_tokens": 261
|
|
24
|
+
},
|
|
25
|
+
"created": 1716539630,
|
|
26
|
+
"system_fingerprint": null,
|
|
27
|
+
"model": "qwen-long",
|
|
28
|
+
"id": "chatcmpl-a737071790e091c6be016ea27a891392",
|
|
29
|
+
"status_code": 200
|
|
30
|
+
}
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
@dataclass(init=False)
|
|
34
|
+
class CompletionUsage(BaseObjectMixin):
|
|
35
|
+
completion_tokens: int
|
|
36
|
+
"""Number of tokens in the generated completion."""
|
|
37
|
+
|
|
38
|
+
prompt_tokens: int
|
|
39
|
+
"""Number of tokens in the prompt."""
|
|
40
|
+
|
|
41
|
+
total_tokens: int
|
|
42
|
+
"""Total number of tokens used in the request (prompt + completion)."""
|
|
43
|
+
def __init__(self, **kwargs):
|
|
44
|
+
super().__init__(**kwargs)
|
|
45
|
+
|
|
46
|
+
@dataclass(init=False)
|
|
47
|
+
class TopLogprob(BaseObjectMixin):
|
|
48
|
+
token: str
|
|
49
|
+
"""The token."""
|
|
50
|
+
|
|
51
|
+
bytes: Optional[List[int]] = None
|
|
52
|
+
"""A list of integers representing the UTF-8 bytes representation of the token.
|
|
53
|
+
|
|
54
|
+
Useful in instances where characters are represented by multiple tokens and
|
|
55
|
+
their byte representations must be combined to generate the correct text
|
|
56
|
+
representation. Can be `null` if there is no bytes representation for the token.
|
|
57
|
+
"""
|
|
58
|
+
|
|
59
|
+
logprob: float
|
|
60
|
+
"""The log probability of this token, if it is within the top 20 most likely
|
|
61
|
+
tokens.
|
|
62
|
+
|
|
63
|
+
Otherwise, the value `-9999.0` is used to signify that the token is very
|
|
64
|
+
unlikely.
|
|
65
|
+
"""
|
|
66
|
+
def __init__(self, **kwargs):
|
|
67
|
+
super().__init__(**kwargs)
|
|
68
|
+
|
|
69
|
+
@dataclass(init=False)
|
|
70
|
+
class ChatCompletionTokenLogprob(BaseObjectMixin):
|
|
71
|
+
token: str
|
|
72
|
+
"""The token."""
|
|
73
|
+
|
|
74
|
+
bytes: Optional[List[int]] = None
|
|
75
|
+
"""A list of integers representing the UTF-8 bytes representation of the token.
|
|
76
|
+
|
|
77
|
+
Useful in instances where characters are represented by multiple tokens and
|
|
78
|
+
their byte representations must be combined to generate the correct text
|
|
79
|
+
representation. Can be `null` if there is no bytes representation for the token.
|
|
80
|
+
"""
|
|
81
|
+
|
|
82
|
+
logprob: float
|
|
83
|
+
"""The log probability of this token, if it is within the top 20 most likely
|
|
84
|
+
tokens.
|
|
85
|
+
|
|
86
|
+
Otherwise, the value `-9999.0` is used to signify that the token is very
|
|
87
|
+
unlikely.
|
|
88
|
+
"""
|
|
89
|
+
|
|
90
|
+
top_logprobs: List[TopLogprob]
|
|
91
|
+
"""List of the most likely tokens and their log probability, at this token
|
|
92
|
+
position.
|
|
93
|
+
|
|
94
|
+
In rare cases, there may be fewer than the number of requested `top_logprobs`
|
|
95
|
+
returned.
|
|
96
|
+
"""
|
|
97
|
+
def __init__(self, **kwargs):
|
|
98
|
+
if 'top_logprobs' in kwargs and kwargs['top_logprobs'] is not None and kwargs['top_logprobs']:
|
|
99
|
+
top_logprobs = []
|
|
100
|
+
for logprob in kwargs['top_logprobs']:
|
|
101
|
+
top_logprobs.append(ChatCompletionTokenLogprob(**logprob))
|
|
102
|
+
self.top_logprobs = top_logprobs
|
|
103
|
+
else:
|
|
104
|
+
self.top_logprobs = None
|
|
105
|
+
|
|
106
|
+
super().__init__(**kwargs)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
@dataclass(init=False)
|
|
110
|
+
class ChoiceLogprobs(BaseObjectMixin):
|
|
111
|
+
content: Optional[List[ChatCompletionTokenLogprob]] = None
|
|
112
|
+
"""A list of message content tokens with log probability information."""
|
|
113
|
+
def __init__(self, **kwargs):
|
|
114
|
+
if 'content' in kwargs and kwargs['content'] is not None and kwargs['content']:
|
|
115
|
+
logprobs = []
|
|
116
|
+
for logprob in kwargs['content']:
|
|
117
|
+
logprobs.append(ChatCompletionTokenLogprob(**logprob))
|
|
118
|
+
self.content = logprobs
|
|
119
|
+
else:
|
|
120
|
+
self.content = None
|
|
121
|
+
|
|
122
|
+
super().__init__(**kwargs)
|
|
123
|
+
|
|
124
|
+
@dataclass(init=False)
|
|
125
|
+
class FunctionCall(BaseObjectMixin):
|
|
126
|
+
arguments: str
|
|
127
|
+
"""
|
|
128
|
+
The arguments to call the function with, as generated by the model in JSON
|
|
129
|
+
format. Note that the model does not always generate valid JSON, and may
|
|
130
|
+
hallucinate parameters not defined by your function schema. Validate the
|
|
131
|
+
arguments in your code before calling your function.
|
|
132
|
+
"""
|
|
133
|
+
|
|
134
|
+
name: str
|
|
135
|
+
"""The name of the function to call."""
|
|
136
|
+
def __init__(self, **kwargs):
|
|
137
|
+
super().__init__(**kwargs)
|
|
138
|
+
|
|
139
|
+
@dataclass(init=False)
|
|
140
|
+
class Function(BaseObjectMixin):
|
|
141
|
+
arguments: str
|
|
142
|
+
"""
|
|
143
|
+
The arguments to call the function with, as generated by the model in JSON
|
|
144
|
+
format. Note that the model does not always generate valid JSON, and may
|
|
145
|
+
hallucinate parameters not defined by your function schema. Validate the
|
|
146
|
+
arguments in your code before calling your function.
|
|
147
|
+
"""
|
|
148
|
+
|
|
149
|
+
name: str
|
|
150
|
+
"""The name of the function to call."""
|
|
151
|
+
def __init__(self, **kwargs):
|
|
152
|
+
super().__init__(**kwargs)
|
|
153
|
+
|
|
154
|
+
@dataclass(init=False)
|
|
155
|
+
class ChatCompletionMessageToolCall(BaseObjectMixin):
|
|
156
|
+
id: str
|
|
157
|
+
"""The ID of the tool call."""
|
|
158
|
+
|
|
159
|
+
function: Function
|
|
160
|
+
"""The function that the model called."""
|
|
161
|
+
|
|
162
|
+
type: Literal["function"]
|
|
163
|
+
"""The type of the tool. Currently, only `function` is supported."""
|
|
164
|
+
def __init__(self, **kwargs):
|
|
165
|
+
if 'function' in kwargs and kwargs['function'] is not None and kwargs['function']:
|
|
166
|
+
self.function = Function(**kwargs.pop('function', {}))
|
|
167
|
+
else:
|
|
168
|
+
function = None
|
|
169
|
+
|
|
170
|
+
super().__init__(**kwargs)
|
|
171
|
+
|
|
172
|
+
@dataclass(init=False)
|
|
173
|
+
class ChatCompletionMessage(BaseObjectMixin):
|
|
174
|
+
content: Optional[str] = None
|
|
175
|
+
"""The contents of the message."""
|
|
176
|
+
|
|
177
|
+
role: Literal["assistant"]
|
|
178
|
+
"""The role of the author of this message."""
|
|
179
|
+
|
|
180
|
+
function_call: Optional[FunctionCall] = None
|
|
181
|
+
"""Deprecated and replaced by `tool_calls`.
|
|
182
|
+
|
|
183
|
+
The name and arguments of a function that should be called, as generated by the
|
|
184
|
+
model.
|
|
185
|
+
"""
|
|
186
|
+
|
|
187
|
+
tool_calls: Optional[List[ChatCompletionMessageToolCall]] = None
|
|
188
|
+
|
|
189
|
+
"""The tool calls generated by the model, such as function calls."""
|
|
190
|
+
def __init__(self, **kwargs):
|
|
191
|
+
if 'function_call' in kwargs and kwargs['function_call'] is not None and kwargs['function_call']:
|
|
192
|
+
self.function_call = FunctionCall(**kwargs.pop('function_call', {}))
|
|
193
|
+
|
|
194
|
+
if 'tool_calls' in kwargs and kwargs['tool_calls'] is not None and kwargs['tool_calls']:
|
|
195
|
+
tool_calls = []
|
|
196
|
+
for tool_call in kwargs['tool_calls']:
|
|
197
|
+
tool_calls.append(ChatCompletionMessageToolCall(**tool_call))
|
|
198
|
+
self.tool_calls = tool_calls
|
|
199
|
+
|
|
200
|
+
super().__init__(**kwargs)
|
|
201
|
+
|
|
202
|
+
@dataclass(init=False)
|
|
203
|
+
class Choice(BaseObjectMixin):
|
|
204
|
+
finish_reason: Literal["stop", "length", "tool_calls", "content_filter", "function_call"]
|
|
205
|
+
"""The reason the model stopped generating tokens.
|
|
206
|
+
|
|
207
|
+
This will be `stop` if the model hit a natural stop point or a provided stop
|
|
208
|
+
sequence, `length` if the maximum number of tokens specified in the request was
|
|
209
|
+
reached, `content_filter` if content was omitted due to a flag from our content
|
|
210
|
+
filters, `tool_calls` if the model called a tool, or `function_call`
|
|
211
|
+
(deprecated) if the model called a function.
|
|
212
|
+
"""
|
|
213
|
+
|
|
214
|
+
index: int
|
|
215
|
+
"""The index of the choice in the list of choices."""
|
|
216
|
+
|
|
217
|
+
logprobs: Optional[ChoiceLogprobs] = None
|
|
218
|
+
"""Log probability information for the choice."""
|
|
219
|
+
|
|
220
|
+
message: ChatCompletionMessage
|
|
221
|
+
"""A chat completion message generated by the model."""
|
|
222
|
+
|
|
223
|
+
def __init__(self, **kwargs):
|
|
224
|
+
if 'message' in kwargs and kwargs['message'] is not None and kwargs['message']:
|
|
225
|
+
self.message = ChatCompletionMessage(**kwargs.pop('message', {}))
|
|
226
|
+
else:
|
|
227
|
+
self.message = None
|
|
228
|
+
|
|
229
|
+
if 'logprobs' in kwargs and kwargs['logprobs'] is not None and kwargs['logprobs']:
|
|
230
|
+
self.logprobs = ChoiceLogprobs(**kwargs.pop('logprobs', {}))
|
|
231
|
+
|
|
232
|
+
super().__init__(**kwargs)
|
|
233
|
+
|
|
234
|
+
@dataclass(init=False)
|
|
235
|
+
class ChatCompletion(BaseObjectMixin):
|
|
236
|
+
status_code: int
|
|
237
|
+
"""The call response status_code, 200 indicate create success.
|
|
238
|
+
"""
|
|
239
|
+
code: str
|
|
240
|
+
"""The request failed, this is the error code.
|
|
241
|
+
"""
|
|
242
|
+
message: str
|
|
243
|
+
"""The request failed, this is the error message.
|
|
244
|
+
"""
|
|
245
|
+
id: str
|
|
246
|
+
"""A unique identifier for the chat completion.
|
|
247
|
+
"""
|
|
248
|
+
choices: List[Choice]
|
|
249
|
+
"""A list of chat completion choices.
|
|
250
|
+
|
|
251
|
+
Can be more than one if `n` is greater than 1.
|
|
252
|
+
"""
|
|
253
|
+
|
|
254
|
+
created: int
|
|
255
|
+
"""The Unix timestamp (in seconds) of when the chat completion was created."""
|
|
256
|
+
|
|
257
|
+
model: str
|
|
258
|
+
"""The model used for the chat completion."""
|
|
259
|
+
|
|
260
|
+
object: Literal["chat.completion"]
|
|
261
|
+
"""The object type, which is always `chat.completion`."""
|
|
262
|
+
|
|
263
|
+
system_fingerprint: Optional[str] = None
|
|
264
|
+
"""This fingerprint represents the backend configuration that the model runs with.
|
|
265
|
+
|
|
266
|
+
Can be used in conjunction with the `seed` request parameter to understand when
|
|
267
|
+
backend changes have been made that might impact determinism.
|
|
268
|
+
"""
|
|
269
|
+
|
|
270
|
+
usage: Optional[CompletionUsage] = None
|
|
271
|
+
"""Usage statistics for the completion request."""
|
|
272
|
+
|
|
273
|
+
def __init__(self, **kwargs):
|
|
274
|
+
if 'usage' in kwargs and kwargs['usage'] is not None and kwargs['usage']:
|
|
275
|
+
self.usage = CompletionUsage(**kwargs.pop('usage', {}))
|
|
276
|
+
else:
|
|
277
|
+
self.usage = None
|
|
278
|
+
|
|
279
|
+
if 'choices' in kwargs and kwargs['choices'] is not None and kwargs['choices']:
|
|
280
|
+
choices = []
|
|
281
|
+
for choice in kwargs.pop('choices', []):
|
|
282
|
+
choices.append(Choice(**choice))
|
|
283
|
+
self.choices = choices
|
|
284
|
+
else:
|
|
285
|
+
self.choices = None
|
|
286
|
+
super().__init__(**kwargs)
|
|
287
|
+
|
|
288
|
+
@dataclass(init=False)
|
|
289
|
+
class ChatCompletionChunk(BaseObjectMixin):
|
|
290
|
+
status_code: int
|
|
291
|
+
"""The call response status_code, 200 indicate create success.
|
|
292
|
+
"""
|
|
293
|
+
code: str
|
|
294
|
+
"""The request failed, this is the error code.
|
|
295
|
+
"""
|
|
296
|
+
message: str
|
|
297
|
+
"""The request failed, this is the error message.
|
|
298
|
+
"""
|
|
299
|
+
id: str
|
|
300
|
+
"""A unique identifier for the chat completion. Each chunk has the same ID."""
|
|
301
|
+
|
|
302
|
+
choices: List[Choice]
|
|
303
|
+
"""A list of chat completion choices.
|
|
304
|
+
|
|
305
|
+
Can contain more than one elements if `n` is greater than 1. Can also be empty
|
|
306
|
+
for the last chunk if you set `stream_options: {"include_usage": true}`.
|
|
307
|
+
"""
|
|
308
|
+
|
|
309
|
+
created: int
|
|
310
|
+
"""The Unix timestamp (in seconds) of when the chat completion was created.
|
|
311
|
+
|
|
312
|
+
Each chunk has the same timestamp.
|
|
313
|
+
"""
|
|
314
|
+
|
|
315
|
+
model: str
|
|
316
|
+
"""The model to generate the completion."""
|
|
317
|
+
|
|
318
|
+
object: Literal["chat.completion.chunk"]
|
|
319
|
+
"""The object type, which is always `chat.completion.chunk`."""
|
|
320
|
+
|
|
321
|
+
system_fingerprint: Optional[str] = None
|
|
322
|
+
"""
|
|
323
|
+
This fingerprint represents the backend configuration that the model runs with.
|
|
324
|
+
Can be used in conjunction with the `seed` request parameter to understand when
|
|
325
|
+
backend changes have been made that might impact determinism.
|
|
326
|
+
"""
|
|
327
|
+
|
|
328
|
+
usage: Optional[CompletionUsage] = None
|
|
329
|
+
"""
|
|
330
|
+
An optional field that will only be present when you set
|
|
331
|
+
`stream_options: {"include_usage": true}` in your request. When present, it
|
|
332
|
+
contains a null value except for the last chunk which contains the token usage
|
|
333
|
+
statistics for the entire request.
|
|
334
|
+
"""
|
|
335
|
+
def __init__(self, **kwargs):
|
|
336
|
+
if 'usage' in kwargs and kwargs['usage'] is not None and kwargs['usage']:
|
|
337
|
+
self.usage = CompletionUsage(**kwargs.pop('usage', {}))
|
|
338
|
+
else:
|
|
339
|
+
self.usage = None
|
|
340
|
+
|
|
341
|
+
if 'choices' in kwargs and kwargs['choices'] is not None and kwargs['choices']:
|
|
342
|
+
choices = []
|
|
343
|
+
for choice in kwargs.pop('choices', []):
|
|
344
|
+
choices.append(Choice(**choice))
|
|
345
|
+
self.choices = choices
|
|
346
|
+
else:
|
|
347
|
+
self.choices = None
|
|
348
|
+
super().__init__(**kwargs)
|
|
349
|
+
|
|
@@ -480,7 +480,7 @@ class VideoSynthesisOutput(DictMixin):
|
|
|
480
480
|
class ImageSynthesisUsage(DictMixin):
|
|
481
481
|
image_count: int
|
|
482
482
|
|
|
483
|
-
def __init__(self, image_count: int, **kwargs):
|
|
483
|
+
def __init__(self, image_count: int = None, **kwargs):
|
|
484
484
|
super().__init__(image_count=image_count, **kwargs)
|
|
485
485
|
|
|
486
486
|
|
|
@@ -3,7 +3,6 @@ from http import HTTPStatus
|
|
|
3
3
|
|
|
4
4
|
import aiohttp
|
|
5
5
|
import requests
|
|
6
|
-
|
|
7
6
|
from dashscope.api_entities.base_request import AioBaseRequest
|
|
8
7
|
from dashscope.api_entities.dashscope_response import DashScopeAPIResponse
|
|
9
8
|
from dashscope.common.constants import (DEFAULT_REQUEST_TIMEOUT_SECONDS,
|