dao-ai 0.1.8__py3-none-any.whl → 0.1.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
dao_ai/providers/base.py CHANGED
@@ -1,15 +1,19 @@
1
1
  from abc import ABC, abstractmethod
2
- from typing import Any, Sequence
2
+ from typing import TYPE_CHECKING, Any, Sequence
3
3
 
4
4
  from dao_ai.config import (
5
5
  AppModel,
6
6
  DatasetModel,
7
+ DeploymentTarget,
7
8
  SchemaModel,
8
9
  UnityCatalogFunctionSqlModel,
9
10
  VectorStoreModel,
10
11
  VolumeModel,
11
12
  )
12
13
 
14
+ if TYPE_CHECKING:
15
+ from dao_ai.config import AppConfig
16
+
13
17
 
14
18
  class ServiceProvider(ABC):
15
19
  @abstractmethod
@@ -52,4 +56,26 @@ class ServiceProvider(ABC):
52
56
  ) -> Any: ...
53
57
 
54
58
  @abstractmethod
55
- def deploy_agent(self, config: AppModel) -> Any: ...
59
+ def deploy_model_serving_agent(self, config: "AppConfig") -> Any:
60
+ """Deploy agent to Databricks Model Serving endpoint."""
61
+ ...
62
+
63
+ @abstractmethod
64
+ def deploy_apps_agent(self, config: "AppConfig") -> Any:
65
+ """Deploy agent as a Databricks App."""
66
+ ...
67
+
68
+ @abstractmethod
69
+ def deploy_agent(
70
+ self,
71
+ config: "AppConfig",
72
+ target: DeploymentTarget = DeploymentTarget.MODEL_SERVING,
73
+ ) -> Any:
74
+ """
75
+ Deploy agent to the specified target.
76
+
77
+ Args:
78
+ config: The AppConfig containing deployment configuration
79
+ target: The deployment target (MODEL_SERVING or APPS)
80
+ """
81
+ ...
@@ -23,7 +23,7 @@ from databricks.sdk.service.catalog import (
23
23
  )
24
24
  from databricks.sdk.service.database import DatabaseCredential
25
25
  from databricks.sdk.service.iam import User
26
- from databricks.sdk.service.workspace import GetSecretResponse
26
+ from databricks.sdk.service.workspace import GetSecretResponse, ImportFormat
27
27
  from databricks.vector_search.client import VectorSearchClient
28
28
  from databricks.vector_search.index import VectorSearchIndex
29
29
  from loguru import logger
@@ -48,6 +48,7 @@ from dao_ai.config import (
48
48
  DatabaseModel,
49
49
  DatabricksAppModel,
50
50
  DatasetModel,
51
+ DeploymentTarget,
51
52
  FunctionModel,
52
53
  GenieRoomModel,
53
54
  HasFullName,
@@ -326,7 +327,7 @@ class DatabricksProvider(ServiceProvider):
326
327
  raise FileNotFoundError(f"Code path does not exist: {path}")
327
328
 
328
329
  model_root_path: Path = Path(dao_ai.__file__).parent
329
- model_path: Path = model_root_path / "agent_as_code.py"
330
+ model_path: Path = model_root_path / "apps" / "model_serving.py"
330
331
 
331
332
  pip_requirements: Sequence[str] = config.app.pip_requirements
332
333
 
@@ -439,8 +440,19 @@ class DatabricksProvider(ServiceProvider):
439
440
  version=aliased_model.version,
440
441
  )
441
442
 
442
- def deploy_agent(self, config: AppConfig) -> None:
443
- logger.info("Deploying agent", endpoint_name=config.app.endpoint_name)
443
+ def deploy_model_serving_agent(self, config: AppConfig) -> None:
444
+ """
445
+ Deploy agent to Databricks Model Serving endpoint.
446
+
447
+ This is the original deployment method that creates/updates a Model Serving
448
+ endpoint with the registered model.
449
+
450
+ Args:
451
+ config: The AppConfig containing deployment configuration
452
+ """
453
+ logger.info(
454
+ "Deploying agent to Model Serving", endpoint_name=config.app.endpoint_name
455
+ )
444
456
  mlflow.set_registry_uri("databricks-uc")
445
457
 
446
458
  endpoint_name: str = config.app.endpoint_name
@@ -499,6 +511,228 @@ class DatabricksProvider(ServiceProvider):
499
511
  permission_level=PermissionLevel[entitlement],
500
512
  )
501
513
 
514
+ def deploy_apps_agent(self, config: AppConfig) -> None:
515
+ """
516
+ Deploy agent as a Databricks App.
517
+
518
+ This method creates or updates a Databricks App that serves the agent
519
+ using the app_server module.
520
+
521
+ The deployment process:
522
+ 1. Determine the workspace source path for the app
523
+ 2. Upload the configuration file to the workspace
524
+ 3. Create the app if it doesn't exist
525
+ 4. Deploy the app
526
+
527
+ Args:
528
+ config: The AppConfig containing deployment configuration
529
+
530
+ Note:
531
+ The config file must be loaded via AppConfig.from_file() so that
532
+ the source_config_path is available for upload.
533
+ """
534
+ import io
535
+
536
+ from databricks.sdk.service.apps import (
537
+ App,
538
+ AppDeployment,
539
+ AppDeploymentMode,
540
+ AppDeploymentState,
541
+ )
542
+
543
+ # Normalize app name: lowercase, replace underscores with dashes
544
+ raw_name: str = config.app.name
545
+ app_name: str = raw_name.lower().replace("_", "-")
546
+ if app_name != raw_name:
547
+ logger.info(
548
+ "Normalized app name for Databricks Apps",
549
+ original=raw_name,
550
+ normalized=app_name,
551
+ )
552
+ logger.info("Deploying agent to Databricks Apps", app_name=app_name)
553
+
554
+ # Use convention-based workspace path: /Workspace/Users/{user}/apps/{app_name}
555
+ current_user: User = self.w.current_user.me()
556
+ user_name: str = current_user.user_name or "default"
557
+ source_path: str = f"/Workspace/Users/{user_name}/apps/{app_name}"
558
+
559
+ logger.info("Using workspace source path", source_path=source_path)
560
+
561
+ # Upload the configuration file to the workspace
562
+ source_config_path: str | None = config.source_config_path
563
+ if source_config_path:
564
+ # Read the config file and upload to workspace
565
+ config_file_name: str = "model_config.yaml"
566
+ workspace_config_path: str = f"{source_path}/{config_file_name}"
567
+
568
+ logger.info(
569
+ "Uploading config file to workspace",
570
+ source=source_config_path,
571
+ destination=workspace_config_path,
572
+ )
573
+
574
+ # Read the source config file
575
+ with open(source_config_path, "rb") as f:
576
+ config_content: bytes = f.read()
577
+
578
+ # Create the directory if it doesn't exist and upload the file
579
+ try:
580
+ self.w.workspace.mkdirs(source_path)
581
+ except Exception as e:
582
+ logger.debug(f"Directory may already exist: {e}")
583
+
584
+ # Upload the config file
585
+ self.w.workspace.upload(
586
+ path=workspace_config_path,
587
+ content=io.BytesIO(config_content),
588
+ format=ImportFormat.AUTO,
589
+ overwrite=True,
590
+ )
591
+ logger.info("Config file uploaded", path=workspace_config_path)
592
+ else:
593
+ logger.warning(
594
+ "No source config path available. "
595
+ "Ensure DAO_AI_CONFIG_PATH is set in the app environment or "
596
+ "model_config.yaml exists in the app source directory."
597
+ )
598
+
599
+ # Generate and upload app.yaml with dynamically discovered resources
600
+ from dao_ai.apps.resources import generate_app_yaml
601
+
602
+ app_yaml_content: str = generate_app_yaml(
603
+ config,
604
+ command=[
605
+ "/bin/bash",
606
+ "-c",
607
+ "pip install dao-ai && python -m dao_ai.apps.server",
608
+ ],
609
+ include_resources=True,
610
+ )
611
+
612
+ app_yaml_path: str = f"{source_path}/app.yaml"
613
+ self.w.workspace.upload(
614
+ path=app_yaml_path,
615
+ content=io.BytesIO(app_yaml_content.encode("utf-8")),
616
+ format=ImportFormat.AUTO,
617
+ overwrite=True,
618
+ )
619
+ logger.info("app.yaml with resources uploaded", path=app_yaml_path)
620
+
621
+ # Generate SDK resources from the config
622
+ from dao_ai.apps.resources import (
623
+ generate_sdk_resources,
624
+ generate_user_api_scopes,
625
+ )
626
+
627
+ sdk_resources = generate_sdk_resources(config)
628
+ if sdk_resources:
629
+ logger.info(
630
+ "Discovered app resources from config",
631
+ resource_count=len(sdk_resources),
632
+ resources=[r.name for r in sdk_resources],
633
+ )
634
+
635
+ # Generate user API scopes for on-behalf-of-user resources
636
+ user_api_scopes = generate_user_api_scopes(config)
637
+ if user_api_scopes:
638
+ logger.info(
639
+ "Discovered user API scopes for OBO resources",
640
+ scopes=user_api_scopes,
641
+ )
642
+
643
+ # Check if app exists
644
+ app_exists: bool = False
645
+ try:
646
+ existing_app: App = self.w.apps.get(name=app_name)
647
+ app_exists = True
648
+ logger.debug("App already exists, updating", app_name=app_name)
649
+ except NotFound:
650
+ logger.debug("Creating new app", app_name=app_name)
651
+
652
+ # Create or update the app with resources and user_api_scopes
653
+ if not app_exists:
654
+ logger.info("Creating Databricks App", app_name=app_name)
655
+ app_spec = App(
656
+ name=app_name,
657
+ description=config.app.description or f"DAO AI Agent: {app_name}",
658
+ resources=sdk_resources if sdk_resources else None,
659
+ user_api_scopes=user_api_scopes if user_api_scopes else None,
660
+ )
661
+ app: App = self.w.apps.create_and_wait(app=app_spec)
662
+ logger.info("App created", app_name=app.name, app_url=app.url)
663
+ else:
664
+ app = existing_app
665
+ # Update resources and scopes on existing app
666
+ if sdk_resources or user_api_scopes:
667
+ logger.info("Updating app resources and scopes", app_name=app_name)
668
+ updated_app = App(
669
+ name=app_name,
670
+ description=config.app.description or app.description,
671
+ resources=sdk_resources if sdk_resources else None,
672
+ user_api_scopes=user_api_scopes if user_api_scopes else None,
673
+ )
674
+ app = self.w.apps.update(name=app_name, app=updated_app)
675
+ logger.info("App resources and scopes updated", app_name=app_name)
676
+
677
+ # Deploy the app with source code
678
+ # The app will use the dao_ai.apps.server module as the entry point
679
+ logger.info("Deploying app", app_name=app_name)
680
+
681
+ # Create deployment configuration
682
+ app_deployment = AppDeployment(
683
+ mode=AppDeploymentMode.SNAPSHOT,
684
+ source_code_path=source_path,
685
+ )
686
+
687
+ # Deploy the app
688
+ deployment: AppDeployment = self.w.apps.deploy_and_wait(
689
+ app_name=app_name,
690
+ app_deployment=app_deployment,
691
+ )
692
+
693
+ if (
694
+ deployment.status
695
+ and deployment.status.state == AppDeploymentState.SUCCEEDED
696
+ ):
697
+ logger.info(
698
+ "App deployed successfully",
699
+ app_name=app_name,
700
+ deployment_id=deployment.deployment_id,
701
+ app_url=app.url if app else None,
702
+ )
703
+ else:
704
+ status_message: str = (
705
+ deployment.status.message if deployment.status else "Unknown error"
706
+ )
707
+ logger.error(
708
+ "App deployment failed",
709
+ app_name=app_name,
710
+ status=status_message,
711
+ )
712
+ raise RuntimeError(f"App deployment failed: {status_message}")
713
+
714
+ def deploy_agent(
715
+ self,
716
+ config: AppConfig,
717
+ target: DeploymentTarget = DeploymentTarget.MODEL_SERVING,
718
+ ) -> None:
719
+ """
720
+ Deploy agent to the specified target.
721
+
722
+ This is the main deployment method that routes to the appropriate
723
+ deployment implementation based on the target.
724
+
725
+ Args:
726
+ config: The AppConfig containing deployment configuration
727
+ target: The deployment target (MODEL_SERVING or APPS)
728
+ """
729
+ if target == DeploymentTarget.MODEL_SERVING:
730
+ self.deploy_model_serving_agent(config)
731
+ elif target == DeploymentTarget.APPS:
732
+ self.deploy_apps_agent(config)
733
+ else:
734
+ raise ValueError(f"Unknown deployment target: {target}")
735
+
502
736
  def create_catalog(self, schema: SchemaModel) -> CatalogInfo:
503
737
  catalog_info: CatalogInfo
504
738
  try:
dao_ai/state.py CHANGED
@@ -164,6 +164,7 @@ class Context(BaseModel):
164
164
 
165
165
  user_id: str | None = None
166
166
  thread_id: str | None = None
167
+ headers: dict[str, Any] | None = None
167
168
 
168
169
  @classmethod
169
170
  def from_runnable_config(cls, config: dict[str, Any]) -> "Context":
dao_ai/tools/mcp.py CHANGED
@@ -261,12 +261,12 @@ def _extract_text_content(result: CallToolResult) -> str:
261
261
  return "\n".join(text_parts)
262
262
 
263
263
 
264
- def _fetch_tools_from_server(function: McpFunctionModel) -> list[Tool]:
264
+ async def _afetch_tools_from_server(function: McpFunctionModel) -> list[Tool]:
265
265
  """
266
- Fetch raw MCP tools from the server.
266
+ Async version: Fetch raw MCP tools from the server.
267
267
 
268
- This is the core async operation that connects to the MCP server
269
- and retrieves the list of available tools.
268
+ This is the primary async implementation that handles the actual MCP connection
269
+ and tool listing. It's used by both alist_mcp_tools() and acreate_mcp_tools().
270
270
 
271
271
  Args:
272
272
  function: The MCP function model configuration.
@@ -280,14 +280,10 @@ def _fetch_tools_from_server(function: McpFunctionModel) -> list[Tool]:
280
280
  connection_config = _build_connection_config(function)
281
281
  client = MultiServerMCPClient({"mcp_function": connection_config})
282
282
 
283
- async def _list_tools_async() -> list[Tool]:
284
- """Async helper to list tools from MCP server."""
283
+ try:
285
284
  async with client.session("mcp_function") as session:
286
285
  result = await session.list_tools()
287
286
  return result.tools if hasattr(result, "tools") else list(result)
288
-
289
- try:
290
- return asyncio.run(_list_tools_async())
291
287
  except Exception as e:
292
288
  if function.connection:
293
289
  logger.error(
@@ -312,57 +308,48 @@ def _fetch_tools_from_server(function: McpFunctionModel) -> list[Tool]:
312
308
  ) from e
313
309
 
314
310
 
315
- def list_mcp_tools(
316
- function: McpFunctionModel,
317
- apply_filters: bool = True,
318
- ) -> list[MCPToolInfo]:
311
+ def _fetch_tools_from_server(function: McpFunctionModel) -> list[Tool]:
319
312
  """
320
- List available tools from an MCP server.
321
-
322
- This function connects to an MCP server and returns information about
323
- all available tools. It's designed for:
324
- - Tool discovery and exploration
325
- - UI-based tool selection (e.g., in DAO AI Builder)
326
- - Debugging and validation of MCP configurations
313
+ Sync wrapper: Fetch raw MCP tools from the server.
327
314
 
328
- The returned MCPToolInfo objects contain all information needed to
329
- display tools in a UI and allow users to select which tools to use.
315
+ For async contexts, use _afetch_tools_from_server() directly.
330
316
 
331
317
  Args:
332
- function: The MCP function model configuration containing:
333
- - Connection details (url, connection, headers, etc.)
334
- - Optional filtering (include_tools, exclude_tools)
335
- apply_filters: Whether to apply include_tools/exclude_tools filters.
336
- Set to False to get the complete list of available tools
337
- regardless of filter configuration. Default True.
318
+ function: The MCP function model configuration.
338
319
 
339
320
  Returns:
340
- List of MCPToolInfo objects describing available tools.
341
- Each contains name, description, and input_schema.
321
+ List of raw MCP Tool objects from the server.
342
322
 
343
323
  Raises:
344
324
  RuntimeError: If connection to MCP server fails.
325
+ """
326
+ return asyncio.run(_afetch_tools_from_server(function))
345
327
 
346
- Example:
347
- # List all tools from a DBSQL MCP server
348
- from dao_ai.config import McpFunctionModel
349
- from dao_ai.tools.mcp import list_mcp_tools
350
328
 
351
- function = McpFunctionModel(sql=True)
352
- tools = list_mcp_tools(function)
329
+ async def alist_mcp_tools(
330
+ function: McpFunctionModel,
331
+ apply_filters: bool = True,
332
+ ) -> list[MCPToolInfo]:
333
+ """
334
+ Async version: List available tools from an MCP server.
335
+
336
+ This is the primary async implementation for tool discovery.
337
+ For sync contexts, use list_mcp_tools() instead.
353
338
 
354
- for tool in tools:
355
- print(f"{tool.name}: {tool.description}")
339
+ Args:
340
+ function: The MCP function model configuration.
341
+ apply_filters: Whether to apply include_tools/exclude_tools filters.
356
342
 
357
- # Get unfiltered list (ignore include_tools/exclude_tools)
358
- all_tools = list_mcp_tools(function, apply_filters=False)
343
+ Returns:
344
+ List of MCPToolInfo objects describing available tools.
359
345
 
360
- Note:
361
- For creating executable LangChain tools, use create_mcp_tools() instead.
362
- This function is for discovery/display purposes only.
346
+ Raises:
347
+ RuntimeError: If connection to MCP server fails.
363
348
  """
364
349
  mcp_url = function.mcp_url
365
- logger.debug("Listing MCP tools", mcp_url=mcp_url, apply_filters=apply_filters)
350
+ logger.debug(
351
+ "Listing MCP tools (async)", mcp_url=mcp_url, apply_filters=apply_filters
352
+ )
366
353
 
367
354
  # Log connection type
368
355
  if function.connection:
@@ -378,8 +365,8 @@ def list_mcp_tools(
378
365
  mcp_url=mcp_url,
379
366
  )
380
367
 
381
- # Fetch tools from server
382
- mcp_tools: list[Tool] = _fetch_tools_from_server(function)
368
+ # Fetch tools from server (async)
369
+ mcp_tools: list[Tool] = await _afetch_tools_from_server(function)
383
370
 
384
371
  # Log discovered tools
385
372
  logger.info(
@@ -433,45 +420,155 @@ def list_mcp_tools(
433
420
  return tool_infos
434
421
 
435
422
 
436
- def create_mcp_tools(
423
+ def list_mcp_tools(
437
424
  function: McpFunctionModel,
438
- ) -> Sequence[RunnableLike]:
425
+ apply_filters: bool = True,
426
+ ) -> list[MCPToolInfo]:
439
427
  """
440
- Create executable LangChain tools for invoking Databricks MCP functions.
428
+ Sync wrapper: List available tools from an MCP server.
429
+
430
+ For async contexts, use alist_mcp_tools() directly.
431
+
432
+ Args:
433
+ function: The MCP function model configuration.
434
+ apply_filters: Whether to apply include_tools/exclude_tools filters.
441
435
 
442
- Supports both direct MCP connections and UC Connection-based MCP access.
443
- Uses manual tool wrappers to ensure response format compatibility with
444
- Databricks APIs (which reject extra fields in tool results).
436
+ Returns:
437
+ List of MCPToolInfo objects describing available tools.
438
+
439
+ Raises:
440
+ RuntimeError: If connection to MCP server fails.
441
+ """
442
+ return asyncio.run(alist_mcp_tools(function, apply_filters))
445
443
 
446
- This function:
447
- 1. Fetches available tools from the MCP server
448
- 2. Applies include_tools/exclude_tools filters
449
- 3. Wraps each tool for LangChain agent execution
450
444
 
451
- For tool discovery without creating executable tools, use list_mcp_tools().
445
+ async def acreate_mcp_tools(
446
+ function: McpFunctionModel,
447
+ ) -> Sequence[RunnableLike]:
448
+ """
449
+ Async version: Create executable LangChain tools for invoking Databricks MCP functions.
452
450
 
453
- Based on: https://docs.databricks.com/aws/en/generative-ai/mcp/external-mcp
451
+ This is the primary async implementation. For sync contexts, use create_mcp_tools().
454
452
 
455
453
  Args:
456
- function: The MCP function model configuration containing:
457
- - Connection details (url, connection, headers, etc.)
458
- - Optional filtering (include_tools, exclude_tools)
454
+ function: The MCP function model configuration.
459
455
 
460
456
  Returns:
461
457
  A sequence of LangChain tools that can be used by agents.
462
458
 
463
459
  Raises:
464
460
  RuntimeError: If connection to MCP server fails.
461
+ """
462
+ mcp_url = function.mcp_url
463
+ logger.debug("Creating MCP tools (async)", mcp_url=mcp_url)
464
+
465
+ # Fetch tools from server (async)
466
+ mcp_tools: list[Tool] = await _afetch_tools_from_server(function)
467
+
468
+ # Log discovered tools
469
+ logger.info(
470
+ "Discovered MCP tools from server",
471
+ tools_count=len(mcp_tools),
472
+ tool_names=[t.name for t in mcp_tools],
473
+ mcp_url=mcp_url,
474
+ )
475
+
476
+ # Apply filtering if configured
477
+ if function.include_tools or function.exclude_tools:
478
+ original_count = len(mcp_tools)
479
+ mcp_tools = [
480
+ tool
481
+ for tool in mcp_tools
482
+ if _should_include_tool(
483
+ tool.name,
484
+ function.include_tools,
485
+ function.exclude_tools,
486
+ )
487
+ ]
488
+ filtered_count = original_count - len(mcp_tools)
489
+
490
+ logger.info(
491
+ "Filtered MCP tools",
492
+ original_count=original_count,
493
+ filtered_count=filtered_count,
494
+ final_count=len(mcp_tools),
495
+ include_patterns=function.include_tools,
496
+ exclude_patterns=function.exclude_tools,
497
+ )
498
+
499
+ # Log final tool list
500
+ for mcp_tool in mcp_tools:
501
+ logger.debug(
502
+ "MCP tool available",
503
+ tool_name=mcp_tool.name,
504
+ tool_description=(
505
+ mcp_tool.description[:100] if mcp_tool.description else None
506
+ ),
507
+ )
508
+
509
+ def _create_tool_wrapper(mcp_tool: Tool) -> RunnableLike:
510
+ """
511
+ Create a LangChain tool wrapper for an MCP tool.
512
+ """
513
+
514
+ @create_tool(
515
+ mcp_tool.name,
516
+ description=mcp_tool.description or f"MCP tool: {mcp_tool.name}",
517
+ args_schema=mcp_tool.inputSchema,
518
+ )
519
+ async def tool_wrapper(**kwargs: Any) -> str:
520
+ """Execute MCP tool with fresh session."""
521
+ logger.trace("Invoking MCP tool", tool_name=mcp_tool.name, args=kwargs)
522
+
523
+ invocation_client = MultiServerMCPClient(
524
+ {"mcp_function": _build_connection_config(function)}
525
+ )
526
+
527
+ try:
528
+ async with invocation_client.session("mcp_function") as session:
529
+ result: CallToolResult = await session.call_tool(
530
+ mcp_tool.name, kwargs
531
+ )
532
+
533
+ text_result = _extract_text_content(result)
534
+
535
+ logger.trace(
536
+ "MCP tool completed",
537
+ tool_name=mcp_tool.name,
538
+ result_length=len(text_result),
539
+ )
540
+
541
+ return text_result
542
+
543
+ except Exception as e:
544
+ logger.error(
545
+ "MCP tool failed",
546
+ tool_name=mcp_tool.name,
547
+ error=str(e),
548
+ )
549
+ raise
550
+
551
+ return tool_wrapper
552
+
553
+ return [_create_tool_wrapper(tool) for tool in mcp_tools]
465
554
 
466
- Example:
467
- from dao_ai.config import McpFunctionModel
468
- from dao_ai.tools.mcp import create_mcp_tools
469
555
 
470
- function = McpFunctionModel(sql=True)
471
- tools = create_mcp_tools(function)
556
+ def create_mcp_tools(
557
+ function: McpFunctionModel,
558
+ ) -> Sequence[RunnableLike]:
559
+ """
560
+ Sync wrapper: Create executable LangChain tools for invoking Databricks MCP functions.
472
561
 
473
- # Use tools in an agent
474
- agent = create_agent(model=model, tools=tools)
562
+ For async contexts, use acreate_mcp_tools() directly.
563
+
564
+ Args:
565
+ function: The MCP function model configuration.
566
+
567
+ Returns:
568
+ A sequence of LangChain tools that can be used by agents.
569
+
570
+ Raises:
571
+ RuntimeError: If connection to MCP server fails.
475
572
  """
476
573
  mcp_url = function.mcp_url
477
574
  logger.debug("Creating MCP tools", mcp_url=mcp_url)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: dao-ai
3
- Version: 0.1.8
3
+ Version: 0.1.10
4
4
  Summary: DAO AI: A modular, multi-agent orchestration framework for complex AI workflows. Supports agent handoff, tool integration, and dynamic configuration via YAML.
5
5
  Project-URL: Homepage, https://github.com/natefleming/dao-ai
6
6
  Project-URL: Documentation, https://natefleming.github.io/dao-ai
@@ -43,7 +43,7 @@ Requires-Dist: langgraph>=1.0.5
43
43
  Requires-Dist: langmem>=0.0.30
44
44
  Requires-Dist: loguru>=0.7.3
45
45
  Requires-Dist: mcp>=1.24.0
46
- Requires-Dist: mlflow>=3.8.1
46
+ Requires-Dist: mlflow[databricks]>=3.8.1
47
47
  Requires-Dist: nest-asyncio>=1.6.0
48
48
  Requires-Dist: openevals>=0.1.3
49
49
  Requires-Dist: openpyxl>=3.1.5