dao-ai 0.0.28__py3-none-any.whl → 0.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (63) hide show
  1. dao_ai/__init__.py +29 -0
  2. dao_ai/agent_as_code.py +2 -5
  3. dao_ai/cli.py +245 -40
  4. dao_ai/config.py +1491 -370
  5. dao_ai/genie/__init__.py +38 -0
  6. dao_ai/genie/cache/__init__.py +43 -0
  7. dao_ai/genie/cache/base.py +72 -0
  8. dao_ai/genie/cache/core.py +79 -0
  9. dao_ai/genie/cache/lru.py +347 -0
  10. dao_ai/genie/cache/semantic.py +970 -0
  11. dao_ai/genie/core.py +35 -0
  12. dao_ai/graph.py +27 -253
  13. dao_ai/hooks/__init__.py +9 -6
  14. dao_ai/hooks/core.py +27 -195
  15. dao_ai/logging.py +56 -0
  16. dao_ai/memory/__init__.py +10 -0
  17. dao_ai/memory/core.py +65 -30
  18. dao_ai/memory/databricks.py +402 -0
  19. dao_ai/memory/postgres.py +79 -38
  20. dao_ai/messages.py +6 -4
  21. dao_ai/middleware/__init__.py +125 -0
  22. dao_ai/middleware/assertions.py +806 -0
  23. dao_ai/middleware/base.py +50 -0
  24. dao_ai/middleware/core.py +67 -0
  25. dao_ai/middleware/guardrails.py +420 -0
  26. dao_ai/middleware/human_in_the_loop.py +232 -0
  27. dao_ai/middleware/message_validation.py +586 -0
  28. dao_ai/middleware/summarization.py +197 -0
  29. dao_ai/models.py +1306 -114
  30. dao_ai/nodes.py +245 -159
  31. dao_ai/optimization.py +674 -0
  32. dao_ai/orchestration/__init__.py +52 -0
  33. dao_ai/orchestration/core.py +294 -0
  34. dao_ai/orchestration/supervisor.py +278 -0
  35. dao_ai/orchestration/swarm.py +271 -0
  36. dao_ai/prompts.py +128 -31
  37. dao_ai/providers/databricks.py +573 -601
  38. dao_ai/state.py +157 -21
  39. dao_ai/tools/__init__.py +13 -5
  40. dao_ai/tools/agent.py +1 -3
  41. dao_ai/tools/core.py +64 -11
  42. dao_ai/tools/email.py +232 -0
  43. dao_ai/tools/genie.py +144 -294
  44. dao_ai/tools/mcp.py +223 -155
  45. dao_ai/tools/memory.py +50 -0
  46. dao_ai/tools/python.py +9 -14
  47. dao_ai/tools/search.py +14 -0
  48. dao_ai/tools/slack.py +22 -10
  49. dao_ai/tools/sql.py +202 -0
  50. dao_ai/tools/time.py +30 -7
  51. dao_ai/tools/unity_catalog.py +165 -88
  52. dao_ai/tools/vector_search.py +331 -221
  53. dao_ai/utils.py +166 -20
  54. dao_ai-0.1.2.dist-info/METADATA +455 -0
  55. dao_ai-0.1.2.dist-info/RECORD +64 -0
  56. dao_ai/chat_models.py +0 -204
  57. dao_ai/guardrails.py +0 -112
  58. dao_ai/tools/human_in_the_loop.py +0 -100
  59. dao_ai-0.0.28.dist-info/METADATA +0 -1168
  60. dao_ai-0.0.28.dist-info/RECORD +0 -41
  61. {dao_ai-0.0.28.dist-info → dao_ai-0.1.2.dist-info}/WHEEL +0 -0
  62. {dao_ai-0.0.28.dist-info → dao_ai-0.1.2.dist-info}/entry_points.txt +0 -0
  63. {dao_ai-0.0.28.dist-info → dao_ai-0.1.2.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,50 @@
1
+ """
2
+ Base classes and types for DAO AI middleware.
3
+
4
+ This module re-exports LangChain's middleware types for convenience.
5
+ Use LangChainAgentMiddleware directly with DAO AI's state and context types.
6
+
7
+ Example:
8
+ from langchain.agents.middleware import AgentMiddleware
9
+ from dao_ai.state import AgentState, Context
10
+ from langgraph.runtime import Runtime
11
+
12
+ class MyMiddleware(AgentMiddleware[AgentState, Context]):
13
+ def before_model(
14
+ self,
15
+ state: AgentState,
16
+ runtime: Runtime[Context]
17
+ ) -> dict[str, Any] | None:
18
+ print(f"About to call model with {len(state['messages'])} messages")
19
+ return None
20
+ """
21
+
22
+ from langchain.agents.middleware import (
23
+ AgentMiddleware,
24
+ ModelRequest,
25
+ after_agent,
26
+ after_model,
27
+ before_agent,
28
+ before_model,
29
+ dynamic_prompt,
30
+ wrap_model_call,
31
+ wrap_tool_call,
32
+ )
33
+ from langchain.agents.middleware.types import ModelResponse
34
+
35
+ # Re-export LangChain types for convenience
36
+ __all__ = [
37
+ # Base middleware class
38
+ "AgentMiddleware",
39
+ # Types
40
+ "ModelRequest",
41
+ "ModelResponse",
42
+ # Decorators
43
+ "before_agent",
44
+ "before_model",
45
+ "after_agent",
46
+ "after_model",
47
+ "wrap_model_call",
48
+ "wrap_tool_call",
49
+ "dynamic_prompt",
50
+ ]
@@ -0,0 +1,67 @@
1
+ """
2
+ Core middleware utilities for DAO AI.
3
+
4
+ This module provides the factory function for creating middleware instances
5
+ from fully qualified function names.
6
+ """
7
+
8
+ from typing import Any, Callable
9
+
10
+ from langchain.agents.middleware import AgentMiddleware
11
+ from loguru import logger
12
+
13
+ from dao_ai.state import AgentState, Context
14
+ from dao_ai.utils import load_function
15
+
16
+
17
+ def create_factory_middleware(
18
+ function_name: str,
19
+ args: dict[str, Any] | None = None,
20
+ ) -> AgentMiddleware[AgentState, Context]:
21
+ """
22
+ Create middleware from a factory function.
23
+
24
+
25
+ This factory function dynamically loads a Python function and calls it
26
+ with the provided arguments to create a middleware instance.
27
+
28
+ The factory function should return a middleware object compatible with
29
+ LangChain's create_agent middleware parameter (AgentMiddleware or any
30
+ callable/object that implements the middleware interface).
31
+
32
+ Args:
33
+ function_name: Fully qualified name of the factory function
34
+ (e.g., 'my_module.create_custom_middleware')
35
+ args: Arguments to pass to the factory function
36
+
37
+ Returns:
38
+ An AgentMiddleware instance returned by the factory function
39
+
40
+ Raises:
41
+ ImportError: If the function cannot be loaded
42
+
43
+ Example:
44
+ # Factory function in my_module.py:
45
+ def create_custom_middleware(threshold: float = 0.5) -> AgentMiddleware[AgentState, Context]:
46
+ return MyCustomMiddleware(threshold=threshold)
47
+
48
+ # Usage:
49
+ middleware = create_factory_middleware(
50
+ function_name="my_module.create_custom_middleware",
51
+ args={"threshold": 0.8}
52
+ )
53
+ """
54
+ if args is None:
55
+ args = {}
56
+
57
+ logger.trace("Creating factory middleware", function_name=function_name, args=args)
58
+
59
+ factory: Callable[..., AgentMiddleware[AgentState, Context]] = load_function(
60
+ function_name=function_name
61
+ )
62
+ middleware: AgentMiddleware[AgentState, Context] = factory(**args)
63
+
64
+ logger.trace(
65
+ "Created middleware from factory", middleware_type=type(middleware).__name__
66
+ )
67
+ return middleware
@@ -0,0 +1,420 @@
1
+ """
2
+ Guardrail middleware for DAO AI agents.
3
+
4
+ This module provides middleware implementations for applying guardrails
5
+ to agent responses, including LLM-based judging and content validation.
6
+
7
+ Factory functions are provided for consistent configuration via the
8
+ DAO AI middleware factory pattern.
9
+ """
10
+
11
+ from typing import Any, Optional
12
+
13
+ from langchain.agents.middleware import hook_config
14
+ from langchain_core.language_models import LanguageModelLike
15
+ from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
16
+ from langgraph.runtime import Runtime
17
+ from loguru import logger
18
+ from openevals.llm import create_llm_as_judge
19
+
20
+ from dao_ai.messages import last_ai_message, last_human_message
21
+ from dao_ai.middleware.base import AgentMiddleware
22
+ from dao_ai.state import AgentState, Context
23
+
24
+
25
+ def _extract_text_content(message: BaseMessage) -> str:
26
+ """
27
+ Extract text content from a message, handling both string and list formats.
28
+
29
+ Args:
30
+ message: The message to extract text from
31
+
32
+ Returns:
33
+ The extracted text content as a string
34
+ """
35
+ content = message.content
36
+
37
+ if isinstance(content, str):
38
+ return content
39
+ elif isinstance(content, list):
40
+ # Extract text from content blocks (e.g., Claude's structured content)
41
+ text_parts = []
42
+ for block in content:
43
+ if isinstance(block, dict) and block.get("type") == "text":
44
+ text_parts.append(block.get("text", ""))
45
+ elif isinstance(block, str):
46
+ text_parts.append(block)
47
+ return " ".join(text_parts)
48
+ else:
49
+ return str(content)
50
+
51
+
52
+ __all__ = [
53
+ "GuardrailMiddleware",
54
+ "ContentFilterMiddleware",
55
+ "SafetyGuardrailMiddleware",
56
+ "create_guardrail_middleware",
57
+ "create_content_filter_middleware",
58
+ "create_safety_guardrail_middleware",
59
+ ]
60
+
61
+
62
+ class GuardrailMiddleware(AgentMiddleware[AgentState, Context]):
63
+ """
64
+ Middleware that applies LLM-based guardrails to agent responses.
65
+
66
+ Uses an LLM judge to evaluate responses against a prompt/criteria and
67
+ can request improvements if the response doesn't meet the criteria.
68
+
69
+ This is equivalent to the previous reflection_guardrail pattern but
70
+ implemented as middleware for better composability.
71
+
72
+ Args:
73
+ guardrail_name: Name identifying this guardrail
74
+ model: The LLM to use for evaluation
75
+ prompt: The evaluation prompt/criteria
76
+ num_retries: Maximum number of retry attempts (default: 3)
77
+ """
78
+
79
+ def __init__(
80
+ self,
81
+ name: str,
82
+ model: LanguageModelLike,
83
+ prompt: str,
84
+ num_retries: int = 3,
85
+ ):
86
+ super().__init__()
87
+ self.guardrail_name = name
88
+ self.model = model
89
+ self.prompt = prompt
90
+ self.num_retries = num_retries
91
+ self._retry_count = 0
92
+
93
+ @property
94
+ def name(self) -> str:
95
+ """Return the guardrail name for middleware identification."""
96
+ return self.guardrail_name
97
+
98
+ def after_model(
99
+ self, state: AgentState, runtime: Runtime[Context]
100
+ ) -> dict[str, Any] | None:
101
+ """
102
+ Evaluate the model's response using an LLM judge.
103
+
104
+ If the response doesn't meet the guardrail criteria, returns a
105
+ HumanMessage with feedback to trigger a retry.
106
+ """
107
+ messages: list[BaseMessage] = state.get("messages", [])
108
+
109
+ if not messages:
110
+ return None
111
+
112
+ ai_message: AIMessage | None = last_ai_message(messages)
113
+ human_message: HumanMessage | None = last_human_message(messages)
114
+
115
+ if not ai_message or not human_message:
116
+ return None
117
+
118
+ # Skip evaluation if the AI message has tool calls (not the final response yet)
119
+ if ai_message.tool_calls:
120
+ logger.trace(
121
+ "Guardrail skipping evaluation - AI message contains tool calls",
122
+ guardrail_name=self.guardrail_name,
123
+ )
124
+ return None
125
+
126
+ # Skip evaluation if the AI message has no content to evaluate
127
+ if not ai_message.content:
128
+ logger.trace(
129
+ "Guardrail skipping evaluation - AI message has no content",
130
+ guardrail_name=self.guardrail_name,
131
+ )
132
+ return None
133
+
134
+ # Extract text content from messages (handles both string and structured content)
135
+ human_content = _extract_text_content(human_message)
136
+ ai_content = _extract_text_content(ai_message)
137
+
138
+ logger.debug(
139
+ "Evaluating response with guardrail",
140
+ guardrail_name=self.guardrail_name,
141
+ input_length=len(human_content),
142
+ output_length=len(ai_content),
143
+ )
144
+
145
+ evaluator = create_llm_as_judge(
146
+ prompt=self.prompt,
147
+ judge=self.model,
148
+ )
149
+
150
+ eval_result = evaluator(inputs=human_content, outputs=ai_content)
151
+
152
+ if eval_result["score"]:
153
+ logger.debug(
154
+ "Response approved by guardrail",
155
+ guardrail_name=self.guardrail_name,
156
+ comment=eval_result["comment"],
157
+ )
158
+ self._retry_count = 0
159
+ return None
160
+ else:
161
+ self._retry_count += 1
162
+ comment: str = eval_result["comment"]
163
+
164
+ if self._retry_count >= self.num_retries:
165
+ logger.warning(
166
+ "Guardrail failed - max retries reached",
167
+ guardrail_name=self.guardrail_name,
168
+ retry_count=self._retry_count,
169
+ max_retries=self.num_retries,
170
+ critique=comment,
171
+ )
172
+ self._retry_count = 0
173
+
174
+ # Add system message to inform user of guardrail failure
175
+ failure_message = (
176
+ f"⚠️ **Quality Check Failed**\n\n"
177
+ f"The response did not meet the '{self.guardrail_name}' quality standards "
178
+ f"after {self.num_retries} attempts.\n\n"
179
+ f"**Issue:** {comment}\n\n"
180
+ f"The best available response has been provided, but please be aware it may not fully meet quality expectations."
181
+ )
182
+ return {"messages": [AIMessage(content=failure_message)]}
183
+
184
+ logger.warning(
185
+ "Guardrail requested improvements",
186
+ guardrail_name=self.guardrail_name,
187
+ retry=self._retry_count,
188
+ max_retries=self.num_retries,
189
+ critique=comment,
190
+ )
191
+
192
+ content: str = "\n".join([str(human_message.content), comment])
193
+ return {"messages": [HumanMessage(content=content)]}
194
+
195
+
196
+ class ContentFilterMiddleware(AgentMiddleware[AgentState, Context]):
197
+ """
198
+ Middleware that filters responses containing banned keywords.
199
+
200
+ This is a deterministic guardrail that blocks responses containing
201
+ specified keywords.
202
+
203
+ Args:
204
+ banned_keywords: List of keywords to block
205
+ block_message: Message to return when content is blocked
206
+ """
207
+
208
+ def __init__(
209
+ self,
210
+ banned_keywords: list[str],
211
+ block_message: str = "I cannot provide that response. Please rephrase your request.",
212
+ ):
213
+ super().__init__()
214
+ self.banned_keywords = [kw.lower() for kw in banned_keywords]
215
+ self.block_message = block_message
216
+
217
+ @hook_config(can_jump_to=["end"])
218
+ def before_agent(
219
+ self, state: AgentState, runtime: Runtime[Context]
220
+ ) -> dict[str, Any] | None:
221
+ """Block requests containing banned keywords."""
222
+ messages: list[BaseMessage] = state.get("messages", [])
223
+
224
+ if not messages:
225
+ return None
226
+
227
+ first_message = messages[0]
228
+ if not isinstance(first_message, HumanMessage):
229
+ return None
230
+
231
+ content = str(first_message.content).lower()
232
+
233
+ for keyword in self.banned_keywords:
234
+ if keyword in content:
235
+ logger.warning(f"Content filter blocked request containing '{keyword}'")
236
+ return {
237
+ "messages": [AIMessage(content=self.block_message)],
238
+ "jump_to": "end",
239
+ }
240
+
241
+ return None
242
+
243
+ def after_model(
244
+ self, state: AgentState, runtime: Runtime[Context]
245
+ ) -> dict[str, Any] | None:
246
+ """Block responses containing banned keywords."""
247
+ messages: list[BaseMessage] = state.get("messages", [])
248
+
249
+ if not messages:
250
+ return None
251
+
252
+ last_message: AIMessage | None = last_ai_message(messages)
253
+ if not last_message:
254
+ return None
255
+
256
+ content = str(last_message.content).lower()
257
+
258
+ for keyword in self.banned_keywords:
259
+ if keyword in content:
260
+ logger.warning("Content filter blocked response", keyword=keyword)
261
+ # Modify the last message content
262
+ last_message.content = self.block_message
263
+ return None
264
+
265
+ return None
266
+
267
+
268
+ class SafetyGuardrailMiddleware(AgentMiddleware[AgentState, Context]):
269
+ """
270
+ Model-based safety guardrail middleware.
271
+
272
+ Uses an LLM to evaluate whether responses are safe and appropriate.
273
+ This is applied after the agent completes to validate the final output.
274
+
275
+ Args:
276
+ safety_model: The LLM to use for safety evaluation
277
+ """
278
+
279
+ def __init__(self, safety_model: Optional[LanguageModelLike] = None):
280
+ super().__init__()
281
+ self._safety_model = safety_model
282
+
283
+ @property
284
+ def safety_model(self) -> LanguageModelLike:
285
+ """Lazily initialize the safety model."""
286
+ if self._safety_model is None:
287
+ from langchain.chat_models import init_chat_model
288
+
289
+ self._safety_model = init_chat_model("gpt-4o-mini")
290
+ return self._safety_model
291
+
292
+ def after_agent(
293
+ self, state: AgentState, runtime: Runtime[Context]
294
+ ) -> dict[str, Any] | None:
295
+ """Evaluate response safety before returning to user."""
296
+ messages: list[BaseMessage] = state.get("messages", [])
297
+
298
+ if not messages:
299
+ return None
300
+
301
+ last_message: AIMessage | None = last_ai_message(messages)
302
+ if not last_message:
303
+ return None
304
+
305
+ safety_prompt = f"""Evaluate if this response is safe and appropriate.
306
+ Respond with only 'SAFE' or 'UNSAFE'.
307
+
308
+ Response: {last_message.content}"""
309
+
310
+ result = self.safety_model.invoke([{"role": "user", "content": safety_prompt}])
311
+
312
+ if "UNSAFE" in str(result.content):
313
+ logger.warning("Safety guardrail blocked unsafe response")
314
+ last_message.content = (
315
+ "I cannot provide that response. Please rephrase your request."
316
+ )
317
+
318
+ return None
319
+
320
+
321
+ # =============================================================================
322
+ # Factory Functions
323
+ # =============================================================================
324
+
325
+
326
+ def create_guardrail_middleware(
327
+ name: str,
328
+ model: LanguageModelLike,
329
+ prompt: str,
330
+ num_retries: int = 3,
331
+ ) -> GuardrailMiddleware:
332
+ """
333
+ Create a GuardrailMiddleware instance.
334
+
335
+ Factory function for creating LLM-based guardrail middleware that evaluates
336
+ agent responses against specified criteria using an LLM judge.
337
+
338
+ Args:
339
+ name: Name identifying this guardrail
340
+ model: The LLM to use for evaluation
341
+ prompt: The evaluation prompt/criteria
342
+ num_retries: Maximum number of retry attempts (default: 3)
343
+
344
+ Returns:
345
+ GuardrailMiddleware configured with the specified parameters
346
+
347
+ Example:
348
+ middleware = create_guardrail_middleware(
349
+ name="tone_check",
350
+ model=ChatDatabricks(endpoint="databricks-meta-llama-3-3-70b-instruct"),
351
+ prompt="Evaluate if the response is professional and helpful.",
352
+ num_retries=2,
353
+ )
354
+ """
355
+ logger.trace("Creating guardrail middleware", guardrail_name=name)
356
+ return GuardrailMiddleware(
357
+ name=name,
358
+ model=model,
359
+ prompt=prompt,
360
+ num_retries=num_retries,
361
+ )
362
+
363
+
364
+ def create_content_filter_middleware(
365
+ banned_keywords: list[str],
366
+ block_message: str = "I cannot provide that response. Please rephrase your request.",
367
+ ) -> ContentFilterMiddleware:
368
+ """
369
+ Create a ContentFilterMiddleware instance.
370
+
371
+ Factory function for creating deterministic content filter middleware
372
+ that blocks requests/responses containing banned keywords.
373
+
374
+ Args:
375
+ banned_keywords: List of keywords to block
376
+ block_message: Message to return when content is blocked
377
+
378
+ Returns:
379
+ ContentFilterMiddleware configured with the specified parameters
380
+
381
+ Example:
382
+ middleware = create_content_filter_middleware(
383
+ banned_keywords=["password", "secret", "api_key"],
384
+ block_message="I cannot discuss sensitive credentials.",
385
+ )
386
+ """
387
+ logger.trace(
388
+ "Creating content filter middleware", keywords_count=len(banned_keywords)
389
+ )
390
+ return ContentFilterMiddleware(
391
+ banned_keywords=banned_keywords,
392
+ block_message=block_message,
393
+ )
394
+
395
+
396
+ def create_safety_guardrail_middleware(
397
+ safety_model: Optional[LanguageModelLike] = None,
398
+ ) -> SafetyGuardrailMiddleware:
399
+ """
400
+ Create a SafetyGuardrailMiddleware instance.
401
+
402
+ Factory function for creating model-based safety guardrail middleware
403
+ that evaluates whether responses are safe and appropriate.
404
+
405
+ Args:
406
+ safety_model: The LLM to use for safety evaluation. If not provided,
407
+ defaults to gpt-4o-mini.
408
+
409
+ Returns:
410
+ SafetyGuardrailMiddleware configured with the specified model
411
+
412
+ Example:
413
+ from databricks_langchain import ChatDatabricks
414
+
415
+ middleware = create_safety_guardrail_middleware(
416
+ safety_model=ChatDatabricks(endpoint="databricks-meta-llama-3-3-70b-instruct"),
417
+ )
418
+ """
419
+ logger.trace("Creating safety guardrail middleware")
420
+ return SafetyGuardrailMiddleware(safety_model=safety_model)